linux/drivers/infiniband/hw/mthca/mthca_allocator.c

/*
 * Copyright (c) 2004 Topspin Communications.  All rights reserved.
 *
 * This software is available to you under a choice of one of two
 * licenses.  You may choose to be licensed under the terms of the GNU
 * General Public License (GPL) Version 2, available from the file
 * COPYING in the main directory of this source tree, or the
 * OpenIB.org BSD license below:
 *
 *     Redistribution and use in source and binary forms, with or
 *     without modification, are permitted provided that the following
 *     conditions are met:
 *
 *      - Redistributions of source code must retain the above
 *        copyright notice, this list of conditions and the following
 *        disclaimer.
 *
 *      - Redistributions in binary form must reproduce the above
 *        copyright notice, this list of conditions and the following
 *        disclaimer in the documentation and/or other materials
 *        provided with the distribution.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 */

#include <linux/errno.h>
#include <linux/slab.h>
#include <linux/bitmap.h>

#include "mthca_dev.h"

/* Trivial bitmap-based allocator */
u32 mthca_alloc(struct mthca_alloc *alloc)
{
	unsigned long flags;
	u32 obj;

	spin_lock_irqsave(&alloc->lock, flags);

	obj = find_next_zero_bit(alloc->table, alloc->max, alloc->last);
	if (obj >= alloc->max) {
		alloc->top = (alloc->top + alloc->max) & alloc->mask;
		obj = find_first_zero_bit(alloc->table, alloc->max);
	}

	if (obj < alloc->max) {
		__set_bit(obj, alloc->table);
		obj |= alloc->top;
	} else
		obj = -1;

	spin_unlock_irqrestore(&alloc->lock, flags);

	return obj;
}

void mthca_free(struct mthca_alloc *alloc, u32 obj)
{
	unsigned long flags;

	obj &= alloc->max - 1;

	spin_lock_irqsave(&alloc->lock, flags);

	__clear_bit(obj, alloc->table);
	alloc->last = min(alloc->last, obj);
	alloc->top = (alloc->top + alloc->max) & alloc->mask;

	spin_unlock_irqrestore(&alloc->lock, flags);
}

int mthca_alloc_init(struct mthca_alloc *alloc, u32 num, u32 mask,
		     u32 reserved)
{
	/* num must be a power of 2 */
	if (num != 1 << (ffs(num) - 1))
		return -EINVAL;

	alloc->last = 0;
	alloc->top  = 0;
	alloc->max  = num;
	alloc->mask = mask;
	spin_lock_init(&alloc->lock);
	alloc->table = bitmap_zalloc(num, GFP_KERNEL);
	if (!alloc->table)
		return -ENOMEM;

	bitmap_set(alloc->table, 0, reserved);

	return 0;
}

void mthca_alloc_cleanup(struct mthca_alloc *alloc)
{
	bitmap_free(alloc->table);
}

/*
 * Array of pointers with lazy allocation of leaf pages.  Callers of
 * _get, _set and _clear methods must use a lock or otherwise
 * serialize access to the array.
 */

#define MTHCA_ARRAY_MASK (PAGE_SIZE / sizeof (void *) - 1)

void *mthca_array_get(struct mthca_array *array, int index)
{
	int p = (index * sizeof (void *)) >> PAGE_SHIFT;

	if (array->page_list[p].page)
		return array->page_list[p].page[index & MTHCA_ARRAY_MASK];
	else
		return NULL;
}

int mthca_array_set(struct mthca_array *array, int index, void *value)
{
	int p = (index * sizeof (void *)) >> PAGE_SHIFT;

	/* Allocate with GFP_ATOMIC because we'll be called with locks held. */
	if (!array->page_list[p].page)
		array->page_list[p].page = (void **) get_zeroed_page(GFP_ATOMIC);

	if (!array->page_list[p].page)
		return -ENOMEM;

	array->page_list[p].page[index & MTHCA_ARRAY_MASK] = value;
	++array->page_list[p].used;

	return 0;
}

void mthca_array_clear(struct mthca_array *array, int index)
{
	int p = (index * sizeof (void *)) >> PAGE_SHIFT;

	if (--array->page_list[p].used == 0) {
		free_page((unsigned long) array->page_list[p].page);
		array->page_list[p].page = NULL;
	} else
		array->page_list[p].page[index & MTHCA_ARRAY_MASK] = NULL;

	if (array->page_list[p].used < 0)
		pr_debug("Array %p index %d page %d with ref count %d < 0\n",
			 array, index, p, array->page_list[p].used);
}

int mthca_array_init(struct mthca_array *array, int nent)
{
	int npage = (nent * sizeof (void *) + PAGE_SIZE - 1) / PAGE_SIZE;
	int i;

	array->page_list = kmalloc_array(npage, sizeof(*array->page_list),
					 GFP_KERNEL);
	if (!array->page_list)
		return -ENOMEM;

	for (i = 0; i < npage; ++i) {
		array->page_list[i].page = NULL;
		array->page_list[i].used = 0;
	}

	return 0;
}

void mthca_array_cleanup(struct mthca_array *array, int nent)
{
	int i;

	for (i = 0; i < (nent * sizeof (void *) + PAGE_SIZE - 1) / PAGE_SIZE; ++i)
		free_page((unsigned long) array->page_list[i].page);

	kfree(array->page_list);
}

/*
 * Handling for queue buffers -- we allocate a bunch of memory and
 * register it in a memory region at HCA virtual address 0.  If the
 * requested size is > max_direct, we split the allocation into
 * multiple pages, so we don't require too much contiguous memory.
 */

int mthca_buf_alloc(struct mthca_dev *dev, int size, int max_direct,
		    union mthca_buf *buf, int *is_direct, struct mthca_pd *pd,
		    int hca_write, struct mthca_mr *mr)
{
	int err = -ENOMEM;
	int npages, shift;
	u64 *dma_list = NULL;
	dma_addr_t t;
	int i;

	if (size <= max_direct) {
		*is_direct = 1;
		npages     = 1;
		shift      = get_order(size) + PAGE_SHIFT;

		buf->direct.buf = dma_alloc_coherent(&dev->pdev->dev,
						     size, &t, GFP_KERNEL);
		if (!buf->direct.buf)
			return -ENOMEM;

		dma_unmap_addr_set(&buf->direct, mapping, t);

		while (t & ((1 << shift) - 1)) {
			--shift;
			npages *= 2;
		}

		dma_list = kmalloc_array(npages, sizeof(*dma_list),
					 GFP_KERNEL);
		if (!dma_list)
			goto err_free;

		for (i = 0; i < npages; ++i)
			dma_list[i] = t + i * (1 << shift);
	} else {
		*is_direct = 0;
		npages     = (size + PAGE_SIZE - 1) / PAGE_SIZE;
		shift      = PAGE_SHIFT;

		dma_list = kmalloc_array(npages, sizeof(*dma_list),
					 GFP_KERNEL);
		if (!dma_list)
			return -ENOMEM;

		buf->page_list = kmalloc_array(npages,
					       sizeof(*buf->page_list),
					       GFP_KERNEL);
		if (!buf->page_list)
			goto err_out;

		for (i = 0; i < npages; ++i)
			buf->page_list[i].buf = NULL;

		for (i = 0; i < npages; ++i) {
			buf->page_list[i].buf =
				dma_alloc_coherent(&dev->pdev->dev, PAGE_SIZE,
						   &t, GFP_KERNEL);
			if (!buf->page_list[i].buf)
				goto err_free;

			dma_list[i] = t;
			dma_unmap_addr_set(&buf->page_list[i], mapping, t);

			clear_page(buf->page_list[i].buf);
		}
	}

	err = mthca_mr_alloc_phys(dev, pd->pd_num,
				  dma_list, shift, npages,
				  0, size,
				  MTHCA_MPT_FLAG_LOCAL_READ |
				  (hca_write ? MTHCA_MPT_FLAG_LOCAL_WRITE : 0),
				  mr);
	if (err)
		goto err_free;

	kfree(dma_list);

	return 0;

err_free:
	mthca_buf_free(dev, size, buf, *is_direct, NULL);

err_out:
	kfree(dma_list);

	return err;
}

void mthca_buf_free(struct mthca_dev *dev, int size, union mthca_buf *buf,
		    int is_direct, struct mthca_mr *mr)
{
	int i;

	if (mr)
		mthca_free_mr(dev, mr);

	if (is_direct)
		dma_free_coherent(&dev->pdev->dev, size, buf->direct.buf,
				  dma_unmap_addr(&buf->direct, mapping));
	else {
		for (i = 0; i < (size + PAGE_SIZE - 1) / PAGE_SIZE; ++i)
			dma_free_coherent(&dev->pdev->dev, PAGE_SIZE,
					  buf->page_list[i].buf,
					  dma_unmap_addr(&buf->page_list[i],
							 mapping));
		kfree(buf->page_list);
	}
}