// SPDX-License-Identifier: GPL-2.0-only
/* Copyright (c) 2020 Facebook */
#include <linux/bits.h>
#include <linux/err.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/debugfs.h>
#include <linux/init.h>
#include <linux/pci.h>
#include <linux/serial_8250.h>
#include <linux/clkdev.h>
#include <linux/clk-provider.h>
#include <linux/platform_device.h>
#include <linux/platform_data/i2c-xiic.h>
#include <linux/platform_data/i2c-ocores.h>
#include <linux/ptp_clock_kernel.h>
#include <linux/spi/spi.h>
#include <linux/spi/xilinx_spi.h>
#include <linux/spi/altera.h>
#include <net/devlink.h>
#include <linux/i2c.h>
#include <linux/mtd/mtd.h>
#include <linux/nvmem-consumer.h>
#include <linux/crc16.h>
#include <linux/dpll.h>
#define PCI_VENDOR_ID_FACEBOOK 0x1d9b
#define PCI_DEVICE_ID_FACEBOOK_TIMECARD 0x0400
#define PCI_VENDOR_ID_CELESTICA 0x18d4
#define PCI_DEVICE_ID_CELESTICA_TIMECARD 0x1008
#define PCI_VENDOR_ID_OROLIA 0x1ad7
#define PCI_DEVICE_ID_OROLIA_ARTCARD 0xa000
#define PCI_VENDOR_ID_ADVA 0xad5a
#define PCI_DEVICE_ID_ADVA_TIMECARD 0x0400
static struct class timecard_class = {
.name = "timecard",
};
struct ocp_reg {
u32 ctrl;
u32 status;
u32 select;
u32 version;
u32 time_ns;
u32 time_sec;
u32 __pad0[2];
u32 adjust_ns;
u32 adjust_sec;
u32 __pad1[2];
u32 offset_ns;
u32 offset_window_ns;
u32 __pad2[2];
u32 drift_ns;
u32 drift_window_ns;
u32 __pad3[6];
u32 servo_offset_p;
u32 servo_offset_i;
u32 servo_drift_p;
u32 servo_drift_i;
u32 status_offset;
u32 status_drift;
};
struct ptp_ocp_servo_conf {
u32 servo_offset_p;
u32 servo_offset_i;
u32 servo_drift_p;
u32 servo_drift_i;
};
#define OCP_CTRL_ENABLE BIT(0)
#define OCP_CTRL_ADJUST_TIME BIT(1)
#define OCP_CTRL_ADJUST_OFFSET BIT(2)
#define OCP_CTRL_ADJUST_DRIFT BIT(3)
#define OCP_CTRL_ADJUST_SERVO BIT(8)
#define OCP_CTRL_READ_TIME_REQ BIT(30)
#define OCP_CTRL_READ_TIME_DONE BIT(31)
#define OCP_STATUS_IN_SYNC BIT(0)
#define OCP_STATUS_IN_HOLDOVER BIT(1)
#define OCP_SELECT_CLK_NONE 0
#define OCP_SELECT_CLK_REG 0xfe
struct tod_reg {
u32 ctrl;
u32 status;
u32 uart_polarity;
u32 version;
u32 adj_sec;
u32 __pad0[3];
u32 uart_baud;
u32 __pad1[3];
u32 utc_status;
u32 leap;
};
#define TOD_CTRL_PROTOCOL BIT(28)
#define TOD_CTRL_DISABLE_FMT_A BIT(17)
#define TOD_CTRL_DISABLE_FMT_B BIT(16)
#define TOD_CTRL_ENABLE BIT(0)
#define TOD_CTRL_GNSS_MASK GENMASK(3, 0)
#define TOD_CTRL_GNSS_SHIFT 24
#define TOD_STATUS_UTC_MASK GENMASK(7, 0)
#define TOD_STATUS_UTC_VALID BIT(8)
#define TOD_STATUS_LEAP_ANNOUNCE BIT(12)
#define TOD_STATUS_LEAP_VALID BIT(16)
struct ts_reg {
u32 enable;
u32 error;
u32 polarity;
u32 version;
u32 __pad0[4];
u32 cable_delay;
u32 __pad1[3];
u32 intr;
u32 intr_mask;
u32 event_count;
u32 __pad2[1];
u32 ts_count;
u32 time_ns;
u32 time_sec;
u32 data_width;
u32 data;
};
struct pps_reg {
u32 ctrl;
u32 status;
u32 __pad0[6];
u32 cable_delay;
};
#define PPS_STATUS_FILTER_ERR BIT(0)
#define PPS_STATUS_SUPERV_ERR BIT(1)
struct img_reg {
u32 version;
};
struct gpio_reg {
u32 gpio1;
u32 __pad0;
u32 gpio2;
u32 __pad1;
};
struct irig_master_reg {
u32 ctrl;
u32 status;
u32 __pad0;
u32 version;
u32 adj_sec;
u32 mode_ctrl;
};
#define IRIG_M_CTRL_ENABLE BIT(0)
struct irig_slave_reg {
u32 ctrl;
u32 status;
u32 __pad0;
u32 version;
u32 adj_sec;
u32 mode_ctrl;
};
#define IRIG_S_CTRL_ENABLE BIT(0)
struct dcf_master_reg {
u32 ctrl;
u32 status;
u32 __pad0;
u32 version;
u32 adj_sec;
};
#define DCF_M_CTRL_ENABLE BIT(0)
struct dcf_slave_reg {
u32 ctrl;
u32 status;
u32 __pad0;
u32 version;
u32 adj_sec;
};
#define DCF_S_CTRL_ENABLE BIT(0)
struct signal_reg {
u32 enable;
u32 status;
u32 polarity;
u32 version;
u32 __pad0[4];
u32 cable_delay;
u32 __pad1[3];
u32 intr;
u32 intr_mask;
u32 __pad2[2];
u32 start_ns;
u32 start_sec;
u32 pulse_ns;
u32 pulse_sec;
u32 period_ns;
u32 period_sec;
u32 repeat_count;
};
struct frequency_reg {
u32 ctrl;
u32 status;
};
struct board_config_reg {
u32 mro50_serial_activate;
};
#define FREQ_STATUS_VALID BIT(31)
#define FREQ_STATUS_ERROR BIT(30)
#define FREQ_STATUS_OVERRUN BIT(29)
#define FREQ_STATUS_MASK GENMASK(23, 0)
struct ptp_ocp_flash_info {
const char *name;
int pci_offset;
int data_size;
void *data;
};
struct ptp_ocp_firmware_header {
char magic[4];
__be16 pci_vendor_id;
__be16 pci_device_id;
__be32 image_size;
__be16 hw_revision;
__be16 crc;
};
#define OCP_FIRMWARE_MAGIC_HEADER "OCPC"
struct ptp_ocp_i2c_info {
const char *name;
unsigned long fixed_rate;
size_t data_size;
void *data;
};
struct ptp_ocp_ext_info {
int index;
irqreturn_t (*irq_fcn)(int irq, void *priv);
int (*enable)(void *priv, u32 req, bool enable);
};
struct ptp_ocp_ext_src {
void __iomem *mem;
struct ptp_ocp *bp;
struct ptp_ocp_ext_info *info;
int irq_vec;
};
enum ptp_ocp_sma_mode {
SMA_MODE_IN,
SMA_MODE_OUT,
};
static struct dpll_pin_frequency ptp_ocp_sma_freq[] = {
DPLL_PIN_FREQUENCY_1PPS,
DPLL_PIN_FREQUENCY_10MHZ,
DPLL_PIN_FREQUENCY_IRIG_B,
DPLL_PIN_FREQUENCY_DCF77,
};
struct ptp_ocp_sma_connector {
enum ptp_ocp_sma_mode mode;
bool fixed_fcn;
bool fixed_dir;
bool disabled;
u8 default_fcn;
struct dpll_pin *dpll_pin;
struct dpll_pin_properties dpll_prop;
};
struct ocp_attr_group {
u64 cap;
const struct attribute_group *group;
};
#define OCP_CAP_BASIC BIT(0)
#define OCP_CAP_SIGNAL BIT(1)
#define OCP_CAP_FREQ BIT(2)
struct ptp_ocp_signal {
ktime_t period;
ktime_t pulse;
ktime_t phase;
ktime_t start;
int duty;
bool polarity;
bool running;
};
struct ptp_ocp_serial_port {
int line;
int baud;
};
#define OCP_BOARD_ID_LEN 13
#define OCP_SERIAL_LEN 6
#define OCP_SMA_NUM 4
enum {
PORT_GNSS,
PORT_GNSS2,
PORT_MAC, /* miniature atomic clock */
PORT_NMEA,
__PORT_COUNT,
};
struct ptp_ocp {
struct pci_dev *pdev;
struct device dev;
spinlock_t lock;
struct ocp_reg __iomem *reg;
struct tod_reg __iomem *tod;
struct pps_reg __iomem *pps_to_ext;
struct pps_reg __iomem *pps_to_clk;
struct board_config_reg __iomem *board_config;
struct gpio_reg __iomem *pps_select;
struct gpio_reg __iomem *sma_map1;
struct gpio_reg __iomem *sma_map2;
struct irig_master_reg __iomem *irig_out;
struct irig_slave_reg __iomem *irig_in;
struct dcf_master_reg __iomem *dcf_out;
struct dcf_slave_reg __iomem *dcf_in;
struct tod_reg __iomem *nmea_out;
struct frequency_reg __iomem *freq_in[4];
struct ptp_ocp_ext_src *signal_out[4];
struct ptp_ocp_ext_src *pps;
struct ptp_ocp_ext_src *ts0;
struct ptp_ocp_ext_src *ts1;
struct ptp_ocp_ext_src *ts2;
struct ptp_ocp_ext_src *ts3;
struct ptp_ocp_ext_src *ts4;
struct ocp_art_gpio_reg __iomem *art_sma;
struct img_reg __iomem *image;
struct ptp_clock *ptp;
struct ptp_clock_info ptp_info;
struct platform_device *i2c_ctrl;
struct platform_device *spi_flash;
struct clk_hw *i2c_clk;
struct timer_list watchdog;
const struct attribute_group **attr_group;
const struct ptp_ocp_eeprom_map *eeprom_map;
struct dentry *debug_root;
bool sync;
time64_t gnss_lost;
struct delayed_work sync_work;
int id;
int n_irqs;
struct ptp_ocp_serial_port port[__PORT_COUNT];
bool fw_loader;
u8 fw_tag;
u16 fw_version;
u8 board_id[OCP_BOARD_ID_LEN];
u8 serial[OCP_SERIAL_LEN];
bool has_eeprom_data;
u32 pps_req_map;
int flash_start;
u32 utc_tai_offset;
u32 ts_window_adjust;
u64 fw_cap;
struct ptp_ocp_signal signal[4];
struct ptp_ocp_sma_connector sma[OCP_SMA_NUM];
const struct ocp_sma_op *sma_op;
struct dpll_device *dpll;
};
#define OCP_REQ_TIMESTAMP BIT(0)
#define OCP_REQ_PPS BIT(1)
struct ocp_resource {
unsigned long offset;
int size;
int irq_vec;
int (*setup)(struct ptp_ocp *bp, struct ocp_resource *r);
void *extra;
unsigned long bp_offset;
const char * const name;
};
static int ptp_ocp_register_mem(struct ptp_ocp *bp, struct ocp_resource *r);
static int ptp_ocp_register_i2c(struct ptp_ocp *bp, struct ocp_resource *r);
static int ptp_ocp_register_spi(struct ptp_ocp *bp, struct ocp_resource *r);
static int ptp_ocp_register_serial(struct ptp_ocp *bp, struct ocp_resource *r);
static int ptp_ocp_register_ext(struct ptp_ocp *bp, struct ocp_resource *r);
static int ptp_ocp_fb_board_init(struct ptp_ocp *bp, struct ocp_resource *r);
static irqreturn_t ptp_ocp_ts_irq(int irq, void *priv);
static irqreturn_t ptp_ocp_signal_irq(int irq, void *priv);
static int ptp_ocp_ts_enable(void *priv, u32 req, bool enable);
static int ptp_ocp_signal_from_perout(struct ptp_ocp *bp, int gen,
struct ptp_perout_request *req);
static int ptp_ocp_signal_enable(void *priv, u32 req, bool enable);
static int ptp_ocp_sma_store(struct ptp_ocp *bp, const char *buf, int sma_nr);
static int ptp_ocp_art_board_init(struct ptp_ocp *bp, struct ocp_resource *r);
static int ptp_ocp_adva_board_init(struct ptp_ocp *bp, struct ocp_resource *r);
static const struct ocp_attr_group fb_timecard_groups[];
static const struct ocp_attr_group art_timecard_groups[];
static const struct ocp_attr_group adva_timecard_groups[];
struct ptp_ocp_eeprom_map {
u16 off;
u16 len;
u32 bp_offset;
const void * const tag;
};
#define EEPROM_ENTRY(addr, member) \
.off = addr, \
.len = sizeof_field(struct ptp_ocp, member), \
.bp_offset = offsetof(struct ptp_ocp, member)
#define BP_MAP_ENTRY_ADDR(bp, map) ({ \
(void *)((uintptr_t)(bp) + (map)->bp_offset); \
})
static struct ptp_ocp_eeprom_map fb_eeprom_map[] = {
{ EEPROM_ENTRY(0x43, board_id) },
{ EEPROM_ENTRY(0x00, serial), .tag = "mac" },
{ }
};
static struct ptp_ocp_eeprom_map art_eeprom_map[] = {
{ EEPROM_ENTRY(0x200 + 0x43, board_id) },
{ EEPROM_ENTRY(0x200 + 0x63, serial) },
{ }
};
#define bp_assign_entry(bp, res, val) ({ \
uintptr_t addr = (uintptr_t)(bp) + (res)->bp_offset; \
*(typeof(val) *)addr = val; \
})
#define OCP_RES_LOCATION(member) \
.name = #member, .bp_offset = offsetof(struct ptp_ocp, member)
#define OCP_MEM_RESOURCE(member) \
OCP_RES_LOCATION(member), .setup = ptp_ocp_register_mem
#define OCP_SERIAL_RESOURCE(member) \
OCP_RES_LOCATION(member), .setup = ptp_ocp_register_serial
#define OCP_I2C_RESOURCE(member) \
OCP_RES_LOCATION(member), .setup = ptp_ocp_register_i2c
#define OCP_SPI_RESOURCE(member) \
OCP_RES_LOCATION(member), .setup = ptp_ocp_register_spi
#define OCP_EXT_RESOURCE(member) \
OCP_RES_LOCATION(member), .setup = ptp_ocp_register_ext
/* This is the MSI vector mapping used.
* 0: PPS (TS5)
* 1: TS0
* 2: TS1
* 3: GNSS1
* 4: GNSS2
* 5: MAC
* 6: TS2
* 7: I2C controller
* 8: HWICAP (notused)
* 9: SPI Flash
* 10: NMEA
* 11: Signal Generator 1
* 12: Signal Generator 2
* 13: Signal Generator 3
* 14: Signal Generator 4
* 15: TS3
* 16: TS4
--
* 8: Orolia TS1
* 10: Orolia TS2
* 11: Orolia TS0 (GNSS)
* 12: Orolia PPS
* 14: Orolia TS3
* 15: Orolia TS4
*/
static struct ocp_resource ocp_fb_resource[] = {
{
OCP_MEM_RESOURCE(reg),
.offset = 0x01000000, .size = 0x10000,
},
{
OCP_EXT_RESOURCE(ts0),
.offset = 0x01010000, .size = 0x10000, .irq_vec = 1,
.extra = &(struct ptp_ocp_ext_info) {
.index = 0,
.irq_fcn = ptp_ocp_ts_irq,
.enable = ptp_ocp_ts_enable,
},
},
{
OCP_EXT_RESOURCE(ts1),
.offset = 0x01020000, .size = 0x10000, .irq_vec = 2,
.extra = &(struct ptp_ocp_ext_info) {
.index = 1,
.irq_fcn = ptp_ocp_ts_irq,
.enable = ptp_ocp_ts_enable,
},
},
{
OCP_EXT_RESOURCE(ts2),
.offset = 0x01060000, .size = 0x10000, .irq_vec = 6,
.extra = &(struct ptp_ocp_ext_info) {
.index = 2,
.irq_fcn = ptp_ocp_ts_irq,
.enable = ptp_ocp_ts_enable,
},
},
{
OCP_EXT_RESOURCE(ts3),
.offset = 0x01110000, .size = 0x10000, .irq_vec = 15,
.extra = &(struct ptp_ocp_ext_info) {
.index = 3,
.irq_fcn = ptp_ocp_ts_irq,
.enable = ptp_ocp_ts_enable,
},
},
{
OCP_EXT_RESOURCE(ts4),
.offset = 0x01120000, .size = 0x10000, .irq_vec = 16,
.extra = &(struct ptp_ocp_ext_info) {
.index = 4,
.irq_fcn = ptp_ocp_ts_irq,
.enable = ptp_ocp_ts_enable,
},
},
/* Timestamp for PHC and/or PPS generator */
{
OCP_EXT_RESOURCE(pps),
.offset = 0x010C0000, .size = 0x10000, .irq_vec = 0,
.extra = &(struct ptp_ocp_ext_info) {
.index = 5,
.irq_fcn = ptp_ocp_ts_irq,
.enable = ptp_ocp_ts_enable,
},
},
{
OCP_EXT_RESOURCE(signal_out[0]),
.offset = 0x010D0000, .size = 0x10000, .irq_vec = 11,
.extra = &(struct ptp_ocp_ext_info) {
.index = 1,
.irq_fcn = ptp_ocp_signal_irq,
.enable = ptp_ocp_signal_enable,
},
},
{
OCP_EXT_RESOURCE(signal_out[1]),
.offset = 0x010E0000, .size = 0x10000, .irq_vec = 12,
.extra = &(struct ptp_ocp_ext_info) {
.index = 2,
.irq_fcn = ptp_ocp_signal_irq,
.enable = ptp_ocp_signal_enable,
},
},
{
OCP_EXT_RESOURCE(signal_out[2]),
.offset = 0x010F0000, .size = 0x10000, .irq_vec = 13,
.extra = &(struct ptp_ocp_ext_info) {
.index = 3,
.irq_fcn = ptp_ocp_signal_irq,
.enable = ptp_ocp_signal_enable,
},
},
{
OCP_EXT_RESOURCE(signal_out[3]),
.offset = 0x01100000, .size = 0x10000, .irq_vec = 14,
.extra = &(struct ptp_ocp_ext_info) {
.index = 4,
.irq_fcn = ptp_ocp_signal_irq,
.enable = ptp_ocp_signal_enable,
},
},
{
OCP_MEM_RESOURCE(pps_to_ext),
.offset = 0x01030000, .size = 0x10000,
},
{
OCP_MEM_RESOURCE(pps_to_clk),
.offset = 0x01040000, .size = 0x10000,
},
{
OCP_MEM_RESOURCE(tod),
.offset = 0x01050000, .size = 0x10000,
},
{
OCP_MEM_RESOURCE(irig_in),
.offset = 0x01070000, .size = 0x10000,
},
{
OCP_MEM_RESOURCE(irig_out),
.offset = 0x01080000, .size = 0x10000,
},
{
OCP_MEM_RESOURCE(dcf_in),
.offset = 0x01090000, .size = 0x10000,
},
{
OCP_MEM_RESOURCE(dcf_out),
.offset = 0x010A0000, .size = 0x10000,
},
{
OCP_MEM_RESOURCE(nmea_out),
.offset = 0x010B0000, .size = 0x10000,
},
{
OCP_MEM_RESOURCE(image),
.offset = 0x00020000, .size = 0x1000,
},
{
OCP_MEM_RESOURCE(pps_select),
.offset = 0x00130000, .size = 0x1000,
},
{
OCP_MEM_RESOURCE(sma_map1),
.offset = 0x00140000, .size = 0x1000,
},
{
OCP_MEM_RESOURCE(sma_map2),
.offset = 0x00220000, .size = 0x1000,
},
{
OCP_I2C_RESOURCE(i2c_ctrl),
.offset = 0x00150000, .size = 0x10000, .irq_vec = 7,
.extra = &(struct ptp_ocp_i2c_info) {
.name = "xiic-i2c",
.fixed_rate = 50000000,
.data_size = sizeof(struct xiic_i2c_platform_data),
.data = &(struct xiic_i2c_platform_data) {
.num_devices = 2,
.devices = (struct i2c_board_info[]) {
{ I2C_BOARD_INFO("24c02", 0x50) },
{ I2C_BOARD_INFO("24mac402", 0x58),
.platform_data = "mac" },
},
},
},
},
{
OCP_SERIAL_RESOURCE(port[PORT_GNSS]),
.offset = 0x00160000 + 0x1000, .irq_vec = 3,
.extra = &(struct ptp_ocp_serial_port) {
.baud = 115200,
},
},
{
OCP_SERIAL_RESOURCE(port[PORT_GNSS2]),
.offset = 0x00170000 + 0x1000, .irq_vec = 4,
.extra = &(struct ptp_ocp_serial_port) {
.baud = 115200,
},
},
{
OCP_SERIAL_RESOURCE(port[PORT_MAC]),
.offset = 0x00180000 + 0x1000, .irq_vec = 5,
.extra = &(struct ptp_ocp_serial_port) {
.baud = 57600,
},
},
{
OCP_SERIAL_RESOURCE(port[PORT_NMEA]),
.offset = 0x00190000 + 0x1000, .irq_vec = 10,
},
{
OCP_SPI_RESOURCE(spi_flash),
.offset = 0x00310000, .size = 0x10000, .irq_vec = 9,
.extra = &(struct ptp_ocp_flash_info) {
.name = "xilinx_spi", .pci_offset = 0,
.data_size = sizeof(struct xspi_platform_data),
.data = &(struct xspi_platform_data) {
.num_chipselect = 1,
.bits_per_word = 8,
.num_devices = 1,
.force_irq = true,
.devices = &(struct spi_board_info) {
.modalias = "spi-nor",
},
},
},
},
{
OCP_MEM_RESOURCE(freq_in[0]),
.offset = 0x01200000, .size = 0x10000,
},
{
OCP_MEM_RESOURCE(freq_in[1]),
.offset = 0x01210000, .size = 0x10000,
},
{
OCP_MEM_RESOURCE(freq_in[2]),
.offset = 0x01220000, .size = 0x10000,
},
{
OCP_MEM_RESOURCE(freq_in[3]),
.offset = 0x01230000, .size = 0x10000,
},
{
.setup = ptp_ocp_fb_board_init,
.extra = &(struct ptp_ocp_servo_conf) {
.servo_offset_p = 0x2000,
.servo_offset_i = 0x1000,
.servo_drift_p = 0,
.servo_drift_i = 0,
},
},
{ }
};
#define OCP_ART_CONFIG_SIZE 144
#define OCP_ART_TEMP_TABLE_SIZE 368
struct ocp_art_gpio_reg {
struct {
u32 gpio;
u32 __pad[3];
} map[4];
};
static struct ocp_resource ocp_art_resource[] = {
{
OCP_MEM_RESOURCE(reg),
.offset = 0x01000000, .size = 0x10000,
},
{
OCP_SERIAL_RESOURCE(port[PORT_GNSS]),
.offset = 0x00160000 + 0x1000, .irq_vec = 3,
.extra = &(struct ptp_ocp_serial_port) {
.baud = 115200,
},
},
{
OCP_MEM_RESOURCE(art_sma),
.offset = 0x003C0000, .size = 0x1000,
},
/* Timestamp associated with GNSS1 receiver PPS */
{
OCP_EXT_RESOURCE(ts0),
.offset = 0x360000, .size = 0x20, .irq_vec = 12,
.extra = &(struct ptp_ocp_ext_info) {
.index = 0,
.irq_fcn = ptp_ocp_ts_irq,
.enable = ptp_ocp_ts_enable,
},
},
{
OCP_EXT_RESOURCE(ts1),
.offset = 0x380000, .size = 0x20, .irq_vec = 8,
.extra = &(struct ptp_ocp_ext_info) {
.index = 1,
.irq_fcn = ptp_ocp_ts_irq,
.enable = ptp_ocp_ts_enable,
},
},
{
OCP_EXT_RESOURCE(ts2),
.offset = 0x390000, .size = 0x20, .irq_vec = 10,
.extra = &(struct ptp_ocp_ext_info) {
.index = 2,
.irq_fcn = ptp_ocp_ts_irq,
.enable = ptp_ocp_ts_enable,
},
},
{
OCP_EXT_RESOURCE(ts3),
.offset = 0x3A0000, .size = 0x20, .irq_vec = 14,
.extra = &(struct ptp_ocp_ext_info) {
.index = 3,
.irq_fcn = ptp_ocp_ts_irq,
.enable = ptp_ocp_ts_enable,
},
},
{
OCP_EXT_RESOURCE(ts4),
.offset = 0x3B0000, .size = 0x20, .irq_vec = 15,
.extra = &(struct ptp_ocp_ext_info) {
.index = 4,
.irq_fcn = ptp_ocp_ts_irq,
.enable = ptp_ocp_ts_enable,
},
},
/* Timestamp associated with Internal PPS of the card */
{
OCP_EXT_RESOURCE(pps),
.offset = 0x00330000, .size = 0x20, .irq_vec = 11,
.extra = &(struct ptp_ocp_ext_info) {
.index = 5,
.irq_fcn = ptp_ocp_ts_irq,
.enable = ptp_ocp_ts_enable,
},
},
{
OCP_SPI_RESOURCE(spi_flash),
.offset = 0x00310000, .size = 0x10000, .irq_vec = 9,
.extra = &(struct ptp_ocp_flash_info) {
.name = "spi_altera", .pci_offset = 0,
.data_size = sizeof(struct altera_spi_platform_data),
.data = &(struct altera_spi_platform_data) {
.num_chipselect = 1,
.num_devices = 1,
.devices = &(struct spi_board_info) {
.modalias = "spi-nor",
},
},
},
},
{
OCP_I2C_RESOURCE(i2c_ctrl),
.offset = 0x350000, .size = 0x100, .irq_vec = 4,
.extra = &(struct ptp_ocp_i2c_info) {
.name = "ocores-i2c",
.fixed_rate = 400000,
.data_size = sizeof(struct ocores_i2c_platform_data),
.data = &(struct ocores_i2c_platform_data) {
.clock_khz = 125000,
.bus_khz = 400,
.num_devices = 1,
.devices = &(struct i2c_board_info) {
I2C_BOARD_INFO("24c08", 0x50),
},
},
},
},
{
OCP_SERIAL_RESOURCE(port[PORT_MAC]),
.offset = 0x00190000, .irq_vec = 7,
.extra = &(struct ptp_ocp_serial_port) {
.baud = 9600,
},
},
{
OCP_MEM_RESOURCE(board_config),
.offset = 0x210000, .size = 0x1000,
},
{
.setup = ptp_ocp_art_board_init,
.extra = &(struct ptp_ocp_servo_conf) {
.servo_offset_p = 0x2000,
.servo_offset_i = 0x1000,
.servo_drift_p = 0,
.servo_drift_i = 0,
},
},
{ }
};
static struct ocp_resource ocp_adva_resource[] = {
{
OCP_MEM_RESOURCE(reg),
.offset = 0x01000000, .size = 0x10000,
},
{
OCP_EXT_RESOURCE(ts0),
.offset = 0x01010000, .size = 0x10000, .irq_vec = 1,
.extra = &(struct ptp_ocp_ext_info) {
.index = 0,
.irq_fcn = ptp_ocp_ts_irq,
.enable = ptp_ocp_ts_enable,
},
},
{
OCP_EXT_RESOURCE(ts1),
.offset = 0x01020000, .size = 0x10000, .irq_vec = 2,
.extra = &(struct ptp_ocp_ext_info) {
.index = 1,
.irq_fcn = ptp_ocp_ts_irq,
.enable = ptp_ocp_ts_enable,
},
},
{
OCP_EXT_RESOURCE(ts2),
.offset = 0x01060000, .size = 0x10000, .irq_vec = 6,
.extra = &(struct ptp_ocp_ext_info) {
.index = 2,
.irq_fcn = ptp_ocp_ts_irq,
.enable = ptp_ocp_ts_enable,
},
},
/* Timestamp for PHC and/or PPS generator */
{
OCP_EXT_RESOURCE(pps),
.offset = 0x010C0000, .size = 0x10000, .irq_vec = 0,
.extra = &(struct ptp_ocp_ext_info) {
.index = 5,
.irq_fcn = ptp_ocp_ts_irq,
.enable = ptp_ocp_ts_enable,
},
},
{
OCP_EXT_RESOURCE(signal_out[0]),
.offset = 0x010D0000, .size = 0x10000, .irq_vec = 11,
.extra = &(struct ptp_ocp_ext_info) {
.index = 1,
.irq_fcn = ptp_ocp_signal_irq,
.enable = ptp_ocp_signal_enable,
},
},
{
OCP_EXT_RESOURCE(signal_out[1]),
.offset = 0x010E0000, .size = 0x10000, .irq_vec = 12,
.extra = &(struct ptp_ocp_ext_info) {
.index = 2,
.irq_fcn = ptp_ocp_signal_irq,
.enable = ptp_ocp_signal_enable,
},
},
{
OCP_MEM_RESOURCE(pps_to_ext),
.offset = 0x01030000, .size = 0x10000,
},
{
OCP_MEM_RESOURCE(pps_to_clk),
.offset = 0x01040000, .size = 0x10000,
},
{
OCP_MEM_RESOURCE(tod),
.offset = 0x01050000, .size = 0x10000,
},
{
OCP_MEM_RESOURCE(image),
.offset = 0x00020000, .size = 0x1000,
},
{
OCP_MEM_RESOURCE(pps_select),
.offset = 0x00130000, .size = 0x1000,
},
{
OCP_MEM_RESOURCE(sma_map1),
.offset = 0x00140000, .size = 0x1000,
},
{
OCP_MEM_RESOURCE(sma_map2),
.offset = 0x00220000, .size = 0x1000,
},
{
OCP_SERIAL_RESOURCE(port[PORT_GNSS]),
.offset = 0x00160000 + 0x1000, .irq_vec = 3,
.extra = &(struct ptp_ocp_serial_port) {
.baud = 9600,
},
},
{
OCP_SERIAL_RESOURCE(port[PORT_MAC]),
.offset = 0x00180000 + 0x1000, .irq_vec = 5,
.extra = &(struct ptp_ocp_serial_port) {
.baud = 115200,
},
},
{
OCP_MEM_RESOURCE(freq_in[0]),
.offset = 0x01200000, .size = 0x10000,
},
{
OCP_MEM_RESOURCE(freq_in[1]),
.offset = 0x01210000, .size = 0x10000,
},
{
OCP_SPI_RESOURCE(spi_flash),
.offset = 0x00310400, .size = 0x10000, .irq_vec = 9,
.extra = &(struct ptp_ocp_flash_info) {
.name = "spi_altera", .pci_offset = 0,
.data_size = sizeof(struct altera_spi_platform_data),
.data = &(struct altera_spi_platform_data) {
.num_chipselect = 1,
.num_devices = 1,
.devices = &(struct spi_board_info) {
.modalias = "spi-nor",
},
},
},
},
{
OCP_I2C_RESOURCE(i2c_ctrl),
.offset = 0x150000, .size = 0x100, .irq_vec = 7,
.extra = &(struct ptp_ocp_i2c_info) {
.name = "ocores-i2c",
.fixed_rate = 50000000,
.data_size = sizeof(struct ocores_i2c_platform_data),
.data = &(struct ocores_i2c_platform_data) {
.clock_khz = 50000,
.bus_khz = 100,
.reg_io_width = 4, // 32-bit/4-byte
.reg_shift = 2, // 32-bit addressing
.num_devices = 2,
.devices = (struct i2c_board_info[]) {
{ I2C_BOARD_INFO("24c02", 0x50) },
{ I2C_BOARD_INFO("24mac402", 0x58),
.platform_data = "mac" },
},
},
},
},
{
.setup = ptp_ocp_adva_board_init,
.extra = &(struct ptp_ocp_servo_conf) {
.servo_offset_p = 0xc000,
.servo_offset_i = 0x1000,
.servo_drift_p = 0,
.servo_drift_i = 0,
},
},
{ }
};
static const struct pci_device_id ptp_ocp_pcidev_id[] = {
{ PCI_DEVICE_DATA(FACEBOOK, TIMECARD, &ocp_fb_resource) },
{ PCI_DEVICE_DATA(CELESTICA, TIMECARD, &ocp_fb_resource) },
{ PCI_DEVICE_DATA(OROLIA, ARTCARD, &ocp_art_resource) },
{ PCI_DEVICE_DATA(ADVA, TIMECARD, &ocp_adva_resource) },
{ }
};
MODULE_DEVICE_TABLE(pci, ptp_ocp_pcidev_id);
static DEFINE_MUTEX(ptp_ocp_lock);
static DEFINE_IDR(ptp_ocp_idr);
struct ocp_selector {
const char *name;
int value;
u64 frequency;
};
static const struct ocp_selector ptp_ocp_clock[] = {
{ .name = "NONE", .value = 0 },
{ .name = "TOD", .value = 1 },
{ .name = "IRIG", .value = 2 },
{ .name = "PPS", .value = 3 },
{ .name = "PTP", .value = 4 },
{ .name = "RTC", .value = 5 },
{ .name = "DCF", .value = 6 },
{ .name = "REGS", .value = 0xfe },
{ .name = "EXT", .value = 0xff },
{ }
};
#define SMA_DISABLE BIT(16)
#define SMA_ENABLE BIT(15)
#define SMA_SELECT_MASK GENMASK(14, 0)
static const struct ocp_selector ptp_ocp_sma_in[] = {
{ .name = "10Mhz", .value = 0x0000, .frequency = 10000000 },
{ .name = "PPS1", .value = 0x0001, .frequency = 1 },
{ .name = "PPS2", .value = 0x0002, .frequency = 1 },
{ .name = "TS1", .value = 0x0004, .frequency = 0 },
{ .name = "TS2", .value = 0x0008, .frequency = 0 },
{ .name = "IRIG", .value = 0x0010, .frequency = 10000 },
{ .name = "DCF", .value = 0x0020, .frequency = 77500 },
{ .name = "TS3", .value = 0x0040, .frequency = 0 },
{ .name = "TS4", .value = 0x0080, .frequency = 0 },
{ .name = "FREQ1", .value = 0x0100, .frequency = 0 },
{ .name = "FREQ2", .value = 0x0200, .frequency = 0 },
{ .name = "FREQ3", .value = 0x0400, .frequency = 0 },
{ .name = "FREQ4", .value = 0x0800, .frequency = 0 },
{ .name = "None", .value = SMA_DISABLE, .frequency = 0 },
{ }
};
static const struct ocp_selector ptp_ocp_sma_out[] = {
{ .name = "10Mhz", .value = 0x0000, .frequency = 10000000 },
{ .name = "PHC", .value = 0x0001, .frequency = 1 },
{ .name = "MAC", .value = 0x0002, .frequency = 1 },
{ .name = "GNSS1", .value = 0x0004, .frequency = 1 },
{ .name = "GNSS2", .value = 0x0008, .frequency = 1 },
{ .name = "IRIG", .value = 0x0010, .frequency = 10000 },
{ .name = "DCF", .value = 0x0020, .frequency = 77000 },
{ .name = "GEN1", .value = 0x0040 },
{ .name = "GEN2", .value = 0x0080 },
{ .name = "GEN3", .value = 0x0100 },
{ .name = "GEN4", .value = 0x0200 },
{ .name = "GND", .value = 0x2000 },
{ .name = "VCC", .value = 0x4000 },
{ }
};
static const struct ocp_selector ptp_ocp_art_sma_in[] = {
{ .name = "PPS1", .value = 0x0001, .frequency = 1 },
{ .name = "10Mhz", .value = 0x0008, .frequency = 1000000 },
{ }
};
static const struct ocp_selector ptp_ocp_art_sma_out[] = {
{ .name = "PHC", .value = 0x0002, .frequency = 1 },
{ .name = "GNSS", .value = 0x0004, .frequency = 1 },
{ .name = "10Mhz", .value = 0x0010, .frequency = 10000000 },
{ }
};
static const struct ocp_selector ptp_ocp_adva_sma_in[] = {
{ .name = "10Mhz", .value = 0x0000, .frequency = 10000000},
{ .name = "PPS1", .value = 0x0001, .frequency = 1 },
{ .name = "PPS2", .value = 0x0002, .frequency = 1 },
{ .name = "TS1", .value = 0x0004, .frequency = 0 },
{ .name = "TS2", .value = 0x0008, .frequency = 0 },
{ .name = "FREQ1", .value = 0x0100, .frequency = 0 },
{ .name = "FREQ2", .value = 0x0200, .frequency = 0 },
{ .name = "None", .value = SMA_DISABLE, .frequency = 0 },
{ }
};
static const struct ocp_selector ptp_ocp_adva_sma_out[] = {
{ .name = "10Mhz", .value = 0x0000, .frequency = 10000000},
{ .name = "PHC", .value = 0x0001, .frequency = 1 },
{ .name = "MAC", .value = 0x0002, .frequency = 1 },
{ .name = "GNSS1", .value = 0x0004, .frequency = 1 },
{ .name = "GEN1", .value = 0x0040 },
{ .name = "GEN2", .value = 0x0080 },
{ .name = "GND", .value = 0x2000 },
{ .name = "VCC", .value = 0x4000 },
{ }
};
struct ocp_sma_op {
const struct ocp_selector *tbl[2];
void (*init)(struct ptp_ocp *bp);
u32 (*get)(struct ptp_ocp *bp, int sma_nr);
int (*set_inputs)(struct ptp_ocp *bp, int sma_nr, u32 val);
int (*set_output)(struct ptp_ocp *bp, int sma_nr, u32 val);
};
static void
ptp_ocp_sma_init(struct ptp_ocp *bp)
{
return bp->sma_op->init(bp);
}
static u32
ptp_ocp_sma_get(struct ptp_ocp *bp, int sma_nr)
{
return bp->sma_op->get(bp, sma_nr);
}
static int
ptp_ocp_sma_set_inputs(struct ptp_ocp *bp, int sma_nr, u32 val)
{
return bp->sma_op->set_inputs(bp, sma_nr, val);
}
static int
ptp_ocp_sma_set_output(struct ptp_ocp *bp, int sma_nr, u32 val)
{
return bp->sma_op->set_output(bp, sma_nr, val);
}
static const char *
ptp_ocp_select_name_from_val(const struct ocp_selector *tbl, int val)
{
int i;
for (i = 0; tbl[i].name; i++)
if (tbl[i].value == val)
return tbl[i].name;
return NULL;
}
static int
ptp_ocp_select_val_from_name(const struct ocp_selector *tbl, const char *name)
{
const char *select;
int i;
for (i = 0; tbl[i].name; i++) {
select = tbl[i].name;
if (!strncasecmp(name, select, strlen(select)))
return tbl[i].value;
}
return -EINVAL;
}
static ssize_t
ptp_ocp_select_table_show(const struct ocp_selector *tbl, char *buf)
{
ssize_t count;
int i;
count = 0;
for (i = 0; tbl[i].name; i++)
count += sysfs_emit_at(buf, count, "%s ", tbl[i].name);
if (count)
count--;
count += sysfs_emit_at(buf, count, "\n");
return count;
}
static int
__ptp_ocp_gettime_locked(struct ptp_ocp *bp, struct timespec64 *ts,
struct ptp_system_timestamp *sts)
{
u32 ctrl, time_sec, time_ns;
int i;
ptp_read_system_prets(sts);
ctrl = OCP_CTRL_READ_TIME_REQ | OCP_CTRL_ENABLE;
iowrite32(ctrl, &bp->reg->ctrl);
for (i = 0; i < 100; i++) {
ctrl = ioread32(&bp->reg->ctrl);
if (ctrl & OCP_CTRL_READ_TIME_DONE)
break;
}
ptp_read_system_postts(sts);
if (sts && bp->ts_window_adjust) {
s64 ns = timespec64_to_ns(&sts->post_ts);
sts->post_ts = ns_to_timespec64(ns - bp->ts_window_adjust);
}
time_ns = ioread32(&bp->reg->time_ns);
time_sec = ioread32(&bp->reg->time_sec);
ts->tv_sec = time_sec;
ts->tv_nsec = time_ns;
return ctrl & OCP_CTRL_READ_TIME_DONE ? 0 : -ETIMEDOUT;
}
static int
ptp_ocp_gettimex(struct ptp_clock_info *ptp_info, struct timespec64 *ts,
struct ptp_system_timestamp *sts)
{
struct ptp_ocp *bp = container_of(ptp_info, struct ptp_ocp, ptp_info);
unsigned long flags;
int err;
spin_lock_irqsave(&bp->lock, flags);
err = __ptp_ocp_gettime_locked(bp, ts, sts);
spin_unlock_irqrestore(&bp->lock, flags);
return err;
}
static void
__ptp_ocp_settime_locked(struct ptp_ocp *bp, const struct timespec64 *ts)
{
u32 ctrl, time_sec, time_ns;
u32 select;
time_ns = ts->tv_nsec;
time_sec = ts->tv_sec;
select = ioread32(&bp->reg->select);
iowrite32(OCP_SELECT_CLK_REG, &bp->reg->select);
iowrite32(time_ns, &bp->reg->adjust_ns);
iowrite32(time_sec, &bp->reg->adjust_sec);
ctrl = OCP_CTRL_ADJUST_TIME | OCP_CTRL_ENABLE;
iowrite32(ctrl, &bp->reg->ctrl);
/* restore clock selection */
iowrite32(select >> 16, &bp->reg->select);
}
static int
ptp_ocp_settime(struct ptp_clock_info *ptp_info, const struct timespec64 *ts)
{
struct ptp_ocp *bp = container_of(ptp_info, struct ptp_ocp, ptp_info);
unsigned long flags;
spin_lock_irqsave(&bp->lock, flags);
__ptp_ocp_settime_locked(bp, ts);
spin_unlock_irqrestore(&bp->lock, flags);
return 0;
}
static void
__ptp_ocp_adjtime_locked(struct ptp_ocp *bp, u32 adj_val)
{
u32 select, ctrl;
select = ioread32(&bp->reg->select);
iowrite32(OCP_SELECT_CLK_REG, &bp->reg->select);
iowrite32(adj_val, &bp->reg->offset_ns);
iowrite32(NSEC_PER_SEC, &bp->reg->offset_window_ns);
ctrl = OCP_CTRL_ADJUST_OFFSET | OCP_CTRL_ENABLE;
iowrite32(ctrl, &bp->reg->ctrl);
/* restore clock selection */
iowrite32(select >> 16, &bp->reg->select);
}
static void
ptp_ocp_adjtime_coarse(struct ptp_ocp *bp, s64 delta_ns)
{
struct timespec64 ts;
unsigned long flags;
int err;
spin_lock_irqsave(&bp->lock, flags);
err = __ptp_ocp_gettime_locked(bp, &ts, NULL);
if (likely(!err)) {
set_normalized_timespec64(&ts, ts.tv_sec,
ts.tv_nsec + delta_ns);
__ptp_ocp_settime_locked(bp, &ts);
}
spin_unlock_irqrestore(&bp->lock, flags);
}
static int
ptp_ocp_adjtime(struct ptp_clock_info *ptp_info, s64 delta_ns)
{
struct ptp_ocp *bp = container_of(ptp_info, struct ptp_ocp, ptp_info);
unsigned long flags;
u32 adj_ns, sign;
if (delta_ns > NSEC_PER_SEC || -delta_ns > NSEC_PER_SEC) {
ptp_ocp_adjtime_coarse(bp, delta_ns);
return 0;
}
sign = delta_ns < 0 ? BIT(31) : 0;
adj_ns = sign ? -delta_ns : delta_ns;
spin_lock_irqsave(&bp->lock, flags);
__ptp_ocp_adjtime_locked(bp, sign | adj_ns);
spin_unlock_irqrestore(&bp->lock, flags);
return 0;
}
static int
ptp_ocp_null_adjfine(struct ptp_clock_info *ptp_info, long scaled_ppm)
{
if (scaled_ppm == 0)
return 0;
return -EOPNOTSUPP;
}
static s32
ptp_ocp_null_getmaxphase(struct ptp_clock_info *ptp_info)
{
return 0;
}
static int
ptp_ocp_null_adjphase(struct ptp_clock_info *ptp_info, s32 phase_ns)
{
return -EOPNOTSUPP;
}
static int
ptp_ocp_enable(struct ptp_clock_info *ptp_info, struct ptp_clock_request *rq,
int on)
{
struct ptp_ocp *bp = container_of(ptp_info, struct ptp_ocp, ptp_info);
struct ptp_ocp_ext_src *ext = NULL;
u32 req;
int err;
switch (rq->type) {
case PTP_CLK_REQ_EXTTS:
req = OCP_REQ_TIMESTAMP;
switch (rq->extts.index) {
case 0:
ext = bp->ts0;
break;
case 1:
ext = bp->ts1;
break;
case 2:
ext = bp->ts2;
break;
case 3:
ext = bp->ts3;
break;
case 4:
ext = bp->ts4;
break;
case 5:
ext = bp->pps;
break;
}
break;
case PTP_CLK_REQ_PPS:
req = OCP_REQ_PPS;
ext = bp->pps;
break;
case PTP_CLK_REQ_PEROUT:
switch (rq->perout.index) {
case 0:
/* This is a request for 1PPS on an output SMA.
* Allow, but assume manual configuration.
*/
if (on && (rq->perout.period.sec != 1 ||
rq->perout.period.nsec != 0))
return -EINVAL;
return 0;
case 1:
case 2:
case 3:
case 4:
req = rq->perout.index - 1;
ext = bp->signal_out[req];
err = ptp_ocp_signal_from_perout(bp, req, &rq->perout);
if (err)
return err;
break;
}
break;
default:
return -EOPNOTSUPP;
}
err = -ENXIO;
if (ext)
err = ext->info->enable(ext, req, on);
return err;
}
static int
ptp_ocp_verify(struct ptp_clock_info *ptp_info, unsigned pin,
enum ptp_pin_function func, unsigned chan)
{
struct ptp_ocp *bp = container_of(ptp_info, struct ptp_ocp, ptp_info);
char buf[16];
switch (func) {
case PTP_PF_NONE:
snprintf(buf, sizeof(buf), "IN: None");
break;
case PTP_PF_EXTTS:
/* Allow timestamps, but require sysfs configuration. */
return 0;
case PTP_PF_PEROUT:
/* channel 0 is 1PPS from PHC.
* channels 1..4 are the frequency generators.
*/
if (chan)
snprintf(buf, sizeof(buf), "OUT: GEN%d", chan);
else
snprintf(buf, sizeof(buf), "OUT: PHC");
break;
default:
return -EOPNOTSUPP;
}
return ptp_ocp_sma_store(bp, buf, pin + 1);
}
static const struct ptp_clock_info ptp_ocp_clock_info = {
.owner = THIS_MODULE,
.name = KBUILD_MODNAME,
.max_adj = 100000000,
.gettimex64 = ptp_ocp_gettimex,
.settime64 = ptp_ocp_settime,
.adjtime = ptp_ocp_adjtime,
.adjfine = ptp_ocp_null_adjfine,
.adjphase = ptp_ocp_null_adjphase,
.getmaxphase = ptp_ocp_null_getmaxphase,
.enable = ptp_ocp_enable,
.verify = ptp_ocp_verify,
.pps = true,
.n_ext_ts = 6,
.n_per_out = 5,
};
static void
__ptp_ocp_clear_drift_locked(struct ptp_ocp *bp)
{
u32 ctrl, select;
select = ioread32(&bp->reg->select);
iowrite32(OCP_SELECT_CLK_REG, &bp->reg->select);
iowrite32(0, &bp->reg->drift_ns);
ctrl = OCP_CTRL_ADJUST_DRIFT | OCP_CTRL_ENABLE;
iowrite32(ctrl, &bp->reg->ctrl);
/* restore clock selection */
iowrite32(select >> 16, &bp->reg->select);
}
static void
ptp_ocp_utc_distribute(struct ptp_ocp *bp, u32 val)
{
unsigned long flags;
spin_lock_irqsave(&bp->lock, flags);
bp->utc_tai_offset = val;
if (bp->irig_out)
iowrite32(val, &bp->irig_out->adj_sec);
if (bp->dcf_out)
iowrite32(val, &bp->dcf_out->adj_sec);
if (bp->nmea_out)
iowrite32(val, &bp->nmea_out->adj_sec);
spin_unlock_irqrestore(&bp->lock, flags);
}
static void
ptp_ocp_watchdog(struct timer_list *t)
{
struct ptp_ocp *bp = from_timer(bp, t, watchdog);
unsigned long flags;
u32 status, utc_offset;
status = ioread32(&bp->pps_to_clk->status);
if (status & PPS_STATUS_SUPERV_ERR) {
iowrite32(status, &bp->pps_to_clk->status);
if (!bp->gnss_lost) {
spin_lock_irqsave(&bp->lock, flags);
__ptp_ocp_clear_drift_locked(bp);
spin_unlock_irqrestore(&bp->lock, flags);
bp->gnss_lost = ktime_get_real_seconds();
}
} else if (bp->gnss_lost) {
bp->gnss_lost = 0;
}
/* if GNSS provides correct data we can rely on
* it to get leap second information
*/
if (bp->tod) {
status = ioread32(&bp->tod->utc_status);
utc_offset = status & TOD_STATUS_UTC_MASK;
if (status & TOD_STATUS_UTC_VALID &&
utc_offset != bp->utc_tai_offset)
ptp_ocp_utc_distribute(bp, utc_offset);
}
mod_timer(&bp->watchdog, jiffies + HZ);
}
static void
ptp_ocp_estimate_pci_timing(struct ptp_ocp *bp)
{
ktime_t start, end, delay = U64_MAX;
u32 ctrl;
int i;
for (i = 0; i < 3; i++) {
ctrl = ioread32(&bp->reg->ctrl);
ctrl = OCP_CTRL_READ_TIME_REQ | OCP_CTRL_ENABLE;
iowrite32(ctrl, &bp->reg->ctrl);
start = ktime_get_raw_ns();
ctrl = ioread32(&bp->reg->ctrl);
end = ktime_get_raw_ns();
delay = min(delay, end - start);
}
bp->ts_window_adjust = (delay >> 5) * 3;
}
static int
ptp_ocp_init_clock(struct ptp_ocp *bp, struct ptp_ocp_servo_conf *servo_conf)
{
struct timespec64 ts;
u32 ctrl;
ctrl = OCP_CTRL_ENABLE;
iowrite32(ctrl, &bp->reg->ctrl);
/* servo configuration */
iowrite32(servo_conf->servo_offset_p, &bp->reg->servo_offset_p);
iowrite32(servo_conf->servo_offset_i, &bp->reg->servo_offset_i);
iowrite32(servo_conf->servo_drift_p, &bp->reg->servo_drift_p);
iowrite32(servo_conf->servo_drift_p, &bp->reg->servo_drift_i);
/* latch servo values */
ctrl |= OCP_CTRL_ADJUST_SERVO;
iowrite32(ctrl, &bp->reg->ctrl);
if ((ioread32(&bp->reg->ctrl) & OCP_CTRL_ENABLE) == 0) {
dev_err(&bp->pdev->dev, "clock not enabled\n");
return -ENODEV;
}
ptp_ocp_estimate_pci_timing(bp);
bp->sync = ioread32(&bp->reg->status) & OCP_STATUS_IN_SYNC;
if (!bp->sync) {
ktime_get_clocktai_ts64(&ts);
ptp_ocp_settime(&bp->ptp_info, &ts);
}
/* If there is a clock supervisor, then enable the watchdog */
if (bp->pps_to_clk) {
timer_setup(&bp->watchdog, ptp_ocp_watchdog, 0);
mod_timer(&bp->watchdog, jiffies + HZ);
}
return 0;
}
static void
ptp_ocp_tod_init(struct ptp_ocp *bp)
{
u32 ctrl, reg;
ctrl = ioread32(&bp->tod->ctrl);
ctrl |= TOD_CTRL_PROTOCOL | TOD_CTRL_ENABLE;
ctrl &= ~(TOD_CTRL_DISABLE_FMT_A | TOD_CTRL_DISABLE_FMT_B);
iowrite32(ctrl, &bp->tod->ctrl);
reg = ioread32(&bp->tod->utc_status);
if (reg & TOD_STATUS_UTC_VALID)
ptp_ocp_utc_distribute(bp, reg & TOD_STATUS_UTC_MASK);
}
static const char *
ptp_ocp_tod_proto_name(const int idx)
{
static const char * const proto_name[] = {
"NMEA", "NMEA_ZDA", "NMEA_RMC", "NMEA_none",
"UBX", "UBX_UTC", "UBX_LS", "UBX_none"
};
return proto_name[idx];
}
static const char *
ptp_ocp_tod_gnss_name(int idx)
{
static const char * const gnss_name[] = {
"ALL", "COMBINED", "GPS", "GLONASS", "GALILEO", "BEIDOU",
"Unknown"
};
if (idx >= ARRAY_SIZE(gnss_name))
idx = ARRAY_SIZE(gnss_name) - 1;
return gnss_name[idx];
}
static const char *
ptp_ocp_tty_port_name(int idx)
{
static const char * const tty_name[] = {
"GNSS", "GNSS2", "MAC", "NMEA"
};
return tty_name[idx];
}
struct ptp_ocp_nvmem_match_info {
struct ptp_ocp *bp;
const void * const tag;
};
static int
ptp_ocp_nvmem_match(struct device *dev, const void *data)
{
const struct ptp_ocp_nvmem_match_info *info = data;
dev = dev->parent;
if (!i2c_verify_client(dev) || info->tag != dev->platform_data)
return 0;
while ((dev = dev->parent))
if (dev->driver && !strcmp(dev->driver->name, KBUILD_MODNAME))
return info->bp == dev_get_drvdata(dev);
return 0;
}
static inline struct nvmem_device *
ptp_ocp_nvmem_device_get(struct ptp_ocp *bp, const void * const tag)
{
struct ptp_ocp_nvmem_match_info info = { .bp = bp, .tag = tag };
return nvmem_device_find(&info, ptp_ocp_nvmem_match);
}
static inline void
ptp_ocp_nvmem_device_put(struct nvmem_device **nvmemp)
{
if (!IS_ERR_OR_NULL(*nvmemp))
nvmem_device_put(*nvmemp);
*nvmemp = NULL;
}
static void
ptp_ocp_read_eeprom(struct ptp_ocp *bp)
{
const struct ptp_ocp_eeprom_map *map;
struct nvmem_device *nvmem;
const void *tag;
int ret;
if (!bp->i2c_ctrl)
return;
tag = NULL;
nvmem = NULL;
for (map = bp->eeprom_map; map->len; map++) {
if (map->tag != tag) {
tag = map->tag;
ptp_ocp_nvmem_device_put(&nvmem);
}
if (!nvmem) {
nvmem = ptp_ocp_nvmem_device_get(bp, tag);
if (IS_ERR(nvmem)) {
ret = PTR_ERR(nvmem);
goto fail;
}
}
ret = nvmem_device_read(nvmem, map->off, map->len,
BP_MAP_ENTRY_ADDR(bp, map));
if (ret != map->len)
goto fail;
}
bp->has_eeprom_data = true;
out:
ptp_ocp_nvmem_device_put(&nvmem);
return;
fail:
dev_err(&bp->pdev->dev, "could not read eeprom: %d\n", ret);
goto out;
}
static struct device *
ptp_ocp_find_flash(struct ptp_ocp *bp)
{
struct device *dev, *last;
last = NULL;
dev = &bp->spi_flash->dev;
while ((dev = device_find_any_child(dev))) {
if (!strcmp("mtd", dev_bus_name(dev)))
break;
put_device(last);
last = dev;
}
put_device(last);
return dev;
}
static int
ptp_ocp_devlink_fw_image(struct devlink *devlink, const struct firmware *fw,
const u8 **data, size_t *size)
{
struct ptp_ocp *bp = devlink_priv(devlink);
const struct ptp_ocp_firmware_header *hdr;
size_t offset, length;
u16 crc;
hdr = (const struct ptp_ocp_firmware_header *)fw->data;
if (memcmp(hdr->magic, OCP_FIRMWARE_MAGIC_HEADER, 4)) {
devlink_flash_update_status_notify(devlink,
"No firmware header found, cancel firmware upgrade",
NULL, 0, 0);
return -EINVAL;
}
if (be16_to_cpu(hdr->pci_vendor_id) != bp->pdev->vendor ||
be16_to_cpu(hdr->pci_device_id) != bp->pdev->device) {
devlink_flash_update_status_notify(devlink,
"Firmware image compatibility check failed",
NULL, 0, 0);
return -EINVAL;
}
offset = sizeof(*hdr);
length = be32_to_cpu(hdr->image_size);
if (length != (fw->size - offset)) {
devlink_flash_update_status_notify(devlink,
"Firmware image size check failed",
NULL, 0, 0);
return -EINVAL;
}
crc = crc16(0xffff, &fw->data[offset], length);
if (be16_to_cpu(hdr->crc) != crc) {
devlink_flash_update_status_notify(devlink,
"Firmware image CRC check failed",
NULL, 0, 0);
return -EINVAL;
}
*data = &fw->data[offset];
*size = length;
return 0;
}
static int
ptp_ocp_devlink_flash(struct devlink *devlink, struct device *dev,
const struct firmware *fw)
{
struct mtd_info *mtd = dev_get_drvdata(dev);
struct ptp_ocp *bp = devlink_priv(devlink);
size_t off, len, size, resid, wrote;
struct erase_info erase;
size_t base, blksz;
const u8 *data;
int err;
err = ptp_ocp_devlink_fw_image(devlink, fw, &data, &size);
if (err)
goto out;
off = 0;
base = bp->flash_start;
blksz = 4096;
resid = size;
while (resid) {
devlink_flash_update_status_notify(devlink, "Flashing",
NULL, off, size);
len = min_t(size_t, resid, blksz);
erase.addr = base + off;
erase.len = blksz;
err = mtd_erase(mtd, &erase);
if (err)
goto out;
err = mtd_write(mtd, base + off, len, &wrote, data + off);
if (err)
goto out;
off += blksz;
resid -= len;
}
out:
return err;
}
static int
ptp_ocp_devlink_flash_update(struct devlink *devlink,
struct devlink_flash_update_params *params,
struct netlink_ext_ack *extack)
{
struct ptp_ocp *bp = devlink_priv(devlink);
struct device *dev;
const char *msg;
int err;
dev = ptp_ocp_find_flash(bp);
if (!dev) {
dev_err(&bp->pdev->dev, "Can't find Flash SPI adapter\n");
return -ENODEV;
}
devlink_flash_update_status_notify(devlink, "Preparing to flash",
NULL, 0, 0);
err = ptp_ocp_devlink_flash(devlink, dev, params->fw);
msg = err ? "Flash error" : "Flash complete";
devlink_flash_update_status_notify(devlink, msg, NULL, 0, 0);
put_device(dev);
return err;
}
static int
ptp_ocp_devlink_info_get(struct devlink *devlink, struct devlink_info_req *req,
struct netlink_ext_ack *extack)
{
struct ptp_ocp *bp = devlink_priv(devlink);
const char *fw_image;
char buf[32];
int err;
fw_image = bp->fw_loader ? "loader" : "fw";
sprintf(buf, "%d.%d", bp->fw_tag, bp->fw_version);
err = devlink_info_version_running_put(req, fw_image, buf);
if (err)
return err;
if (!bp->has_eeprom_data) {
ptp_ocp_read_eeprom(bp);
if (!bp->has_eeprom_data)
return 0;
}
sprintf(buf, "%pM", bp->serial);
err = devlink_info_serial_number_put(req, buf);
if (err)
return err;
err = devlink_info_version_fixed_put(req,
DEVLINK_INFO_VERSION_GENERIC_BOARD_ID,
bp->board_id);
if (err)
return err;
return 0;
}
static const struct devlink_ops ptp_ocp_devlink_ops = {
.flash_update = ptp_ocp_devlink_flash_update,
.info_get = ptp_ocp_devlink_info_get,
};
static void __iomem *
__ptp_ocp_get_mem(struct ptp_ocp *bp, resource_size_t start, int size)
{
struct resource res = DEFINE_RES_MEM_NAMED(start, size, "ptp_ocp");
return devm_ioremap_resource(&bp->pdev->dev, &res);
}
static void __iomem *
ptp_ocp_get_mem(struct ptp_ocp *bp, struct ocp_resource *r)
{
resource_size_t start;
start = pci_resource_start(bp->pdev, 0) + r->offset;
return __ptp_ocp_get_mem(bp, start, r->size);
}
static int
ptp_ocp_register_spi(struct ptp_ocp *bp, struct ocp_resource *r)
{
struct ptp_ocp_flash_info *info;
struct pci_dev *pdev = bp->pdev;
struct platform_device *p;
struct resource res[2];
resource_size_t start;
int id;
start = pci_resource_start(pdev, 0) + r->offset;
res[0] = DEFINE_RES_MEM(start, r->size);
res[1] = DEFINE_RES_IRQ(pci_irq_vector(pdev, r->irq_vec));
info = r->extra;
id = pci_dev_id(pdev) << 1;
id += info->pci_offset;
p = platform_device_register_resndata(&pdev->dev, info->name, id,
res, ARRAY_SIZE(res), info->data,
info->data_size);
if (IS_ERR(p))
return PTR_ERR(p);
bp_assign_entry(bp, r, p);
return 0;
}
static struct platform_device *
ptp_ocp_i2c_bus(struct pci_dev *pdev, struct ocp_resource *r, int id)
{
struct ptp_ocp_i2c_info *info;
struct resource res[2];
resource_size_t start;
info = r->extra;
start = pci_resource_start(pdev, 0) + r->offset;
res[0] = DEFINE_RES_MEM(start, r->size);
res[1] = DEFINE_RES_IRQ(pci_irq_vector(pdev, r->irq_vec));
return platform_device_register_resndata(&pdev->dev, info->name,
id, res, ARRAY_SIZE(res),
info->data, info->data_size);
}
static int
ptp_ocp_register_i2c(struct ptp_ocp *bp, struct ocp_resource *r)
{
struct pci_dev *pdev = bp->pdev;
struct ptp_ocp_i2c_info *info;
struct platform_device *p;
struct clk_hw *clk;
char buf[32];
int id;
info = r->extra;
id = pci_dev_id(bp->pdev);
sprintf(buf, "AXI.%d", id);
clk = clk_hw_register_fixed_rate(&pdev->dev, buf, NULL, 0,
info->fixed_rate);
if (IS_ERR(clk))
return PTR_ERR(clk);
bp->i2c_clk = clk;
sprintf(buf, "%s.%d", info->name, id);
devm_clk_hw_register_clkdev(&pdev->dev, clk, NULL, buf);
p = ptp_ocp_i2c_bus(bp->pdev, r, id);
if (IS_ERR(p))
return PTR_ERR(p);
bp_assign_entry(bp, r, p);
return 0;
}
/* The expectation is that this is triggered only on error. */
static irqreturn_t
ptp_ocp_signal_irq(int irq, void *priv)
{
struct ptp_ocp_ext_src *ext = priv;
struct signal_reg __iomem *reg = ext->mem;
struct ptp_ocp *bp = ext->bp;
u32 enable, status;
int gen;
gen = ext->info->index - 1;
enable = ioread32(®->enable);
status = ioread32(®->status);
/* disable generator on error */
if (status || !enable) {
iowrite32(0, ®->intr_mask);
iowrite32(0, ®->enable);
bp->signal[gen].running = false;
}
iowrite32(0, ®->intr); /* ack interrupt */
return IRQ_HANDLED;
}
static int
ptp_ocp_signal_set(struct ptp_ocp *bp, int gen, struct ptp_ocp_signal *s)
{
struct ptp_system_timestamp sts;
struct timespec64 ts;
ktime_t start_ns;
int err;
if (!s->period)
return 0;
if (!s->pulse)
s->pulse = ktime_divns(s->period * s->duty, 100);
err = ptp_ocp_gettimex(&bp->ptp_info, &ts, &sts);
if (err)
return err;
start_ns = ktime_set(ts.tv_sec, ts.tv_nsec) + NSEC_PER_MSEC;
if (!s->start) {
/* roundup() does not work on 32-bit systems */
s->start = DIV64_U64_ROUND_UP(start_ns, s->period);
s->start = ktime_add(s->start, s->phase);
}
if (s->duty < 1 || s->duty > 99)
return -EINVAL;
if (s->pulse < 1 || s->pulse > s->period)
return -EINVAL;
if (s->start < start_ns)
return -EINVAL;
bp->signal[gen] = *s;
return 0;
}
static int
ptp_ocp_signal_from_perout(struct ptp_ocp *bp, int gen,
struct ptp_perout_request *req)
{
struct ptp_ocp_signal s = { };
s.polarity = bp->signal[gen].polarity;
s.period = ktime_set(req->period.sec, req->period.nsec);
if (!s.period)
return 0;
if (req->flags & PTP_PEROUT_DUTY_CYCLE) {
s.pulse = ktime_set(req->on.sec, req->on.nsec);
s.duty = ktime_divns(s.pulse * 100, s.period);
}
if (req->flags & PTP_PEROUT_PHASE)
s.phase = ktime_set(req->phase.sec, req->phase.nsec);
else
s.start = ktime_set(req->start.sec, req->start.nsec);
return ptp_ocp_signal_set(bp, gen, &s);
}
static int
ptp_ocp_signal_enable(void *priv, u32 req, bool enable)
{
struct ptp_ocp_ext_src *ext = priv;
struct signal_reg __iomem *reg = ext->mem;
struct ptp_ocp *bp = ext->bp;
struct timespec64 ts;
int gen;
gen = ext->info->index - 1;
iowrite32(0, ®->intr_mask);
iowrite32(0, ®->enable);
bp->signal[gen].running = false;
if (!enable)
return 0;
ts = ktime_to_timespec64(bp->signal[gen].start);
iowrite32(ts.tv_sec, ®->start_sec);
iowrite32(ts.tv_nsec, ®->start_ns);
ts = ktime_to_timespec64(bp->signal[gen].period);
iowrite32(ts.tv_sec, ®->period_sec);
iowrite32(ts.tv_nsec, ®->period_ns);
ts = ktime_to_timespec64(bp->signal[gen].pulse);
iowrite32(ts.tv_sec, ®->pulse_sec);
iowrite32(ts.tv_nsec, ®->pulse_ns);
iowrite32(bp->signal[gen].polarity, ®->polarity);
iowrite32(0, ®->repeat_count);
iowrite32(0, ®->intr); /* clear interrupt state */
iowrite32(1, ®->intr_mask); /* enable interrupt */
iowrite32(3, ®->enable); /* valid & enable */
bp->signal[gen].running = true;
return 0;
}
static irqreturn_t
ptp_ocp_ts_irq(int irq, void *priv)
{
struct ptp_ocp_ext_src *ext = priv;
struct ts_reg __iomem *reg = ext->mem;
struct ptp_clock_event ev;
u32 sec, nsec;
if (ext == ext->bp->pps) {
if (ext->bp->pps_req_map & OCP_REQ_PPS) {
ev.type = PTP_CLOCK_PPS;
ptp_clock_event(ext->bp->ptp, &ev);
}
if ((ext->bp->pps_req_map & ~OCP_REQ_PPS) == 0)
goto out;
}
/* XXX should fix API - this converts s/ns -> ts -> s/ns */
sec = ioread32(®->time_sec);
nsec = ioread32(®->time_ns);
ev.type = PTP_CLOCK_EXTTS;
ev.index = ext->info->index;
ev.timestamp = sec * NSEC_PER_SEC + nsec;
ptp_clock_event(ext->bp->ptp, &ev);
out:
iowrite32(1, ®->intr); /* write 1 to ack */
return IRQ_HANDLED;
}
static int
ptp_ocp_ts_enable(void *priv, u32 req, bool enable)
{
struct ptp_ocp_ext_src *ext = priv;
struct ts_reg __iomem *reg = ext->mem;
struct ptp_ocp *bp = ext->bp;
if (ext == bp->pps) {
u32 old_map = bp->pps_req_map;
if (enable)
bp->pps_req_map |= req;
else
bp->pps_req_map &= ~req;
/* if no state change, just return */
if ((!!old_map ^ !!bp->pps_req_map) == 0)
return 0;
}
if (enable) {
iowrite32(1, ®->enable);
iowrite32(1, ®->intr_mask);
iowrite32(1, ®->intr);
} else {
iowrite32(0, ®->intr_mask);
iowrite32(0, ®->enable);
}
return 0;
}
static void
ptp_ocp_unregister_ext(struct ptp_ocp_ext_src *ext)
{
ext->info->enable(ext, ~0, false);
pci_free_irq(ext->bp->pdev, ext->irq_vec, ext);
kfree(ext);
}
static int
ptp_ocp_register_ext(struct ptp_ocp *bp, struct ocp_resource *r)
{
struct pci_dev *pdev = bp->pdev;
struct ptp_ocp_ext_src *ext;
int err;
ext = kzalloc(sizeof(*ext), GFP_KERNEL);
if (!ext)
return -ENOMEM;
ext->mem = ptp_ocp_get_mem(bp, r);
if (IS_ERR(ext->mem)) {
err = PTR_ERR(ext->mem);
goto out;
}
ext->bp = bp;
ext->info = r->extra;
ext->irq_vec = r->irq_vec;
err = pci_request_irq(pdev, r->irq_vec, ext->info->irq_fcn, NULL,
ext, "ocp%d.%s", bp->id, r->name);
if (err) {
dev_err(&pdev->dev, "Could not get irq %d\n", r->irq_vec);
goto out;
}
bp_assign_entry(bp, r, ext);
return 0;
out:
kfree(ext);
return err;
}
static int
ptp_ocp_serial_line(struct ptp_ocp *bp, struct ocp_resource *r)
{
struct pci_dev *pdev = bp->pdev;
struct uart_8250_port uart;
/* Setting UPF_IOREMAP and leaving port.membase unspecified lets
* the serial port device claim and release the pci resource.
*/
memset(&uart, 0, sizeof(uart));
uart.port.dev = &pdev->dev;
uart.port.iotype = UPIO_MEM;
uart.port.regshift = 2;
uart.port.mapbase = pci_resource_start(pdev, 0) + r->offset;
uart.port.irq = pci_irq_vector(pdev, r->irq_vec);
uart.port.uartclk = 50000000;
uart.port.flags = UPF_FIXED_TYPE | UPF_IOREMAP | UPF_NO_THRE_TEST;
uart.port.type = PORT_16550A;
return serial8250_register_8250_port(&uart);
}
static int
ptp_ocp_register_serial(struct ptp_ocp *bp, struct ocp_resource *r)
{
struct ptp_ocp_serial_port *p = (struct ptp_ocp_serial_port *)r->extra;
struct ptp_ocp_serial_port port = {};
port.line = ptp_ocp_serial_line(bp, r);
if (port.line < 0)
return port.line;
if (p)
port.baud = p->baud;
bp_assign_entry(bp, r, port);
return 0;
}
static int
ptp_ocp_register_mem(struct ptp_ocp *bp, struct ocp_resource *r)
{
void __iomem *mem;
mem = ptp_ocp_get_mem(bp, r);
if (IS_ERR(mem))
return PTR_ERR(mem);
bp_assign_entry(bp, r, mem);
return 0;
}
static void
ptp_ocp_nmea_out_init(struct ptp_ocp *bp)
{
if (!bp->nmea_out)
return;
iowrite32(0, &bp->nmea_out->ctrl); /* disable */
iowrite32(7, &bp->nmea_out->uart_baud); /* 115200 */
iowrite32(1, &bp->nmea_out->ctrl); /* enable */
}
static void
_ptp_ocp_signal_init(struct ptp_ocp_signal *s, struct signal_reg __iomem *reg)
{
u32 val;
iowrite32(0, ®->enable); /* disable */
val = ioread32(®->polarity);
s->polarity = val ? true : false;
s->duty = 50;
}
static void
ptp_ocp_signal_init(struct ptp_ocp *bp)
{
int i;
for (i = 0; i < 4; i++)
if (bp->signal_out[i])
_ptp_ocp_signal_init(&bp->signal[i],
bp->signal_out[i]->mem);
}
static void
ptp_ocp_attr_group_del(struct ptp_ocp *bp)
{
sysfs_remove_groups(&bp->dev.kobj, bp->attr_group);
kfree(bp->attr_group);
}
static int
ptp_ocp_attr_group_add(struct ptp_ocp *bp,
const struct ocp_attr_group *attr_tbl)
{
int count, i;
int err;
count = 0;
for (i = 0; attr_tbl[i].cap; i++)
if (attr_tbl[i].cap & bp->fw_cap)
count++;
bp->attr_group = kcalloc(count + 1, sizeof(struct attribute_group *),
GFP_KERNEL);
if (!bp->attr_group)
return -ENOMEM;
count = 0;
for (i = 0; attr_tbl[i].cap; i++)
if (attr_tbl[i].cap & bp->fw_cap)
bp->attr_group[count++] = attr_tbl[i].group;
err = sysfs_create_groups(&bp->dev.kobj, bp->attr_group);
if (err)
bp->attr_group[0] = NULL;
return err;
}
static void
ptp_ocp_enable_fpga(u32 __iomem *reg, u32 bit, bool enable)
{
u32 ctrl;
bool on;
ctrl = ioread32(reg);
on = ctrl & bit;
if (on ^ enable) {
ctrl &= ~bit;
ctrl |= enable ? bit : 0;
iowrite32(ctrl, reg);
}
}
static void
ptp_ocp_irig_out(struct ptp_ocp *bp, bool enable)
{
return ptp_ocp_enable_fpga(&bp->irig_out->ctrl,
IRIG_M_CTRL_ENABLE, enable);
}
static void
ptp_ocp_irig_in(struct ptp_ocp *bp, bool enable)
{
return ptp_ocp_enable_fpga(&bp->irig_in->ctrl,
IRIG_S_CTRL_ENABLE, enable);
}
static void
ptp_ocp_dcf_out(struct ptp_ocp *bp, bool enable)
{
return ptp_ocp_enable_fpga(&bp->dcf_out->ctrl,
DCF_M_CTRL_ENABLE, enable);
}
static void
ptp_ocp_dcf_in(struct ptp_ocp *bp, bool enable)
{
return ptp_ocp_enable_fpga(&bp->dcf_in->ctrl,
DCF_S_CTRL_ENABLE, enable);
}
static void
__handle_signal_outputs(struct ptp_ocp *bp, u32 val)
{
ptp_ocp_irig_out(bp, val & 0x00100010);
ptp_ocp_dcf_out(bp, val & 0x00200020);
}
static void
__handle_signal_inputs(struct ptp_ocp *bp, u32 val)
{
ptp_ocp_irig_in(bp, val & 0x00100010);
ptp_ocp_dcf_in(bp, val & 0x00200020);
}
static u32
ptp_ocp_sma_fb_get(struct ptp_ocp *bp, int sma_nr)
{
u32 __iomem *gpio;
u32 shift;
if (bp->sma[sma_nr - 1].fixed_fcn)
return (sma_nr - 1) & 1;
if (bp->sma[sma_nr - 1].mode == SMA_MODE_IN)
gpio = sma_nr > 2 ? &bp->sma_map2->gpio1 : &bp->sma_map1->gpio1;
else
gpio = sma_nr > 2 ? &bp->sma_map1->gpio2 : &bp->sma_map2->gpio2;
shift = sma_nr & 1 ? 0 : 16;
return (ioread32(gpio) >> shift) & 0xffff;
}
static int
ptp_ocp_sma_fb_set_output(struct ptp_ocp *bp, int sma_nr, u32 val)
{
u32 reg, mask, shift;
unsigned long flags;
u32 __iomem *gpio;
gpio = sma_nr > 2 ? &bp->sma_map1->gpio2 : &bp->sma_map2->gpio2;
shift = sma_nr & 1 ? 0 : 16;
mask = 0xffff << (16 - shift);
spin_lock_irqsave(&bp->lock, flags);
reg = ioread32(gpio);
reg = (reg & mask) | (val << shift);
__handle_signal_outputs(bp, reg);
iowrite32(reg, gpio);
spin_unlock_irqrestore(&bp->lock, flags);
return 0;
}
static int
ptp_ocp_sma_fb_set_inputs(struct ptp_ocp *bp, int sma_nr, u32 val)
{
u32 reg, mask, shift;
unsigned long flags;
u32 __iomem *gpio;
gpio = sma_nr > 2 ? &bp->sma_map2->gpio1 : &bp->sma_map1->gpio1;
shift = sma_nr & 1 ? 0 : 16;
mask = 0xffff << (16 - shift);
spin_lock_irqsave(&bp->lock, flags);
reg = ioread32(gpio);
reg = (reg & mask) | (val << shift);
__handle_signal_inputs(bp, reg);
iowrite32(reg, gpio);
spin_unlock_irqrestore(&bp->lock, flags);
return 0;
}
static void
ptp_ocp_sma_fb_init(struct ptp_ocp *bp)
{
struct dpll_pin_properties prop = {
.board_label = NULL,
.type = DPLL_PIN_TYPE_EXT,
.capabilities = DPLL_PIN_CAPABILITIES_DIRECTION_CAN_CHANGE,
.freq_supported_num = ARRAY_SIZE(ptp_ocp_sma_freq),
.freq_supported = ptp_ocp_sma_freq,
};
u32 reg;
int i;
/* defaults */
for (i = 0; i < OCP_SMA_NUM; i++) {
bp->sma[i].default_fcn = i & 1;
bp->sma[i].dpll_prop = prop;
bp->sma[i].dpll_prop.board_label =
bp->ptp_info.pin_config[i].name;
}
bp->sma[0].mode = SMA_MODE_IN;
bp->sma[1].mode = SMA_MODE_IN;
bp->sma[2].mode = SMA_MODE_OUT;
bp->sma[3].mode = SMA_MODE_OUT;
/* If no SMA1 map, the pin functions and directions are fixed. */
if (!bp->sma_map1) {
for (i = 0; i < OCP_SMA_NUM; i++) {
bp->sma[i].fixed_fcn = true;
bp->sma[i].fixed_dir = true;
bp->sma[1].dpll_prop.capabilities &=
~DPLL_PIN_CAPABILITIES_DIRECTION_CAN_CHANGE;
}
return;
}
/* If SMA2 GPIO output map is all 1, it is not present.
* This indicates the firmware has fixed direction SMA pins.
*/
reg = ioread32(&bp->sma_map2->gpio2);
if (reg == 0xffffffff) {
for (i = 0; i < OCP_SMA_NUM; i++)
bp->sma[i].fixed_dir = true;
} else {
reg = ioread32(&bp->sma_map1->gpio1);
bp->sma[0].mode = reg & BIT(15) ? SMA_MODE_IN : SMA_MODE_OUT;
bp->sma[1].mode = reg & BIT(31) ? SMA_MODE_IN : SMA_MODE_OUT;
reg = ioread32(&bp->sma_map1->gpio2);
bp->sma[2].mode = reg & BIT(15) ? SMA_MODE_OUT : SMA_MODE_IN;
bp->sma[3].mode = reg & BIT(31) ? SMA_MODE_OUT : SMA_MODE_IN;
}
}
static const struct ocp_sma_op ocp_fb_sma_op = {
.tbl = { ptp_ocp_sma_in, ptp_ocp_sma_out },
.init = ptp_ocp_sma_fb_init,
.get = ptp_ocp_sma_fb_get,
.set_inputs = ptp_ocp_sma_fb_set_inputs,
.set_output = ptp_ocp_sma_fb_set_output,
};
static const struct ocp_sma_op ocp_adva_sma_op = {
.tbl = { ptp_ocp_adva_sma_in, ptp_ocp_adva_sma_out },
.init = ptp_ocp_sma_fb_init,
.get = ptp_ocp_sma_fb_get,
.set_inputs = ptp_ocp_sma_fb_set_inputs,
.set_output = ptp_ocp_sma_fb_set_output,
};
static int
ptp_ocp_set_pins(struct ptp_ocp *bp)
{
struct ptp_pin_desc *config;
int i;
config = kcalloc(4, sizeof(*config), GFP_KERNEL);
if (!config)
return -ENOMEM;
for (i = 0; i < 4; i++) {
sprintf(config[i].name, "sma%d", i + 1);
config[i].index = i;
}
bp->ptp_info.n_pins = 4;
bp->ptp_info.pin_config = config;
return 0;
}
static void
ptp_ocp_fb_set_version(struct ptp_ocp *bp)
{
u64 cap = OCP_CAP_BASIC;
u32 version;
version = ioread32(&bp->image->version);
/* if lower 16 bits are empty, this is the fw loader. */
if ((version & 0xffff) == 0) {
version = version >> 16;
bp->fw_loader = true;
}
bp->fw_tag = version >> 15;
bp->fw_version = version & 0x7fff;
if (bp->fw_tag) {
/* FPGA firmware */
if (version >= 5)
cap |= OCP_CAP_SIGNAL | OCP_CAP_FREQ;
} else {
/* SOM firmware */
if (version >= 19)
cap |= OCP_CAP_SIGNAL;
if (version >= 20)
cap |= OCP_CAP_FREQ;
}
bp->fw_cap = cap;
}
/* FB specific board initializers; last "resource" registered. */
static int
ptp_ocp_fb_board_init(struct ptp_ocp *bp, struct ocp_resource *r)
{
int err;
bp->flash_start = 1024 * 4096;
bp->eeprom_map = fb_eeprom_map;
bp->fw_version = ioread32(&bp->image->version);
bp->sma_op = &ocp_fb_sma_op;
ptp_ocp_fb_set_version(bp);
ptp_ocp_tod_init(bp);
ptp_ocp_nmea_out_init(bp);
ptp_ocp_signal_init(bp);
err = ptp_ocp_attr_group_add(bp, fb_timecard_groups);
if (err)
return err;
err = ptp_ocp_set_pins(bp);
if (err)
return err;
ptp_ocp_sma_init(bp);
return ptp_ocp_init_clock(bp, r->extra);
}
static bool
ptp_ocp_allow_irq(struct ptp_ocp *bp, struct ocp_resource *r)
{
bool allow = !r->irq_vec || r->irq_vec < bp->n_irqs;
if (!allow)
dev_err(&bp->pdev->dev, "irq %d out of range, skipping %s\n",
r->irq_vec, r->name);
return allow;
}
static int
ptp_ocp_register_resources(struct ptp_ocp *bp, kernel_ulong_t driver_data)
{
struct ocp_resource *r, *table;
int err = 0;
table = (struct ocp_resource *)driver_data;
for (r = table; r->setup; r++) {
if (!ptp_ocp_allow_irq(bp, r))
continue;
err = r->setup(bp, r);
if (err) {
dev_err(&bp->pdev->dev,
"Could not register %s: err %d\n",
r->name, err);
break;
}
}
return err;
}
static void
ptp_ocp_art_sma_init(struct ptp_ocp *bp)
{
struct dpll_pin_properties prop = {
.board_label = NULL,
.type = DPLL_PIN_TYPE_EXT,
.capabilities = 0,
.freq_supported_num = ARRAY_SIZE(ptp_ocp_sma_freq),
.freq_supported = ptp_ocp_sma_freq,
};
u32 reg;
int i;
/* defaults */
bp->sma[0].mode = SMA_MODE_IN;
bp->sma[1].mode = SMA_MODE_IN;
bp->sma[2].mode = SMA_MODE_OUT;
bp->sma[3].mode = SMA_MODE_OUT;
bp->sma[0].default_fcn = 0x08; /* IN: 10Mhz */
bp->sma[1].default_fcn = 0x01; /* IN: PPS1 */
bp->sma[2].default_fcn = 0x10; /* OUT: 10Mhz */
bp->sma[3].default_fcn = 0x02; /* OUT: PHC */
for (i = 0; i < OCP_SMA_NUM; i++) {
/* If no SMA map, the pin functions and directions are fixed. */
bp->sma[i].dpll_prop = prop;
bp->sma[i].dpll_prop.board_label =
bp->ptp_info.pin_config[i].name;
if (!bp->art_sma) {
bp->sma[i].fixed_fcn = true;
bp->sma[i].fixed_dir = true;
continue;
}
reg = ioread32(&bp->art_sma->map[i].gpio);
switch (reg & 0xff) {
case 0:
bp->sma[i].fixed_fcn = true;
bp->sma[i].fixed_dir = true;
break;
case 1:
case 8:
bp->sma[i].mode = SMA_MODE_IN;
bp->sma[i].dpll_prop.capabilities =
DPLL_PIN_CAPABILITIES_DIRECTION_CAN_CHANGE;
break;
default:
bp->sma[i].mode = SMA_MODE_OUT;
bp->sma[i].dpll_prop.capabilities =
DPLL_PIN_CAPABILITIES_DIRECTION_CAN_CHANGE;
break;
}
}
}
static u32
ptp_ocp_art_sma_get(struct ptp_ocp *bp, int sma_nr)
{
if (bp->sma[sma_nr - 1].fixed_fcn)
return bp->sma[sma_nr - 1].default_fcn;
return ioread32(&bp->art_sma->map[sma_nr - 1].gpio) & 0xff;
}
/* note: store 0 is considered invalid. */
static int
ptp_ocp_art_sma_set(struct ptp_ocp *bp, int sma_nr, u32 val)
{
unsigned long flags;
u32 __iomem *gpio;
int err = 0;
u32 reg;
val &= SMA_SELECT_MASK;
if (hweight32(val) > 1)
return -EINVAL;
gpio = &bp->art_sma->map[sma_nr - 1].gpio;
spin_lock_irqsave(&bp->lock, flags);
reg = ioread32(gpio);
if (((reg >> 16) & val) == 0) {
err = -EOPNOTSUPP;
} else {
reg = (reg & 0xff00) | (val & 0xff);
iowrite32(reg, gpio);
}
spin_unlock_irqrestore(&bp->lock, flags);
return err;
}
static const struct ocp_sma_op ocp_art_sma_op = {
.tbl = { ptp_ocp_art_sma_in, ptp_ocp_art_sma_out },
.init = ptp_ocp_art_sma_init,
.get = ptp_ocp_art_sma_get,
.set_inputs = ptp_ocp_art_sma_set,
.set_output = ptp_ocp_art_sma_set,
};
/* ART specific board initializers; last "resource" registered. */
static int
ptp_ocp_art_board_init(struct ptp_ocp *bp, struct ocp_resource *r)
{
int err;
bp->flash_start = 0x1000000;
bp->eeprom_map = art_eeprom_map;
bp->fw_cap = OCP_CAP_BASIC;
bp->fw_version = ioread32(&bp->reg->version);
bp->fw_tag = 2;
bp->sma_op = &ocp_art_sma_op;
/* Enable MAC serial port during initialisation */
iowrite32(1, &bp->board_config->mro50_serial_activate);
err = ptp_ocp_set_pins(bp);
if (err)
return err;
ptp_ocp_sma_init(bp);
err = ptp_ocp_attr_group_add(bp, art_timecard_groups);
if (err)
return err;
return ptp_ocp_init_clock(bp, r->extra);
}
/* ADVA specific board initializers; last "resource" registered. */
static int
ptp_ocp_adva_board_init(struct ptp_ocp *bp, struct ocp_resource *r)
{
int err;
u32 version;
bp->flash_start = 0xA00000;
bp->eeprom_map = fb_eeprom_map;
bp->sma_op = &ocp_adva_sma_op;
version = ioread32(&bp->image->version);
/* if lower 16 bits are empty, this is the fw loader. */
if ((version & 0xffff) == 0) {
version = version >> 16;
bp->fw_loader = true;
}
bp->fw_tag = 3;
bp->fw_version = version & 0xffff;
bp->fw_cap = OCP_CAP_BASIC | OCP_CAP_SIGNAL | OCP_CAP_FREQ;
ptp_ocp_tod_init(bp);
ptp_ocp_nmea_out_init(bp);
ptp_ocp_signal_init(bp);
err = ptp_ocp_attr_group_add(bp, adva_timecard_groups);
if (err)
return err;
err = ptp_ocp_set_pins(bp);
if (err)
return err;
ptp_ocp_sma_init(bp);
return ptp_ocp_init_clock(bp, r->extra);
}
static ssize_t
ptp_ocp_show_output(const struct ocp_selector *tbl, u32 val, char *buf,
int def_val)
{
const char *name;
ssize_t count;
count = sysfs_emit(buf, "OUT: ");
name = ptp_ocp_select_name_from_val(tbl, val);
if (!name)
name = ptp_ocp_select_name_from_val(tbl, def_val);
count += sysfs_emit_at(buf, count, "%s\n", name);
return count;
}
static ssize_t
ptp_ocp_show_inputs(const struct ocp_selector *tbl, u32 val, char *buf,
int def_val)
{
const char *name;
ssize_t count;
int i;
count = sysfs_emit(buf, "IN: ");
for (i = 0; tbl[i].name; i++) {
if (val & tbl[i].value) {
name = tbl[i].name;
count += sysfs_emit_at(buf, count, "%s ", name);
}
}
if (!val && def_val >= 0) {
name = ptp_ocp_select_name_from_val(tbl, def_val);
count += sysfs_emit_at(buf, count, "%s ", name);
}
if (count)
count--;
count += sysfs_emit_at(buf, count, "\n");
return count;
}
static int
sma_parse_inputs(const struct ocp_selector * const tbl[], const char *buf,
enum ptp_ocp_sma_mode *mode)
{
int idx, count, dir;
char **argv;
int ret;
argv = argv_split(GFP_KERNEL, buf, &count);
if (!argv)
return -ENOMEM;
ret = -EINVAL;
if (!count)
goto out;
idx = 0;
dir = *mode == SMA_MODE_IN ? 0 : 1;
if (!strcasecmp("IN:", argv[0])) {
dir = 0;
idx++;
}
if (!strcasecmp("OUT:", argv[0])) {
dir = 1;
idx++;
}
*mode = dir == 0 ? SMA_MODE_IN : SMA_MODE_OUT;
ret = 0;
for (; idx < count; idx++)
ret |= ptp_ocp_select_val_from_name(tbl[dir], argv[idx]);
if (ret < 0)
ret = -EINVAL;
out:
argv_free(argv);
return ret;
}
static ssize_t
ptp_ocp_sma_show(struct ptp_ocp *bp, int sma_nr, char *buf,
int default_in_val, int default_out_val)
{
struct ptp_ocp_sma_connector *sma = &bp->sma[sma_nr - 1];
const struct ocp_selector * const *tbl;
u32 val;
tbl = bp->sma_op->tbl;
val = ptp_ocp_sma_get(bp, sma_nr) & SMA_SELECT_MASK;
if (sma->mode == SMA_MODE_IN) {
if (sma->disabled)
val = SMA_DISABLE;
return ptp_ocp_show_inputs(tbl[0], val, buf, default_in_val);
}
return ptp_ocp_show_output(tbl[1], val, buf, default_out_val);
}
static ssize_t
sma1_show(struct device *dev, struct device_attribute *attr, char *buf)
{
struct ptp_ocp *bp = dev_get_drvdata(dev);
return ptp_ocp_sma_show(bp, 1, buf, 0, 1);
}
static ssize_t
sma2_show(struct device *dev, struct device_attribute *attr, char *buf)
{
struct ptp_ocp *bp = dev_get_drvdata(dev);
return ptp_ocp_sma_show(bp, 2, buf, -1, 1);
}
static ssize_t
sma3_show(struct device *dev, struct device_attribute *attr, char *buf)
{
struct ptp_ocp *bp = dev_get_drvdata(dev);
return ptp_ocp_sma_show(bp, 3, buf, -1, 0);
}
static ssize_t
sma4_show(struct device *dev, struct device_attribute *attr, char *buf)
{
struct ptp_ocp *bp = dev_get_drvdata(dev);
return ptp_ocp_sma_show(bp, 4, buf, -1, 1);
}
static int
ptp_ocp_sma_store_val(struct ptp_ocp *bp, int val, enum ptp_ocp_sma_mode mode, int sma_nr)
{
struct ptp_ocp_sma_connector *sma = &bp->sma[sma_nr - 1];
if (sma->fixed_dir && (mode != sma->mode || val & SMA_DISABLE))
return -EOPNOTSUPP;
if (sma->fixed_fcn) {
if (val != sma->default_fcn)
return -EOPNOTSUPP;
return 0;
}
sma->disabled = !!(val & SMA_DISABLE);
if (mode != sma->mode) {
if (mode == SMA_MODE_IN)
ptp_ocp_sma_set_output(bp, sma_nr, 0);
else
ptp_ocp_sma_set_inputs(bp, sma_nr, 0);
sma->mode = mode;
}
if (!sma->fixed_dir)
val |= SMA_ENABLE; /* add enable bit */
if (sma->disabled)
val = 0;
if (mode == SMA_MODE_IN)
val = ptp_ocp_sma_set_inputs(bp, sma_nr, val);
else
val = ptp_ocp_sma_set_output(bp, sma_nr, val);
return val;
}
static int
ptp_ocp_sma_store(struct ptp_ocp *bp, const char *buf, int sma_nr)
{
struct ptp_ocp_sma_connector *sma = &bp->sma[sma_nr - 1];
enum ptp_ocp_sma_mode mode;
int val;
mode = sma->mode;
val = sma_parse_inputs(bp->sma_op->tbl, buf, &mode);
if (val < 0)
return val;
return ptp_ocp_sma_store_val(bp, val, mode, sma_nr);
}
static ssize_t
sma1_store(struct device *dev, struct device_attribute *attr,
const char *buf, size_t count)
{
struct ptp_ocp *bp = dev_get_drvdata(dev);
int err;
err = ptp_ocp_sma_store(bp, buf, 1);
return err ? err : count;
}
static ssize_t
sma2_store(struct device *dev, struct device_attribute *attr,
const char *buf, size_t count)
{
struct ptp_ocp *bp = dev_get_drvdata(dev);
int err;
err = ptp_ocp_sma_store(bp, buf, 2);
return err ? err : count;
}
static ssize_t
sma3_store(struct device *dev, struct device_attribute *attr,
const char *buf, size_t count)
{
struct ptp_ocp *bp = dev_get_drvdata(dev);
int err;
err = ptp_ocp_sma_store(bp, buf, 3);
return err ? err : count;
}
static ssize_t
sma4_store(struct device *dev, struct device_attribute *attr,
const char *buf, size_t count)
{
struct ptp_ocp *bp = dev_get_drvdata(dev);
int err;
err = ptp_ocp_sma_store(bp, buf, 4);
return err ? err : count;
}
static DEVICE_ATTR_RW(sma1);
static DEVICE_ATTR_RW(sma2);
static DEVICE_ATTR_RW(sma3);
static DEVICE_ATTR_RW(sma4);
static ssize_t
available_sma_inputs_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct ptp_ocp *bp = dev_get_drvdata(dev);
return ptp_ocp_select_table_show(bp->sma_op->tbl[0], buf);
}
static DEVICE_ATTR_RO(available_sma_inputs);
static ssize_t
available_sma_outputs_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct ptp_ocp *bp = dev_get_drvdata(dev);
return ptp_ocp_select_table_show(bp->sma_op->tbl[1], buf);
}
static DEVICE_ATTR_RO(available_sma_outputs);
#define EXT_ATTR_RO(_group, _name, _val) \
struct dev_ext_attribute dev_attr_##_group##_val##_##_name = \
{ __ATTR_RO(_name), (void *)_val }
#define EXT_ATTR_RW(_group, _name, _val) \
struct dev_ext_attribute dev_attr_##_group##_val##_##_name = \
{ __ATTR_RW(_name), (void *)_val }
#define to_ext_attr(x) container_of(x, struct dev_ext_attribute, attr)
/* period [duty [phase [polarity]]] */
static ssize_t
signal_store(struct device *dev, struct device_attribute *attr,
const char *buf, size_t count)
{
struct dev_ext_attribute *ea = to_ext_attr(attr);
struct ptp_ocp *bp = dev_get_drvdata(dev);
struct ptp_ocp_signal s = { };
int gen = (uintptr_t)ea->var;
int argc, err;
char **argv;
argv = argv_split(GFP_KERNEL, buf, &argc);
if (!argv)
return -ENOMEM;
err = -EINVAL;
s.duty = bp->signal[gen].duty;
s.phase = bp->signal[gen].phase;
s.period = bp->signal[gen].period;
s.polarity = bp->signal[gen].polarity;
switch (argc) {
case 4:
argc--;
err = kstrtobool(argv[argc], &s.polarity);
if (err)
goto out;
fallthrough;
case 3:
argc--;
err = kstrtou64(argv[argc], 0, &s.phase);
if (err)
goto out;
fallthrough;
case 2:
argc--;
err = kstrtoint(argv[argc], 0, &s.duty);
if (err)
goto out;
fallthrough;
case 1:
argc--;
err = kstrtou64(argv[argc], 0, &s.period);
if (err)
goto out;
break;
default:
goto out;
}
err = ptp_ocp_signal_set(bp, gen, &s);
if (err)
goto out;
err = ptp_ocp_signal_enable(bp->signal_out[gen], gen, s.period != 0);
out:
argv_free(argv);
return err ? err : count;
}
static ssize_t
signal_show(struct device *dev, struct device_attribute *attr, char *buf)
{
struct dev_ext_attribute *ea = to_ext_attr(attr);
struct ptp_ocp *bp = dev_get_drvdata(dev);
struct ptp_ocp_signal *signal;
struct timespec64 ts;
ssize_t count;
int i;
i = (uintptr_t)ea->var;
signal = &bp->signal[i];
count = sysfs_emit(buf, "%llu %d %llu %d", signal->period,
signal->duty, signal->phase, signal->polarity);
ts = ktime_to_timespec64(signal->start);
count += sysfs_emit_at(buf, count, " %ptT TAI\n", &ts);
return count;
}
static EXT_ATTR_RW(signal, signal, 0);
static EXT_ATTR_RW(signal, signal, 1);
static EXT_ATTR_RW(signal, signal, 2);
static EXT_ATTR_RW(signal, signal, 3);
static ssize_t
duty_show(struct device *dev, struct device_attribute *attr, char *buf)
{
struct dev_ext_attribute *ea = to_ext_attr(attr);
struct ptp_ocp *bp = dev_get_drvdata(dev);
int i = (uintptr_t)ea->var;
return sysfs_emit(buf, "%d\n", bp->signal[i].duty);
}
static EXT_ATTR_RO(signal, duty, 0);
static EXT_ATTR_RO(signal, duty, 1);
static EXT_ATTR_RO(signal, duty, 2);
static EXT_ATTR_RO(signal, duty, 3);
static ssize_t
period_show(struct device *dev, struct device_attribute *attr, char *buf)
{
struct dev_ext_attribute *ea = to_ext_attr(attr);
struct ptp_ocp *bp = dev_get_drvdata(dev);
int i = (uintptr_t)ea->var;
return sysfs_emit(buf, "%llu\n", bp->signal[i].period);
}
static EXT_ATTR_RO(signal, period, 0);
static EXT_ATTR_RO(signal, period, 1);
static EXT_ATTR_RO(signal, period, 2);
static EXT_ATTR_RO(signal, period, 3);
static ssize_t
phase_show(struct device *dev, struct device_attribute *attr, char *buf)
{
struct dev_ext_attribute *ea = to_ext_attr(attr);
struct ptp_ocp *bp = dev_get_drvdata(dev);
int i = (uintptr_t)ea->var;
return sysfs_emit(buf, "%llu\n", bp->signal[i].phase);
}
static EXT_ATTR_RO(signal, phase, 0);
static EXT_ATTR_RO(signal, phase, 1);
static EXT_ATTR_RO(signal, phase, 2);
static EXT_ATTR_RO(signal, phase, 3);
static ssize_t
polarity_show(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct dev_ext_attribute *ea = to_ext_attr(attr);
struct ptp_ocp *bp = dev_get_drvdata(dev);
int i = (uintptr_t)ea->var;
return sysfs_emit(buf, "%d\n", bp->signal[i].polarity);
}
static EXT_ATTR_RO(signal, polarity, 0);
static EXT_ATTR_RO(signal, polarity, 1);
static EXT_ATTR_RO(signal, polarity, 2);
static EXT_ATTR_RO(signal, polarity, 3);
static ssize_t
running_show(struct device *dev, struct device_attribute *attr, char *buf)
{
struct dev_ext_attribute *ea = to_ext_attr(attr);
struct ptp_ocp *bp = dev_get_drvdata(dev);
int i = (uintptr_t)ea->var;
return sysfs_emit(buf, "%d\n", bp->signal[i].running);
}
static EXT_ATTR_RO(signal, running, 0);
static EXT_ATTR_RO(signal, running, 1);
static EXT_ATTR_RO(signal, running, 2);
static EXT_ATTR_RO(signal, running, 3);
static ssize_t
start_show(struct device *dev, struct device_attribute *attr, char *buf)
{
struct dev_ext_attribute *ea = to_ext_attr(attr);
struct ptp_ocp *bp = dev_get_drvdata(dev);
int i = (uintptr_t)ea->var;
struct timespec64 ts;
ts = ktime_to_timespec64(bp->signal[i].start);
return sysfs_emit(buf, "%llu.%lu\n", ts.tv_sec, ts.tv_nsec);
}
static EXT_ATTR_RO(signal, start, 0);
static EXT_ATTR_RO(signal, start, 1);
static EXT_ATTR_RO(signal, start, 2);
static EXT_ATTR_RO(signal, start, 3);
static ssize_t
seconds_store(struct device *dev, struct device_attribute *attr,
const char *buf, size_t count)
{
struct dev_ext_attribute *ea = to_ext_attr(attr);
struct ptp_ocp *bp = dev_get_drvdata(dev);
int idx = (uintptr_t)ea->var;
u32 val;
int err;
err = kstrtou32(buf, 0, &val);
if (err)
return err;
if (val > 0xff)
return -EINVAL;
if (val)
val = (val << 8) | 0x1;
iowrite32(val, &bp->freq_in[idx]->ctrl);
return count;
}
static ssize_t
seconds_show(struct device *dev, struct device_attribute *attr, char *buf)
{
struct dev_ext_attribute *ea = to_ext_attr(attr);
struct ptp_ocp *bp = dev_get_drvdata(dev);
int idx = (uintptr_t)ea->var;
u32 val;
val = ioread32(&bp->freq_in[idx]->ctrl);
if (val & 1)
val = (val >> 8) & 0xff;
else
val = 0;
return sysfs_emit(buf, "%u\n", val);
}
static EXT_ATTR_RW(freq, seconds, 0);
static EXT_ATTR_RW(freq, seconds, 1);
static EXT_ATTR_RW(freq, seconds, 2);
static EXT_ATTR_RW(freq, seconds, 3);
static ssize_t
frequency_show(struct device *dev, struct device_attribute *attr, char *buf)
{
struct dev_ext_attribute *ea = to_ext_attr(attr);
struct ptp_ocp *bp = dev_get_drvdata(dev);
int idx = (uintptr_t)ea->var;
u32 val;
val = ioread32(&bp->freq_in[idx]->status);
if (val & FREQ_STATUS_ERROR)
return sysfs_emit(buf, "error\n");
if (val & FREQ_STATUS_OVERRUN)
return sysfs_emit(buf, "overrun\n");
if (val & FREQ_STATUS_VALID)
return sysfs_emit(buf, "%lu\n", val & FREQ_STATUS_MASK);
return 0;
}
static EXT_ATTR_RO(freq, frequency, 0);
static EXT_ATTR_RO(freq, frequency, 1);
static EXT_ATTR_RO(freq, frequency, 2);
static EXT_ATTR_RO(freq, frequency, 3);
static ssize_t
ptp_ocp_tty_show(struct device *dev, struct device_attribute *attr, char *buf)
{
struct dev_ext_attribute *ea = to_ext_attr(attr);
struct ptp_ocp *bp = dev_get_drvdata(dev);
return sysfs_emit(buf, "ttyS%d", bp->port[(uintptr_t)ea->var].line);
}
static umode_t
ptp_ocp_timecard_tty_is_visible(struct kobject *kobj, struct attribute *attr, int n)
{
struct ptp_ocp *bp = dev_get_drvdata(kobj_to_dev(kobj));
struct ptp_ocp_serial_port *port;
struct device_attribute *dattr;
struct dev_ext_attribute *ea;
if (strncmp(attr->name, "tty", 3))
return attr->mode;
dattr = container_of(attr, struct device_attribute, attr);
ea = container_of(dattr, struct dev_ext_attribute, attr);
port = &bp->port[(uintptr_t)ea->var];
return port->line == -1 ? 0 : 0444;
}
#define EXT_TTY_ATTR_RO(_name, _val) \
struct dev_ext_attribute dev_attr_tty##_name = \
{ __ATTR(tty##_name, 0444, ptp_ocp_tty_show, NULL), (void *)_val }
static EXT_TTY_ATTR_RO(GNSS, PORT_GNSS);
static EXT_TTY_ATTR_RO(GNSS2, PORT_GNSS2);
static EXT_TTY_ATTR_RO(MAC, PORT_MAC);
static EXT_TTY_ATTR_RO(NMEA, PORT_NMEA);
static struct attribute *ptp_ocp_timecard_tty_attrs[] = {
&dev_attr_ttyGNSS.attr.attr,
&dev_attr_ttyGNSS2.attr.attr,
&dev_attr_ttyMAC.attr.attr,
&dev_attr_ttyNMEA.attr.attr,
NULL,
};
static const struct attribute_group ptp_ocp_timecard_tty_group = {
.name = "tty",
.attrs = ptp_ocp_timecard_tty_attrs,
.is_visible = ptp_ocp_timecard_tty_is_visible,
};
static ssize_t
serialnum_show(struct device *dev, struct device_attribute *attr, char *buf)
{
struct ptp_ocp *bp = dev_get_drvdata(dev);
if (!bp->has_eeprom_data)
ptp_ocp_read_eeprom(bp);
return sysfs_emit(buf, "%pM\n", bp->serial);
}
static DEVICE_ATTR_RO(serialnum);
static ssize_t
gnss_sync_show(struct device *dev, struct device_attribute *attr, char *buf)
{
struct ptp_ocp *bp = dev_get_drvdata(dev);
ssize_t ret;
if (bp->gnss_lost)
ret = sysfs_emit(buf, "LOST @ %ptT\n", &bp->gnss_lost);
else
ret = sysfs_emit(buf, "SYNC\n");
return ret;
}
static DEVICE_ATTR_RO(gnss_sync);
static ssize_t
utc_tai_offset_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct ptp_ocp *bp = dev_get_drvdata(dev);
return sysfs_emit(buf, "%d\n", bp->utc_tai_offset);
}
static ssize_t
utc_tai_offset_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
struct ptp_ocp *bp = dev_get_drvdata(dev);
int err;
u32 val;
err = kstrtou32(buf, 0, &val);
if (err)
return err;
ptp_ocp_utc_distribute(bp, val);
return count;
}
static DEVICE_ATTR_RW(utc_tai_offset);
static ssize_t
ts_window_adjust_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct ptp_ocp *bp = dev_get_drvdata(dev);
return sysfs_emit(buf, "%d\n", bp->ts_window_adjust);
}
static ssize_t
ts_window_adjust_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
struct ptp_ocp *bp = dev_get_drvdata(dev);
int err;
u32 val;
err = kstrtou32(buf, 0, &val);
if (err)
return err;
bp->ts_window_adjust = val;
return count;
}
static DEVICE_ATTR_RW(ts_window_adjust);
static ssize_t
irig_b_mode_show(struct device *dev, struct device_attribute *attr, char *buf)
{
struct ptp_ocp *bp = dev_get_drvdata(dev);
u32 val;
val = ioread32(&bp->irig_out->ctrl);
val = (val >> 16) & 0x07;
return sysfs_emit(buf, "%d\n", val);
}
static ssize_t
irig_b_mode_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
struct ptp_ocp *bp = dev_get_drvdata(dev);
unsigned long flags;
int err;
u32 reg;
u8 val;
err = kstrtou8(buf, 0, &val);
if (err)
return err;
if (val > 7)
return -EINVAL;
reg = ((val & 0x7) << 16);
spin_lock_irqsave(&bp->lock, flags);
iowrite32(0, &bp->irig_out->ctrl); /* disable */
iowrite32(reg, &bp->irig_out->ctrl); /* change mode */
iowrite32(reg | IRIG_M_CTRL_ENABLE, &bp->irig_out->ctrl);
spin_unlock_irqrestore(&bp->lock, flags);
return count;
}
static DEVICE_ATTR_RW(irig_b_mode);
static ssize_t
clock_source_show(struct device *dev, struct device_attribute *attr, char *buf)
{
struct ptp_ocp *bp = dev_get_drvdata(dev);
const char *p;
u32 select;
select = ioread32(&bp->reg->select);
p = ptp_ocp_select_name_from_val(ptp_ocp_clock, select >> 16);
return sysfs_emit(buf, "%s\n", p);
}
static ssize_t
clock_source_store(struct device *dev, struct device_attribute *attr,
const char *buf, size_t count)
{
struct ptp_ocp *bp = dev_get_drvdata(dev);
unsigned long flags;
int val;
val = ptp_ocp_select_val_from_name(ptp_ocp_clock, buf);
if (val < 0)
return val;
spin_lock_irqsave(&bp->lock, flags);
iowrite32(val, &bp->reg->select);
spin_unlock_irqrestore(&bp->lock, flags);
return count;
}
static DEVICE_ATTR_RW(clock_source);
static ssize_t
available_clock_sources_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
return ptp_ocp_select_table_show(ptp_ocp_clock, buf);
}
static DEVICE_ATTR_RO(available_clock_sources);
static ssize_t
clock_status_drift_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct ptp_ocp *bp = dev_get_drvdata(dev);
u32 val;
int res;
val = ioread32(&bp->reg->status_drift);
res = (val & ~INT_MAX) ? -1 : 1;
res *= (val & INT_MAX);
return sysfs_emit(buf, "%d\n", res);
}
static DEVICE_ATTR_RO(clock_status_drift);
static ssize_t
clock_status_offset_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct ptp_ocp *bp = dev_get_drvdata(dev);
u32 val;
int res;
val = ioread32(&bp->reg->status_offset);
res = (val & ~INT_MAX) ? -1 : 1;
res *= (val & INT_MAX);
return sysfs_emit(buf, "%d\n", res);
}
static DEVICE_ATTR_RO(clock_status_offset);
static ssize_t
tod_correction_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct ptp_ocp *bp = dev_get_drvdata(dev);
u32 val;
int res;
val = ioread32(&bp->tod->adj_sec);
res = (val & ~INT_MAX) ? -1 : 1;
res *= (val & INT_MAX);
return sysfs_emit(buf, "%d\n", res);
}
static ssize_t
tod_correction_store(struct device *dev, struct device_attribute *attr,
const char *buf, size_t count)
{
struct ptp_ocp *bp = dev_get_drvdata(dev);
unsigned long flags;
int err, res;
u32 val = 0;
err = kstrtos32(buf, 0, &res);
if (err)
return err;
if (res < 0) {
res *= -1;
val |= BIT(31);
}
val |= res;
spin_lock_irqsave(&bp->lock, flags);
iowrite32(val, &bp->tod->adj_sec);
spin_unlock_irqrestore(&bp->lock, flags);
return count;
}
static DEVICE_ATTR_RW(tod_correction);
#define _DEVICE_SIGNAL_GROUP_ATTRS(_nr) \
static struct attribute *fb_timecard_signal##_nr##_attrs[] = { \
&dev_attr_signal##_nr##_signal.attr.attr, \
&dev_attr_signal##_nr##_duty.attr.attr, \
&dev_attr_signal##_nr##_phase.attr.attr, \
&dev_attr_signal##_nr##_period.attr.attr, \
&dev_attr_signal##_nr##_polarity.attr.attr, \
&dev_attr_signal##_nr##_running.attr.attr, \
&dev_attr_signal##_nr##_start.attr.attr, \
NULL, \
}
#define DEVICE_SIGNAL_GROUP(_name, _nr) \
_DEVICE_SIGNAL_GROUP_ATTRS(_nr); \
static const struct attribute_group \
fb_timecard_signal##_nr##_group = { \
.name = #_name, \
.attrs = fb_timecard_signal##_nr##_attrs, \
}
DEVICE_SIGNAL_GROUP(gen1, 0);
DEVICE_SIGNAL_GROUP(gen2, 1);
DEVICE_SIGNAL_GROUP(gen3, 2);
DEVICE_SIGNAL_GROUP(gen4, 3);
#define _DEVICE_FREQ_GROUP_ATTRS(_nr) \
static struct attribute *fb_timecard_freq##_nr##_attrs[] = { \
&dev_attr_freq##_nr##_seconds.attr.attr, \
&dev_attr_freq##_nr##_frequency.attr.attr, \
NULL, \
}
#define DEVICE_FREQ_GROUP(_name, _nr) \
_DEVICE_FREQ_GROUP_ATTRS(_nr); \
static const struct attribute_group \
fb_timecard_freq##_nr##_group = { \
.name = #_name, \
.attrs = fb_timecard_freq##_nr##_attrs, \
}
DEVICE_FREQ_GROUP(freq1, 0);
DEVICE_FREQ_GROUP(freq2, 1);
DEVICE_FREQ_GROUP(freq3, 2);
DEVICE_FREQ_GROUP(freq4, 3);
static ssize_t
disciplining_config_read(struct file *filp, struct kobject *kobj,
struct bin_attribute *bin_attr, char *buf,
loff_t off, size_t count)
{
struct ptp_ocp *bp = dev_get_drvdata(kobj_to_dev(kobj));
size_t size = OCP_ART_CONFIG_SIZE;
struct nvmem_device *nvmem;
ssize_t err;
nvmem = ptp_ocp_nvmem_device_get(bp, NULL);
if (IS_ERR(nvmem))
return PTR_ERR(nvmem);
if (off > size) {
err = 0;
goto out;
}
if (off + count > size)
count = size - off;
// the configuration is in the very beginning of the EEPROM
err = nvmem_device_read(nvmem, off, count, buf);
if (err != count) {
err = -EFAULT;
goto out;
}
out:
ptp_ocp_nvmem_device_put(&nvmem);
return err;
}
static ssize_t
disciplining_config_write(struct file *filp, struct kobject *kobj,
struct bin_attribute *bin_attr, char *buf,
loff_t off, size_t count)
{
struct ptp_ocp *bp = dev_get_drvdata(kobj_to_dev(kobj));
struct nvmem_device *nvmem;
ssize_t err;
/* Allow write of the whole area only */
if (off || count != OCP_ART_CONFIG_SIZE)
return -EFAULT;
nvmem = ptp_ocp_nvmem_device_get(bp, NULL);
if (IS_ERR(nvmem))
return PTR_ERR(nvmem);
err = nvmem_device_write(nvmem, 0x00, count, buf);
if (err != count)
err = -EFAULT;
ptp_ocp_nvmem_device_put(&nvmem);
return err;
}
static BIN_ATTR_RW(disciplining_config, OCP_ART_CONFIG_SIZE);
static ssize_t
temperature_table_read(struct file *filp, struct kobject *kobj,
struct bin_attribute *bin_attr, char *buf,
loff_t off, size_t count)
{
struct ptp_ocp *bp = dev_get_drvdata(kobj_to_dev(kobj));
size_t size = OCP_ART_TEMP_TABLE_SIZE;
struct nvmem_device *nvmem;
ssize_t err;
nvmem = ptp_ocp_nvmem_device_get(bp, NULL);
if (IS_ERR(nvmem))
return PTR_ERR(nvmem);
if (off > size) {
err = 0;
goto out;
}
if (off + count > size)
count = size - off;
// the configuration is in the very beginning of the EEPROM
err = nvmem_device_read(nvmem, 0x90 + off, count, buf);
if (err != count) {
err = -EFAULT;
goto out;
}
out:
ptp_ocp_nvmem_device_put(&nvmem);
return err;
}
static ssize_t
temperature_table_write(struct file *filp, struct kobject *kobj,
struct bin_attribute *bin_attr, char *buf,
loff_t off, size_t count)
{
struct ptp_ocp *bp = dev_get_drvdata(kobj_to_dev(kobj));
struct nvmem_device *nvmem;
ssize_t err;
/* Allow write of the whole area only */
if (off || count != OCP_ART_TEMP_TABLE_SIZE)
return -EFAULT;
nvmem = ptp_ocp_nvmem_device_get(bp, NULL);
if (IS_ERR(nvmem))
return PTR_ERR(nvmem);
err = nvmem_device_write(nvmem, 0x90, count, buf);
if (err != count)
err = -EFAULT;
ptp_ocp_nvmem_device_put(&nvmem);
return err;
}
static BIN_ATTR_RW(temperature_table, OCP_ART_TEMP_TABLE_SIZE);
static struct attribute *fb_timecard_attrs[] = {
&dev_attr_serialnum.attr,
&dev_attr_gnss_sync.attr,
&dev_attr_clock_source.attr,
&dev_attr_available_clock_sources.attr,
&dev_attr_sma1.attr,
&dev_attr_sma2.attr,
&dev_attr_sma3.attr,
&dev_attr_sma4.attr,
&dev_attr_available_sma_inputs.attr,
&dev_attr_available_sma_outputs.attr,
&dev_attr_clock_status_drift.attr,
&dev_attr_clock_status_offset.attr,
&dev_attr_irig_b_mode.attr,
&dev_attr_utc_tai_offset.attr,
&dev_attr_ts_window_adjust.attr,
&dev_attr_tod_correction.attr,
NULL,
};
static const struct attribute_group fb_timecard_group = {
.attrs = fb_timecard_attrs,
};
static const struct ocp_attr_group fb_timecard_groups[] = {
{ .cap = OCP_CAP_BASIC, .group = &fb_timecard_group },
{ .cap = OCP_CAP_BASIC, .group = &ptp_ocp_timecard_tty_group },
{ .cap = OCP_CAP_SIGNAL, .group = &fb_timecard_signal0_group },
{ .cap = OCP_CAP_SIGNAL, .group = &fb_timecard_signal1_group },
{ .cap = OCP_CAP_SIGNAL, .group = &fb_timecard_signal2_group },
{ .cap = OCP_CAP_SIGNAL, .group = &fb_timecard_signal3_group },
{ .cap = OCP_CAP_FREQ, .group = &fb_timecard_freq0_group },
{ .cap = OCP_CAP_FREQ, .group = &fb_timecard_freq1_group },
{ .cap = OCP_CAP_FREQ, .group = &fb_timecard_freq2_group },
{ .cap = OCP_CAP_FREQ, .group = &fb_timecard_freq3_group },
{ },
};
static struct attribute *art_timecard_attrs[] = {
&dev_attr_serialnum.attr,
&dev_attr_clock_source.attr,
&dev_attr_available_clock_sources.attr,
&dev_attr_utc_tai_offset.attr,
&dev_attr_ts_window_adjust.attr,
&dev_attr_sma1.attr,
&dev_attr_sma2.attr,
&dev_attr_sma3.attr,
&dev_attr_sma4.attr,
&dev_attr_available_sma_inputs.attr,
&dev_attr_available_sma_outputs.attr,
NULL,
};
static struct bin_attribute *bin_art_timecard_attrs[] = {
&bin_attr_disciplining_config,
&bin_attr_temperature_table,
NULL,
};
static const struct attribute_group art_timecard_group = {
.attrs = art_timecard_attrs,
.bin_attrs = bin_art_timecard_attrs,
};
static const struct ocp_attr_group art_timecard_groups[] = {
{ .cap = OCP_CAP_BASIC, .group = &art_timecard_group },
{ .cap = OCP_CAP_BASIC, .group = &ptp_ocp_timecard_tty_group },
{ },
};
static struct attribute *adva_timecard_attrs[] = {
&dev_attr_serialnum.attr,
&dev_attr_gnss_sync.attr,
&dev_attr_clock_source.attr,
&dev_attr_available_clock_sources.attr,
&dev_attr_sma1.attr,
&dev_attr_sma2.attr,
&dev_attr_sma3.attr,
&dev_attr_sma4.attr,
&dev_attr_available_sma_inputs.attr,
&dev_attr_available_sma_outputs.attr,
&dev_attr_clock_status_drift.attr,
&dev_attr_clock_status_offset.attr,
&dev_attr_ts_window_adjust.attr,
&dev_attr_tod_correction.attr,
NULL,
};
static const struct attribute_group adva_timecard_group = {
.attrs = adva_timecard_attrs,
};
static const struct ocp_attr_group adva_timecard_groups[] = {
{ .cap = OCP_CAP_BASIC, .group = &adva_timecard_group },
{ .cap = OCP_CAP_BASIC, .group = &ptp_ocp_timecard_tty_group },
{ .cap = OCP_CAP_SIGNAL, .group = &fb_timecard_signal0_group },
{ .cap = OCP_CAP_SIGNAL, .group = &fb_timecard_signal1_group },
{ .cap = OCP_CAP_FREQ, .group = &fb_timecard_freq0_group },
{ .cap = OCP_CAP_FREQ, .group = &fb_timecard_freq1_group },
{ },
};
static void
gpio_input_map(char *buf, struct ptp_ocp *bp, u16 map[][2], u16 bit,
const char *def)
{
int i;
for (i = 0; i < 4; i++) {
if (bp->sma[i].mode != SMA_MODE_IN)
continue;
if (map[i][0] & (1 << bit)) {
sprintf(buf, "sma%d", i + 1);
return;
}
}
if (!def)
def = "----";
strcpy(buf, def);
}
static void
gpio_output_map(char *buf, struct ptp_ocp *bp, u16 map[][2], u16 bit)
{
char *ans = buf;
int i;
strcpy(ans, "----");
for (i = 0; i < 4; i++) {
if (bp->sma[i].mode != SMA_MODE_OUT)
continue;
if (map[i][1] & (1 << bit))
ans += sprintf(ans, "sma%d ", i + 1);
}
}
static void
_signal_summary_show(struct seq_file *s, struct ptp_ocp *bp, int nr)
{
struct signal_reg __iomem *reg = bp->signal_out[nr]->mem;
struct ptp_ocp_signal *signal = &bp->signal[nr];
char label[8];
bool on;
u32 val;
if (!signal)
return;
on = signal->running;
sprintf(label, "GEN%d", nr + 1);
seq_printf(s, "%7s: %s, period:%llu duty:%d%% phase:%llu pol:%d",
label, on ? " ON" : "OFF",
signal->period, signal->duty, signal->phase,
signal->polarity);
val = ioread32(®->enable);
seq_printf(s, " [%x", val);
val = ioread32(®->status);
seq_printf(s, " %x]", val);
seq_printf(s, " start:%llu\n", signal->start);
}
static void
_frequency_summary_show(struct seq_file *s, int nr,
struct frequency_reg __iomem *reg)
{
char label[8];
bool on;
u32 val;
if (!reg)
return;
sprintf(label, "FREQ%d", nr + 1);
val = ioread32(®->ctrl);
on = val & 1;
val = (val >> 8) & 0xff;
seq_printf(s, "%7s: %s, sec:%u",
label,
on ? " ON" : "OFF",
val);
val = ioread32(®->status);
if (val & FREQ_STATUS_ERROR)
seq_printf(s, ", error");
if (val & FREQ_STATUS_OVERRUN)
seq_printf(s, ", overrun");
if (val & FREQ_STATUS_VALID)
seq_printf(s, ", freq %lu Hz", val & FREQ_STATUS_MASK);
seq_printf(s, " reg:%x\n", val);
}
static int
ptp_ocp_summary_show(struct seq_file *s, void *data)
{
struct device *dev = s->private;
struct ptp_system_timestamp sts;
struct ts_reg __iomem *ts_reg;
char *buf, *src, *mac_src;
struct timespec64 ts;
struct ptp_ocp *bp;
u16 sma_val[4][2];
u32 ctrl, val;
bool on, map;
int i;
buf = (char *)__get_free_page(GFP_KERNEL);
if (!buf)
return -ENOMEM;
bp = dev_get_drvdata(dev);
seq_printf(s, "%7s: /dev/ptp%d\n", "PTP", ptp_clock_index(bp->ptp));
for (i = 0; i < __PORT_COUNT; i++) {
if (bp->port[i].line != -1)
seq_printf(s, "%7s: /dev/ttyS%d\n", ptp_ocp_tty_port_name(i),
bp->port[i].line);
}
memset(sma_val, 0xff, sizeof(sma_val));
if (bp->sma_map1) {
u32 reg;
reg = ioread32(&bp->sma_map1->gpio1);
sma_val[0][0] = reg & 0xffff;
sma_val[1][0] = reg >> 16;
reg = ioread32(&bp->sma_map1->gpio2);
sma_val[2][1] = reg & 0xffff;
sma_val[3][1] = reg >> 16;
reg = ioread32(&bp->sma_map2->gpio1);
sma_val[2][0] = reg & 0xffff;
sma_val[3][0] = reg >> 16;
reg = ioread32(&bp->sma_map2->gpio2);
sma_val[0][1] = reg & 0xffff;
sma_val[1][1] = reg >> 16;
}
sma1_show(dev, NULL, buf);
seq_printf(s, " sma1: %04x,%04x %s",
sma_val[0][0], sma_val[0][1], buf);
sma2_show(dev, NULL, buf);
seq_printf(s, " sma2: %04x,%04x %s",
sma_val[1][0], sma_val[1][1], buf);
sma3_show(dev, NULL, buf);
seq_printf(s, " sma3: %04x,%04x %s",
sma_val[2][0], sma_val[2][1], buf);
sma4_show(dev, NULL, buf);
seq_printf(s, " sma4: %04x,%04x %s",
sma_val[3][0], sma_val[3][1], buf);
if (bp->ts0) {
ts_reg = bp->ts0->mem;
on = ioread32(&ts_reg->enable);
src = "GNSS1";
seq_printf(s, "%7s: %s, src: %s\n", "TS0",
on ? " ON" : "OFF", src);
}
if (bp->ts1) {
ts_reg = bp->ts1->mem;
on = ioread32(&ts_reg->enable);
gpio_input_map(buf, bp, sma_val, 2, NULL);
seq_printf(s, "%7s: %s, src: %s\n", "TS1",
on ? " ON" : "OFF", buf);
}
if (bp->ts2) {
ts_reg = bp->ts2->mem;
on = ioread32(&ts_reg->enable);
gpio_input_map(buf, bp, sma_val, 3, NULL);
seq_printf(s, "%7s: %s, src: %s\n", "TS2",
on ? " ON" : "OFF", buf);
}
if (bp->ts3) {
ts_reg = bp->ts3->mem;
on = ioread32(&ts_reg->enable);
gpio_input_map(buf, bp, sma_val, 6, NULL);
seq_printf(s, "%7s: %s, src: %s\n", "TS3",
on ? " ON" : "OFF", buf);
}
if (bp->ts4) {
ts_reg = bp->ts4->mem;
on = ioread32(&ts_reg->enable);
gpio_input_map(buf, bp, sma_val, 7, NULL);
seq_printf(s, "%7s: %s, src: %s\n", "TS4",
on ? " ON" : "OFF", buf);
}
if (bp->pps) {
ts_reg = bp->pps->mem;
src = "PHC";
on = ioread32(&ts_reg->enable);
map = !!(bp->pps_req_map & OCP_REQ_TIMESTAMP);
seq_printf(s, "%7s: %s, src: %s\n", "TS5",
on && map ? " ON" : "OFF", src);
map = !!(bp->pps_req_map & OCP_REQ_PPS);
seq_printf(s, "%7s: %s, src: %s\n", "PPS",
on && map ? " ON" : "OFF", src);
}
if (bp->fw_cap & OCP_CAP_SIGNAL)
for (i = 0; i < 4; i++)
_signal_summary_show(s, bp, i);
if (bp->fw_cap & OCP_CAP_FREQ)
for (i = 0; i < 4; i++)
_frequency_summary_show(s, i, bp->freq_in[i]);
if (bp->irig_out) {
ctrl = ioread32(&bp->irig_out->ctrl);
on = ctrl & IRIG_M_CTRL_ENABLE;
val = ioread32(&bp->irig_out->status);
gpio_output_map(buf, bp, sma_val, 4);
seq_printf(s, "%7s: %s, error: %d, mode %d, out: %s\n", "IRIG",
on ? " ON" : "OFF", val, (ctrl >> 16), buf);
}
if (bp->irig_in) {
on = ioread32(&bp->irig_in->ctrl) & IRIG_S_CTRL_ENABLE;
val = ioread32(&bp->irig_in->status);
gpio_input_map(buf, bp, sma_val, 4, NULL);
seq_printf(s, "%7s: %s, error: %d, src: %s\n", "IRIG in",
on ? " ON" : "OFF", val, buf);
}
if (bp->dcf_out) {
on = ioread32(&bp->dcf_out->ctrl) & DCF_M_CTRL_ENABLE;
val = ioread32(&bp->dcf_out->status);
gpio_output_map(buf, bp, sma_val, 5);
seq_printf(s, "%7s: %s, error: %d, out: %s\n", "DCF",
on ? " ON" : "OFF", val, buf);
}
if (bp->dcf_in) {
on = ioread32(&bp->dcf_in->ctrl) & DCF_S_CTRL_ENABLE;
val = ioread32(&bp->dcf_in->status);
gpio_input_map(buf, bp, sma_val, 5, NULL);
seq_printf(s, "%7s: %s, error: %d, src: %s\n", "DCF in",
on ? " ON" : "OFF", val, buf);
}
if (bp->nmea_out) {
on = ioread32(&bp->nmea_out->ctrl) & 1;
val = ioread32(&bp->nmea_out->status);
seq_printf(s, "%7s: %s, error: %d\n", "NMEA",
on ? " ON" : "OFF", val);
}
/* compute src for PPS1, used below. */
if (bp->pps_select) {
val = ioread32(&bp->pps_select->gpio1);
src = &buf[80];
mac_src = "GNSS1";
if (val & 0x01) {
gpio_input_map(src, bp, sma_val, 0, NULL);
mac_src = src;
} else if (val & 0x02) {
src = "MAC";
} else if (val & 0x04) {
src = "GNSS1";
} else {
src = "----";
mac_src = src;
}
} else {
src = "?";
mac_src = src;
}
seq_printf(s, "MAC PPS1 src: %s\n", mac_src);
gpio_input_map(buf, bp, sma_val, 1, "GNSS2");
seq_printf(s, "MAC PPS2 src: %s\n", buf);
/* assumes automatic switchover/selection */
val = ioread32(&bp->reg->select);
switch (val >> 16) {
case 0:
sprintf(buf, "----");
break;
case 2:
sprintf(buf, "IRIG");
break;
case 3:
sprintf(buf, "%s via PPS1", src);
break;
case 6:
sprintf(buf, "DCF");
break;
default:
strcpy(buf, "unknown");
break;
}
seq_printf(s, "%7s: %s, state: %s\n", "PHC src", buf,
bp->sync ? "sync" : "unsynced");
if (!ptp_ocp_gettimex(&bp->ptp_info, &ts, &sts)) {
struct timespec64 sys_ts;
s64 pre_ns, post_ns, ns;
pre_ns = timespec64_to_ns(&sts.pre_ts);
post_ns = timespec64_to_ns(&sts.post_ts);
ns = (pre_ns + post_ns) / 2;
ns += (s64)bp->utc_tai_offset * NSEC_PER_SEC;
sys_ts = ns_to_timespec64(ns);
seq_printf(s, "%7s: %lld.%ld == %ptT TAI\n", "PHC",
ts.tv_sec, ts.tv_nsec, &ts);
seq_printf(s, "%7s: %lld.%ld == %ptT UTC offset %d\n", "SYS",
sys_ts.tv_sec, sys_ts.tv_nsec, &sys_ts,
bp->utc_tai_offset);
seq_printf(s, "%7s: PHC:SYS offset: %lld window: %lld\n", "",
timespec64_to_ns(&ts) - ns,
post_ns - pre_ns);
}
free_page((unsigned long)buf);
return 0;
}
DEFINE_SHOW_ATTRIBUTE(ptp_ocp_summary);
static int
ptp_ocp_tod_status_show(struct seq_file *s, void *data)
{
struct device *dev = s->private;
struct ptp_ocp *bp;
u32 val;
int idx;
bp = dev_get_drvdata(dev);
val = ioread32(&bp->tod->ctrl);
if (!(val & TOD_CTRL_ENABLE)) {
seq_printf(s, "TOD Slave disabled\n");
return 0;
}
seq_printf(s, "TOD Slave enabled, Control Register 0x%08X\n", val);
idx = val & TOD_CTRL_PROTOCOL ? 4 : 0;
idx += (val >> 16) & 3;
seq_printf(s, "Protocol %s\n", ptp_ocp_tod_proto_name(idx));
idx = (val >> TOD_CTRL_GNSS_SHIFT) & TOD_CTRL_GNSS_MASK;
seq_printf(s, "GNSS %s\n", ptp_ocp_tod_gnss_name(idx));
val = ioread32(&bp->tod->version);
seq_printf(s, "TOD Version %d.%d.%d\n",
val >> 24, (val >> 16) & 0xff, val & 0xffff);
val = ioread32(&bp->tod->status);
seq_printf(s, "Status register: 0x%08X\n", val);
val = ioread32(&bp->tod->adj_sec);
idx = (val & ~INT_MAX) ? -1 : 1;
idx *= (val & INT_MAX);
seq_printf(s, "Correction seconds: %d\n", idx);
val = ioread32(&bp->tod->utc_status);
seq_printf(s, "UTC status register: 0x%08X\n", val);
seq_printf(s, "UTC offset: %ld valid:%d\n",
val & TOD_STATUS_UTC_MASK, val & TOD_STATUS_UTC_VALID ? 1 : 0);
seq_printf(s, "Leap second info valid:%d, Leap second announce %d\n",
val & TOD_STATUS_LEAP_VALID ? 1 : 0,
val & TOD_STATUS_LEAP_ANNOUNCE ? 1 : 0);
val = ioread32(&bp->tod->leap);
seq_printf(s, "Time to next leap second (in sec): %d\n", (s32) val);
return 0;
}
DEFINE_SHOW_ATTRIBUTE(ptp_ocp_tod_status);
static struct dentry *ptp_ocp_debugfs_root;
static void
ptp_ocp_debugfs_add_device(struct ptp_ocp *bp)
{
struct dentry *d;
d = debugfs_create_dir(dev_name(&bp->dev), ptp_ocp_debugfs_root);
bp->debug_root = d;
debugfs_create_file("summary", 0444, bp->debug_root,
&bp->dev, &ptp_ocp_summary_fops);
if (bp->tod)
debugfs_create_file("tod_status", 0444, bp->debug_root,
&bp->dev, &ptp_ocp_tod_status_fops);
}
static void
ptp_ocp_debugfs_remove_device(struct ptp_ocp *bp)
{
debugfs_remove_recursive(bp->debug_root);
}
static void
ptp_ocp_debugfs_init(void)
{
ptp_ocp_debugfs_root = debugfs_create_dir("timecard", NULL);
}
static void
ptp_ocp_debugfs_fini(void)
{
debugfs_remove_recursive(ptp_ocp_debugfs_root);
}
static void
ptp_ocp_dev_release(struct device *dev)
{
struct ptp_ocp *bp = dev_get_drvdata(dev);
mutex_lock(&ptp_ocp_lock);
idr_remove(&ptp_ocp_idr, bp->id);
mutex_unlock(&ptp_ocp_lock);
}
static int
ptp_ocp_device_init(struct ptp_ocp *bp, struct pci_dev *pdev)
{
int i, err;
mutex_lock(&ptp_ocp_lock);
err = idr_alloc(&ptp_ocp_idr, bp, 0, 0, GFP_KERNEL);
mutex_unlock(&ptp_ocp_lock);
if (err < 0) {
dev_err(&pdev->dev, "idr_alloc failed: %d\n", err);
return err;
}
bp->id = err;
bp->ptp_info = ptp_ocp_clock_info;
spin_lock_init(&bp->lock);
for (i = 0; i < __PORT_COUNT; i++)
bp->port[i].line = -1;
bp->pdev = pdev;
device_initialize(&bp->dev);
dev_set_name(&bp->dev, "ocp%d", bp->id);
bp->dev.class = &timecard_class;
bp->dev.parent = &pdev->dev;
bp->dev.release = ptp_ocp_dev_release;
dev_set_drvdata(&bp->dev, bp);
err = device_add(&bp->dev);
if (err) {
dev_err(&bp->dev, "device add failed: %d\n", err);
goto out;
}
pci_set_drvdata(pdev, bp);
return 0;
out:
put_device(&bp->dev);
return err;
}
static void
ptp_ocp_symlink(struct ptp_ocp *bp, struct device *child, const char *link)
{
struct device *dev = &bp->dev;
if (sysfs_create_link(&dev->kobj, &child->kobj, link))
dev_err(dev, "%s symlink failed\n", link);
}
static void
ptp_ocp_link_child(struct ptp_ocp *bp, const char *name, const char *link)
{
struct device *dev, *child;
dev = &bp->pdev->dev;
child = device_find_child_by_name(dev, name);
if (!child) {
dev_err(dev, "Could not find device %s\n", name);
return;
}
ptp_ocp_symlink(bp, child, link);
put_device(child);
}
static int
ptp_ocp_complete(struct ptp_ocp *bp)
{
struct pps_device *pps;
char buf[32];
sprintf(buf, "ptp%d", ptp_clock_index(bp->ptp));
ptp_ocp_link_child(bp, buf, "ptp");
pps = pps_lookup_dev(bp->ptp);
if (pps)
ptp_ocp_symlink(bp, pps->dev, "pps");
ptp_ocp_debugfs_add_device(bp);
return 0;
}
static void
ptp_ocp_phc_info(struct ptp_ocp *bp)
{
struct timespec64 ts;
u32 version, select;
version = ioread32(&bp->reg->version);
select = ioread32(&bp->reg->select);
dev_info(&bp->pdev->dev, "Version %d.%d.%d, clock %s, device ptp%d\n",
version >> 24, (version >> 16) & 0xff, version & 0xffff,
ptp_ocp_select_name_from_val(ptp_ocp_clock, select >> 16),
ptp_clock_index(bp->ptp));
if (!ptp_ocp_gettimex(&bp->ptp_info, &ts, NULL))
dev_info(&bp->pdev->dev, "Time: %lld.%ld, %s\n",
ts.tv_sec, ts.tv_nsec,
bp->sync ? "in-sync" : "UNSYNCED");
}
static void
ptp_ocp_serial_info(struct device *dev, const char *name, int port, int baud)
{
if (port != -1)
dev_info(dev, "%5s: /dev/ttyS%-2d @ %6d\n", name, port, baud);
}
static void
ptp_ocp_info(struct ptp_ocp *bp)
{
static int nmea_baud[] = {
1200, 2400, 4800, 9600, 19200, 38400,
57600, 115200, 230400, 460800, 921600,
1000000, 2000000
};
struct device *dev = &bp->pdev->dev;
u32 reg;
int i;
ptp_ocp_phc_info(bp);
for (i = 0; i < __PORT_COUNT; i++) {
if (i == PORT_NMEA && bp->nmea_out && bp->port[PORT_NMEA].line != -1) {
bp->port[PORT_NMEA].baud = -1;
reg = ioread32(&bp->nmea_out->uart_baud);
if (reg < ARRAY_SIZE(nmea_baud))
bp->port[PORT_NMEA].baud = nmea_baud[reg];
}
ptp_ocp_serial_info(dev, ptp_ocp_tty_port_name(i), bp->port[i].line,
bp->port[i].baud);
}
}
static void
ptp_ocp_detach_sysfs(struct ptp_ocp *bp)
{
struct device *dev = &bp->dev;
sysfs_remove_link(&dev->kobj, "ptp");
sysfs_remove_link(&dev->kobj, "pps");
}
static void
ptp_ocp_detach(struct ptp_ocp *bp)
{
int i;
ptp_ocp_debugfs_remove_device(bp);
ptp_ocp_detach_sysfs(bp);
ptp_ocp_attr_group_del(bp);
if (timer_pending(&bp->watchdog))
del_timer_sync(&bp->watchdog);
if (bp->ts0)
ptp_ocp_unregister_ext(bp->ts0);
if (bp->ts1)
ptp_ocp_unregister_ext(bp->ts1);
if (bp->ts2)
ptp_ocp_unregister_ext(bp->ts2);
if (bp->ts3)
ptp_ocp_unregister_ext(bp->ts3);
if (bp->ts4)
ptp_ocp_unregister_ext(bp->ts4);
if (bp->pps)
ptp_ocp_unregister_ext(bp->pps);
for (i = 0; i < 4; i++)
if (bp->signal_out[i])
ptp_ocp_unregister_ext(bp->signal_out[i]);
for (i = 0; i < __PORT_COUNT; i++)
if (bp->port[i].line != -1)
serial8250_unregister_port(bp->port[i].line);
platform_device_unregister(bp->spi_flash);
platform_device_unregister(bp->i2c_ctrl);
if (bp->i2c_clk)
clk_hw_unregister_fixed_rate(bp->i2c_clk);
if (bp->n_irqs)
pci_free_irq_vectors(bp->pdev);
if (bp->ptp)
ptp_clock_unregister(bp->ptp);
kfree(bp->ptp_info.pin_config);
device_unregister(&bp->dev);
}
static int
ptp_ocp_dpll_lock_status_get(const struct dpll_device *dpll, void *priv,
enum dpll_lock_status *status,
enum dpll_lock_status_error *status_error,
struct netlink_ext_ack *extack)
{
struct ptp_ocp *bp = priv;
*status = bp->sync ? DPLL_LOCK_STATUS_LOCKED : DPLL_LOCK_STATUS_UNLOCKED;
return 0;
}
static int ptp_ocp_dpll_state_get(const struct dpll_pin *pin, void *pin_priv,
const struct dpll_device *dpll, void *priv,
enum dpll_pin_state *state,
struct netlink_ext_ack *extack)
{
struct ptp_ocp *bp = priv;
int idx;
if (bp->pps_select) {
idx = ioread32(&bp->pps_select->gpio1);
*state = (&bp->sma[idx] == pin_priv) ? DPLL_PIN_STATE_CONNECTED :
DPLL_PIN_STATE_SELECTABLE;
return 0;
}
NL_SET_ERR_MSG(extack, "pin selection is not supported on current HW");
return -EINVAL;
}
static int ptp_ocp_dpll_mode_get(const struct dpll_device *dpll, void *priv,
enum dpll_mode *mode, struct netlink_ext_ack *extack)
{
*mode = DPLL_MODE_AUTOMATIC;
return 0;
}
static int ptp_ocp_dpll_direction_get(const struct dpll_pin *pin,
void *pin_priv,
const struct dpll_device *dpll,
void *priv,
enum dpll_pin_direction *direction,
struct netlink_ext_ack *extack)
{
struct ptp_ocp_sma_connector *sma = pin_priv;
*direction = sma->mode == SMA_MODE_IN ?
DPLL_PIN_DIRECTION_INPUT :
DPLL_PIN_DIRECTION_OUTPUT;
return 0;
}
static int ptp_ocp_dpll_direction_set(const struct dpll_pin *pin,
void *pin_priv,
const struct dpll_device *dpll,
void *dpll_priv,
enum dpll_pin_direction direction,
struct netlink_ext_ack *extack)
{
struct ptp_ocp_sma_connector *sma = pin_priv;
struct ptp_ocp *bp = dpll_priv;
enum ptp_ocp_sma_mode mode;
int sma_nr = (sma - bp->sma);
if (sma->fixed_dir)
return -EOPNOTSUPP;
mode = direction == DPLL_PIN_DIRECTION_INPUT ?
SMA_MODE_IN : SMA_MODE_OUT;
return ptp_ocp_sma_store_val(bp, 0, mode, sma_nr + 1);
}
static int ptp_ocp_dpll_frequency_set(const struct dpll_pin *pin,
void *pin_priv,
const struct dpll_device *dpll,
void *dpll_priv, u64 frequency,
struct netlink_ext_ack *extack)
{
struct ptp_ocp_sma_connector *sma = pin_priv;
struct ptp_ocp *bp = dpll_priv;
const struct ocp_selector *tbl;
int sma_nr = (sma - bp->sma);
int i;
if (sma->fixed_fcn)
return -EOPNOTSUPP;
tbl = bp->sma_op->tbl[sma->mode];
for (i = 0; tbl[i].name; i++)
if (tbl[i].frequency == frequency)
return ptp_ocp_sma_store_val(bp, i, sma->mode, sma_nr + 1);
return -EINVAL;
}
static int ptp_ocp_dpll_frequency_get(const struct dpll_pin *pin,
void *pin_priv,
const struct dpll_device *dpll,
void *dpll_priv, u64 *frequency,
struct netlink_ext_ack *extack)
{
struct ptp_ocp_sma_connector *sma = pin_priv;
struct ptp_ocp *bp = dpll_priv;
const struct ocp_selector *tbl;
int sma_nr = (sma - bp->sma);
u32 val;
int i;
val = bp->sma_op->get(bp, sma_nr + 1);
tbl = bp->sma_op->tbl[sma->mode];
for (i = 0; tbl[i].name; i++)
if (val == tbl[i].value) {
*frequency = tbl[i].frequency;
return 0;
}
return -EINVAL;
}
static const struct dpll_device_ops dpll_ops = {
.lock_status_get = ptp_ocp_dpll_lock_status_get,
.mode_get = ptp_ocp_dpll_mode_get,
};
static const struct dpll_pin_ops dpll_pins_ops = {
.frequency_get = ptp_ocp_dpll_frequency_get,
.frequency_set = ptp_ocp_dpll_frequency_set,
.direction_get = ptp_ocp_dpll_direction_get,
.direction_set = ptp_ocp_dpll_direction_set,
.state_on_dpll_get = ptp_ocp_dpll_state_get,
};
static void
ptp_ocp_sync_work(struct work_struct *work)
{
struct ptp_ocp *bp;
bool sync;
bp = container_of(work, struct ptp_ocp, sync_work.work);
sync = !!(ioread32(&bp->reg->status) & OCP_STATUS_IN_SYNC);
if (bp->sync != sync)
dpll_device_change_ntf(bp->dpll);
bp->sync = sync;
queue_delayed_work(system_power_efficient_wq, &bp->sync_work, HZ);
}
static int
ptp_ocp_probe(struct pci_dev *pdev, const struct pci_device_id *id)
{
struct devlink *devlink;
struct ptp_ocp *bp;
int err, i;
u64 clkid;
devlink = devlink_alloc(&ptp_ocp_devlink_ops, sizeof(*bp), &pdev->dev);
if (!devlink) {
dev_err(&pdev->dev, "devlink_alloc failed\n");
return -ENOMEM;
}
err = pci_enable_device(pdev);
if (err) {
dev_err(&pdev->dev, "pci_enable_device\n");
goto out_free;
}
bp = devlink_priv(devlink);
err = ptp_ocp_device_init(bp, pdev);
if (err)
goto out_disable;
INIT_DELAYED_WORK(&bp->sync_work, ptp_ocp_sync_work);
/* compat mode.
* Older FPGA firmware only returns 2 irq's.
* allow this - if not all of the IRQ's are returned, skip the
* extra devices and just register the clock.
*/
err = pci_alloc_irq_vectors(pdev, 1, 17, PCI_IRQ_MSI | PCI_IRQ_MSIX);
if (err < 0) {
dev_err(&pdev->dev, "alloc_irq_vectors err: %d\n", err);
goto out;
}
bp->n_irqs = err;
pci_set_master(pdev);
err = ptp_ocp_register_resources(bp, id->driver_data);
if (err)
goto out;
bp->ptp = ptp_clock_register(&bp->ptp_info, &pdev->dev);
if (IS_ERR(bp->ptp)) {
err = PTR_ERR(bp->ptp);
dev_err(&pdev->dev, "ptp_clock_register: %d\n", err);
bp->ptp = NULL;
goto out;
}
err = ptp_ocp_complete(bp);
if (err)
goto out;
ptp_ocp_info(bp);
devlink_register(devlink);
clkid = pci_get_dsn(pdev);
bp->dpll = dpll_device_get(clkid, 0, THIS_MODULE);
if (IS_ERR(bp->dpll)) {
err = PTR_ERR(bp->dpll);
dev_err(&pdev->dev, "dpll_device_alloc failed\n");
goto out;
}
err = dpll_device_register(bp->dpll, DPLL_TYPE_PPS, &dpll_ops, bp);
if (err)
goto out;
for (i = 0; i < OCP_SMA_NUM; i++) {
bp->sma[i].dpll_pin = dpll_pin_get(clkid, i, THIS_MODULE, &bp->sma[i].dpll_prop);
if (IS_ERR(bp->sma[i].dpll_pin)) {
err = PTR_ERR(bp->sma[i].dpll_pin);
goto out_dpll;
}
err = dpll_pin_register(bp->dpll, bp->sma[i].dpll_pin, &dpll_pins_ops,
&bp->sma[i]);
if (err) {
dpll_pin_put(bp->sma[i].dpll_pin);
goto out_dpll;
}
}
queue_delayed_work(system_power_efficient_wq, &bp->sync_work, HZ);
return 0;
out_dpll:
while (i) {
--i;
dpll_pin_unregister(bp->dpll, bp->sma[i].dpll_pin, &dpll_pins_ops, &bp->sma[i]);
dpll_pin_put(bp->sma[i].dpll_pin);
}
dpll_device_put(bp->dpll);
out:
ptp_ocp_detach(bp);
out_disable:
pci_disable_device(pdev);
out_free:
devlink_free(devlink);
return err;
}
static void
ptp_ocp_remove(struct pci_dev *pdev)
{
struct ptp_ocp *bp = pci_get_drvdata(pdev);
struct devlink *devlink = priv_to_devlink(bp);
int i;
cancel_delayed_work_sync(&bp->sync_work);
for (i = 0; i < OCP_SMA_NUM; i++) {
if (bp->sma[i].dpll_pin) {
dpll_pin_unregister(bp->dpll, bp->sma[i].dpll_pin, &dpll_pins_ops, &bp->sma[i]);
dpll_pin_put(bp->sma[i].dpll_pin);
}
}
dpll_device_unregister(bp->dpll, &dpll_ops, bp);
dpll_device_put(bp->dpll);
devlink_unregister(devlink);
ptp_ocp_detach(bp);
pci_disable_device(pdev);
devlink_free(devlink);
}
static struct pci_driver ptp_ocp_driver = {
.name = KBUILD_MODNAME,
.id_table = ptp_ocp_pcidev_id,
.probe = ptp_ocp_probe,
.remove = ptp_ocp_remove,
};
static int
ptp_ocp_i2c_notifier_call(struct notifier_block *nb,
unsigned long action, void *data)
{
struct device *dev, *child = data;
struct ptp_ocp *bp;
bool add;
switch (action) {
case BUS_NOTIFY_ADD_DEVICE:
case BUS_NOTIFY_DEL_DEVICE:
add = action == BUS_NOTIFY_ADD_DEVICE;
break;
default:
return 0;
}
if (!i2c_verify_adapter(child))
return 0;
dev = child;
while ((dev = dev->parent))
if (dev->driver && !strcmp(dev->driver->name, KBUILD_MODNAME))
goto found;
return 0;
found:
bp = dev_get_drvdata(dev);
if (add)
ptp_ocp_symlink(bp, child, "i2c");
else
sysfs_remove_link(&bp->dev.kobj, "i2c");
return 0;
}
static struct notifier_block ptp_ocp_i2c_notifier = {
.notifier_call = ptp_ocp_i2c_notifier_call,
};
static int __init
ptp_ocp_init(void)
{
const char *what;
int err;
ptp_ocp_debugfs_init();
what = "timecard class";
err = class_register(&timecard_class);
if (err)
goto out;
what = "i2c notifier";
err = bus_register_notifier(&i2c_bus_type, &ptp_ocp_i2c_notifier);
if (err)
goto out_notifier;
what = "ptp_ocp driver";
err = pci_register_driver(&ptp_ocp_driver);
if (err)
goto out_register;
return 0;
out_register:
bus_unregister_notifier(&i2c_bus_type, &ptp_ocp_i2c_notifier);
out_notifier:
class_unregister(&timecard_class);
out:
ptp_ocp_debugfs_fini();
pr_err(KBUILD_MODNAME ": failed to register %s: %d\n", what, err);
return err;
}
static void __exit
ptp_ocp_fini(void)
{
bus_unregister_notifier(&i2c_bus_type, &ptp_ocp_i2c_notifier);
pci_unregister_driver(&ptp_ocp_driver);
class_unregister(&timecard_class);
ptp_ocp_debugfs_fini();
}
module_init(ptp_ocp_init);
module_exit(ptp_ocp_fini);
MODULE_DESCRIPTION("OpenCompute TimeCard driver");
MODULE_LICENSE("GPL v2");