/*
* Copyright (c) 2013-2015, Mellanox Technologies. All rights reserved.
* Copyright (c) 2020, Intel Corporation. All rights reserved.
*
* This software is available to you under a choice of one of two
* licenses. You may choose to be licensed under the terms of the GNU
* General Public License (GPL) Version 2, available from the file
* COPYING in the main directory of this source tree, or the
* OpenIB.org BSD license below:
*
* Redistribution and use in source and binary forms, with or
* without modification, are permitted provided that the following
* conditions are met:
*
* - Redistributions of source code must retain the above
* copyright notice, this list of conditions and the following
* disclaimer.
*
* - Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials
* provided with the distribution.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include <linux/kref.h>
#include <linux/random.h>
#include <linux/debugfs.h>
#include <linux/export.h>
#include <linux/delay.h>
#include <linux/dma-buf.h>
#include <linux/dma-resv.h>
#include <rdma/ib_umem_odp.h>
#include "dm.h"
#include "mlx5_ib.h"
#include "umr.h"
#include "data_direct.h"
enum {
MAX_PENDING_REG_MR = 8,
};
#define MLX5_MR_CACHE_PERSISTENT_ENTRY_MIN_DESCS 4
#define MLX5_UMR_ALIGN 2048
static void
create_mkey_callback(int status, struct mlx5_async_work *context);
static struct mlx5_ib_mr *reg_create(struct ib_pd *pd, struct ib_umem *umem,
u64 iova, int access_flags,
unsigned int page_size, bool populate,
int access_mode);
static int __mlx5_ib_dereg_mr(struct ib_mr *ibmr);
static void set_mkc_access_pd_addr_fields(void *mkc, int acc, u64 start_addr,
struct ib_pd *pd)
{
struct mlx5_ib_dev *dev = to_mdev(pd->device);
MLX5_SET(mkc, mkc, a, !!(acc & IB_ACCESS_REMOTE_ATOMIC));
MLX5_SET(mkc, mkc, rw, !!(acc & IB_ACCESS_REMOTE_WRITE));
MLX5_SET(mkc, mkc, rr, !!(acc & IB_ACCESS_REMOTE_READ));
MLX5_SET(mkc, mkc, lw, !!(acc & IB_ACCESS_LOCAL_WRITE));
MLX5_SET(mkc, mkc, lr, 1);
if (acc & IB_ACCESS_RELAXED_ORDERING) {
if (MLX5_CAP_GEN(dev->mdev, relaxed_ordering_write))
MLX5_SET(mkc, mkc, relaxed_ordering_write, 1);
if (MLX5_CAP_GEN(dev->mdev, relaxed_ordering_read) ||
(MLX5_CAP_GEN(dev->mdev,
relaxed_ordering_read_pci_enabled) &&
pcie_relaxed_ordering_enabled(dev->mdev->pdev)))
MLX5_SET(mkc, mkc, relaxed_ordering_read, 1);
}
MLX5_SET(mkc, mkc, pd, to_mpd(pd)->pdn);
MLX5_SET(mkc, mkc, qpn, 0xffffff);
MLX5_SET64(mkc, mkc, start_addr, start_addr);
}
static void assign_mkey_variant(struct mlx5_ib_dev *dev, u32 *mkey, u32 *in)
{
u8 key = atomic_inc_return(&dev->mkey_var);
void *mkc;
mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry);
MLX5_SET(mkc, mkc, mkey_7_0, key);
*mkey = key;
}
static int mlx5_ib_create_mkey(struct mlx5_ib_dev *dev,
struct mlx5_ib_mkey *mkey, u32 *in, int inlen)
{
int ret;
assign_mkey_variant(dev, &mkey->key, in);
ret = mlx5_core_create_mkey(dev->mdev, &mkey->key, in, inlen);
if (!ret)
init_waitqueue_head(&mkey->wait);
return ret;
}
static int mlx5_ib_create_mkey_cb(struct mlx5r_async_create_mkey *async_create)
{
struct mlx5_ib_dev *dev = async_create->ent->dev;
size_t inlen = MLX5_ST_SZ_BYTES(create_mkey_in);
size_t outlen = MLX5_ST_SZ_BYTES(create_mkey_out);
MLX5_SET(create_mkey_in, async_create->in, opcode,
MLX5_CMD_OP_CREATE_MKEY);
assign_mkey_variant(dev, &async_create->mkey, async_create->in);
return mlx5_cmd_exec_cb(&dev->async_ctx, async_create->in, inlen,
async_create->out, outlen, create_mkey_callback,
&async_create->cb_work);
}
static int mkey_cache_max_order(struct mlx5_ib_dev *dev);
static void queue_adjust_cache_locked(struct mlx5_cache_ent *ent);
static int destroy_mkey(struct mlx5_ib_dev *dev, struct mlx5_ib_mr *mr)
{
WARN_ON(xa_load(&dev->odp_mkeys, mlx5_base_mkey(mr->mmkey.key)));
return mlx5_core_destroy_mkey(dev->mdev, mr->mmkey.key);
}
static void create_mkey_warn(struct mlx5_ib_dev *dev, int status, void *out)
{
if (status == -ENXIO) /* core driver is not available */
return;
mlx5_ib_warn(dev, "async reg mr failed. status %d\n", status);
if (status != -EREMOTEIO) /* driver specific failure */
return;
/* Failed in FW, print cmd out failure details */
mlx5_cmd_out_err(dev->mdev, MLX5_CMD_OP_CREATE_MKEY, 0, out);
}
static int push_mkey_locked(struct mlx5_cache_ent *ent, u32 mkey)
{
unsigned long tmp = ent->mkeys_queue.ci % NUM_MKEYS_PER_PAGE;
struct mlx5_mkeys_page *page;
lockdep_assert_held(&ent->mkeys_queue.lock);
if (ent->mkeys_queue.ci >=
ent->mkeys_queue.num_pages * NUM_MKEYS_PER_PAGE) {
page = kzalloc(sizeof(*page), GFP_ATOMIC);
if (!page)
return -ENOMEM;
ent->mkeys_queue.num_pages++;
list_add_tail(&page->list, &ent->mkeys_queue.pages_list);
} else {
page = list_last_entry(&ent->mkeys_queue.pages_list,
struct mlx5_mkeys_page, list);
}
page->mkeys[tmp] = mkey;
ent->mkeys_queue.ci++;
return 0;
}
static int pop_mkey_locked(struct mlx5_cache_ent *ent)
{
unsigned long tmp = (ent->mkeys_queue.ci - 1) % NUM_MKEYS_PER_PAGE;
struct mlx5_mkeys_page *last_page;
u32 mkey;
lockdep_assert_held(&ent->mkeys_queue.lock);
last_page = list_last_entry(&ent->mkeys_queue.pages_list,
struct mlx5_mkeys_page, list);
mkey = last_page->mkeys[tmp];
last_page->mkeys[tmp] = 0;
ent->mkeys_queue.ci--;
if (ent->mkeys_queue.num_pages > 1 && !tmp) {
list_del(&last_page->list);
ent->mkeys_queue.num_pages--;
kfree(last_page);
}
return mkey;
}
static void create_mkey_callback(int status, struct mlx5_async_work *context)
{
struct mlx5r_async_create_mkey *mkey_out =
container_of(context, struct mlx5r_async_create_mkey, cb_work);
struct mlx5_cache_ent *ent = mkey_out->ent;
struct mlx5_ib_dev *dev = ent->dev;
unsigned long flags;
if (status) {
create_mkey_warn(dev, status, mkey_out->out);
kfree(mkey_out);
spin_lock_irqsave(&ent->mkeys_queue.lock, flags);
ent->pending--;
WRITE_ONCE(dev->fill_delay, 1);
spin_unlock_irqrestore(&ent->mkeys_queue.lock, flags);
mod_timer(&dev->delay_timer, jiffies + HZ);
return;
}
mkey_out->mkey |= mlx5_idx_to_mkey(
MLX5_GET(create_mkey_out, mkey_out->out, mkey_index));
WRITE_ONCE(dev->cache.last_add, jiffies);
spin_lock_irqsave(&ent->mkeys_queue.lock, flags);
push_mkey_locked(ent, mkey_out->mkey);
ent->pending--;
/* If we are doing fill_to_high_water then keep going. */
queue_adjust_cache_locked(ent);
spin_unlock_irqrestore(&ent->mkeys_queue.lock, flags);
kfree(mkey_out);
}
static int get_mkc_octo_size(unsigned int access_mode, unsigned int ndescs)
{
int ret = 0;
switch (access_mode) {
case MLX5_MKC_ACCESS_MODE_MTT:
ret = DIV_ROUND_UP(ndescs, MLX5_IB_UMR_OCTOWORD /
sizeof(struct mlx5_mtt));
break;
case MLX5_MKC_ACCESS_MODE_KSM:
ret = DIV_ROUND_UP(ndescs, MLX5_IB_UMR_OCTOWORD /
sizeof(struct mlx5_klm));
break;
default:
WARN_ON(1);
}
return ret;
}
static void set_cache_mkc(struct mlx5_cache_ent *ent, void *mkc)
{
set_mkc_access_pd_addr_fields(mkc, ent->rb_key.access_flags, 0,
ent->dev->umrc.pd);
MLX5_SET(mkc, mkc, free, 1);
MLX5_SET(mkc, mkc, umr_en, 1);
MLX5_SET(mkc, mkc, access_mode_1_0, ent->rb_key.access_mode & 0x3);
MLX5_SET(mkc, mkc, access_mode_4_2,
(ent->rb_key.access_mode >> 2) & 0x7);
MLX5_SET(mkc, mkc, ma_translation_mode, !!ent->rb_key.ats);
MLX5_SET(mkc, mkc, translations_octword_size,
get_mkc_octo_size(ent->rb_key.access_mode,
ent->rb_key.ndescs));
MLX5_SET(mkc, mkc, log_page_size, PAGE_SHIFT);
}
/* Asynchronously schedule new MRs to be populated in the cache. */
static int add_keys(struct mlx5_cache_ent *ent, unsigned int num)
{
struct mlx5r_async_create_mkey *async_create;
void *mkc;
int err = 0;
int i;
for (i = 0; i < num; i++) {
async_create = kzalloc(sizeof(struct mlx5r_async_create_mkey),
GFP_KERNEL);
if (!async_create)
return -ENOMEM;
mkc = MLX5_ADDR_OF(create_mkey_in, async_create->in,
memory_key_mkey_entry);
set_cache_mkc(ent, mkc);
async_create->ent = ent;
spin_lock_irq(&ent->mkeys_queue.lock);
if (ent->pending >= MAX_PENDING_REG_MR) {
err = -EAGAIN;
goto free_async_create;
}
ent->pending++;
spin_unlock_irq(&ent->mkeys_queue.lock);
err = mlx5_ib_create_mkey_cb(async_create);
if (err) {
mlx5_ib_warn(ent->dev, "create mkey failed %d\n", err);
goto err_create_mkey;
}
}
return 0;
err_create_mkey:
spin_lock_irq(&ent->mkeys_queue.lock);
ent->pending--;
free_async_create:
spin_unlock_irq(&ent->mkeys_queue.lock);
kfree(async_create);
return err;
}
/* Synchronously create a MR in the cache */
static int create_cache_mkey(struct mlx5_cache_ent *ent, u32 *mkey)
{
size_t inlen = MLX5_ST_SZ_BYTES(create_mkey_in);
void *mkc;
u32 *in;
int err;
in = kzalloc(inlen, GFP_KERNEL);
if (!in)
return -ENOMEM;
mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry);
set_cache_mkc(ent, mkc);
err = mlx5_core_create_mkey(ent->dev->mdev, mkey, in, inlen);
if (err)
goto free_in;
WRITE_ONCE(ent->dev->cache.last_add, jiffies);
free_in:
kfree(in);
return err;
}
static void remove_cache_mr_locked(struct mlx5_cache_ent *ent)
{
u32 mkey;
lockdep_assert_held(&ent->mkeys_queue.lock);
if (!ent->mkeys_queue.ci)
return;
mkey = pop_mkey_locked(ent);
spin_unlock_irq(&ent->mkeys_queue.lock);
mlx5_core_destroy_mkey(ent->dev->mdev, mkey);
spin_lock_irq(&ent->mkeys_queue.lock);
}
static int resize_available_mrs(struct mlx5_cache_ent *ent, unsigned int target,
bool limit_fill)
__acquires(&ent->mkeys_queue.lock) __releases(&ent->mkeys_queue.lock)
{
int err;
lockdep_assert_held(&ent->mkeys_queue.lock);
while (true) {
if (limit_fill)
target = ent->limit * 2;
if (target == ent->pending + ent->mkeys_queue.ci)
return 0;
if (target > ent->pending + ent->mkeys_queue.ci) {
u32 todo = target - (ent->pending + ent->mkeys_queue.ci);
spin_unlock_irq(&ent->mkeys_queue.lock);
err = add_keys(ent, todo);
if (err == -EAGAIN)
usleep_range(3000, 5000);
spin_lock_irq(&ent->mkeys_queue.lock);
if (err) {
if (err != -EAGAIN)
return err;
} else
return 0;
} else {
remove_cache_mr_locked(ent);
}
}
}
static ssize_t size_write(struct file *filp, const char __user *buf,
size_t count, loff_t *pos)
{
struct mlx5_cache_ent *ent = filp->private_data;
u32 target;
int err;
err = kstrtou32_from_user(buf, count, 0, &target);
if (err)
return err;
/*
* Target is the new value of total_mrs the user requests, however we
* cannot free MRs that are in use. Compute the target value for stored
* mkeys.
*/
spin_lock_irq(&ent->mkeys_queue.lock);
if (target < ent->in_use) {
err = -EINVAL;
goto err_unlock;
}
target = target - ent->in_use;
if (target < ent->limit || target > ent->limit*2) {
err = -EINVAL;
goto err_unlock;
}
err = resize_available_mrs(ent, target, false);
if (err)
goto err_unlock;
spin_unlock_irq(&ent->mkeys_queue.lock);
return count;
err_unlock:
spin_unlock_irq(&ent->mkeys_queue.lock);
return err;
}
static ssize_t size_read(struct file *filp, char __user *buf, size_t count,
loff_t *pos)
{
struct mlx5_cache_ent *ent = filp->private_data;
char lbuf[20];
int err;
err = snprintf(lbuf, sizeof(lbuf), "%ld\n",
ent->mkeys_queue.ci + ent->in_use);
if (err < 0)
return err;
return simple_read_from_buffer(buf, count, pos, lbuf, err);
}
static const struct file_operations size_fops = {
.owner = THIS_MODULE,
.open = simple_open,
.write = size_write,
.read = size_read,
};
static ssize_t limit_write(struct file *filp, const char __user *buf,
size_t count, loff_t *pos)
{
struct mlx5_cache_ent *ent = filp->private_data;
u32 var;
int err;
err = kstrtou32_from_user(buf, count, 0, &var);
if (err)
return err;
/*
* Upon set we immediately fill the cache to high water mark implied by
* the limit.
*/
spin_lock_irq(&ent->mkeys_queue.lock);
ent->limit = var;
err = resize_available_mrs(ent, 0, true);
spin_unlock_irq(&ent->mkeys_queue.lock);
if (err)
return err;
return count;
}
static ssize_t limit_read(struct file *filp, char __user *buf, size_t count,
loff_t *pos)
{
struct mlx5_cache_ent *ent = filp->private_data;
char lbuf[20];
int err;
err = snprintf(lbuf, sizeof(lbuf), "%d\n", ent->limit);
if (err < 0)
return err;
return simple_read_from_buffer(buf, count, pos, lbuf, err);
}
static const struct file_operations limit_fops = {
.owner = THIS_MODULE,
.open = simple_open,
.write = limit_write,
.read = limit_read,
};
static bool someone_adding(struct mlx5_mkey_cache *cache)
{
struct mlx5_cache_ent *ent;
struct rb_node *node;
bool ret;
mutex_lock(&cache->rb_lock);
for (node = rb_first(&cache->rb_root); node; node = rb_next(node)) {
ent = rb_entry(node, struct mlx5_cache_ent, node);
spin_lock_irq(&ent->mkeys_queue.lock);
ret = ent->mkeys_queue.ci < ent->limit;
spin_unlock_irq(&ent->mkeys_queue.lock);
if (ret) {
mutex_unlock(&cache->rb_lock);
return true;
}
}
mutex_unlock(&cache->rb_lock);
return false;
}
/*
* Check if the bucket is outside the high/low water mark and schedule an async
* update. The cache refill has hysteresis, once the low water mark is hit it is
* refilled up to the high mark.
*/
static void queue_adjust_cache_locked(struct mlx5_cache_ent *ent)
{
lockdep_assert_held(&ent->mkeys_queue.lock);
if (ent->disabled || READ_ONCE(ent->dev->fill_delay) || ent->is_tmp)
return;
if (ent->mkeys_queue.ci < ent->limit) {
ent->fill_to_high_water = true;
mod_delayed_work(ent->dev->cache.wq, &ent->dwork, 0);
} else if (ent->fill_to_high_water &&
ent->mkeys_queue.ci + ent->pending < 2 * ent->limit) {
/*
* Once we start populating due to hitting a low water mark
* continue until we pass the high water mark.
*/
mod_delayed_work(ent->dev->cache.wq, &ent->dwork, 0);
} else if (ent->mkeys_queue.ci == 2 * ent->limit) {
ent->fill_to_high_water = false;
} else if (ent->mkeys_queue.ci > 2 * ent->limit) {
/* Queue deletion of excess entries */
ent->fill_to_high_water = false;
if (ent->pending)
queue_delayed_work(ent->dev->cache.wq, &ent->dwork,
msecs_to_jiffies(1000));
else
mod_delayed_work(ent->dev->cache.wq, &ent->dwork, 0);
}
}
static void clean_keys(struct mlx5_ib_dev *dev, struct mlx5_cache_ent *ent)
{
u32 mkey;
spin_lock_irq(&ent->mkeys_queue.lock);
while (ent->mkeys_queue.ci) {
mkey = pop_mkey_locked(ent);
spin_unlock_irq(&ent->mkeys_queue.lock);
mlx5_core_destroy_mkey(dev->mdev, mkey);
spin_lock_irq(&ent->mkeys_queue.lock);
}
ent->tmp_cleanup_scheduled = false;
spin_unlock_irq(&ent->mkeys_queue.lock);
}
static void __cache_work_func(struct mlx5_cache_ent *ent)
{
struct mlx5_ib_dev *dev = ent->dev;
struct mlx5_mkey_cache *cache = &dev->cache;
int err;
spin_lock_irq(&ent->mkeys_queue.lock);
if (ent->disabled)
goto out;
if (ent->fill_to_high_water &&
ent->mkeys_queue.ci + ent->pending < 2 * ent->limit &&
!READ_ONCE(dev->fill_delay)) {
spin_unlock_irq(&ent->mkeys_queue.lock);
err = add_keys(ent, 1);
spin_lock_irq(&ent->mkeys_queue.lock);
if (ent->disabled)
goto out;
if (err) {
/*
* EAGAIN only happens if there are pending MRs, so we
* will be rescheduled when storing them. The only
* failure path here is ENOMEM.
*/
if (err != -EAGAIN) {
mlx5_ib_warn(
dev,
"add keys command failed, err %d\n",
err);
queue_delayed_work(cache->wq, &ent->dwork,
msecs_to_jiffies(1000));
}
}
} else if (ent->mkeys_queue.ci > 2 * ent->limit) {
bool need_delay;
/*
* The remove_cache_mr() logic is performed as garbage
* collection task. Such task is intended to be run when no
* other active processes are running.
*
* The need_resched() will return TRUE if there are user tasks
* to be activated in near future.
*
* In such case, we don't execute remove_cache_mr() and postpone
* the garbage collection work to try to run in next cycle, in
* order to free CPU resources to other tasks.
*/
spin_unlock_irq(&ent->mkeys_queue.lock);
need_delay = need_resched() || someone_adding(cache) ||
!time_after(jiffies,
READ_ONCE(cache->last_add) + 300 * HZ);
spin_lock_irq(&ent->mkeys_queue.lock);
if (ent->disabled)
goto out;
if (need_delay) {
queue_delayed_work(cache->wq, &ent->dwork, 300 * HZ);
goto out;
}
remove_cache_mr_locked(ent);
queue_adjust_cache_locked(ent);
}
out:
spin_unlock_irq(&ent->mkeys_queue.lock);
}
static void delayed_cache_work_func(struct work_struct *work)
{
struct mlx5_cache_ent *ent;
ent = container_of(work, struct mlx5_cache_ent, dwork.work);
/* temp entries are never filled, only cleaned */
if (ent->is_tmp)
clean_keys(ent->dev, ent);
else
__cache_work_func(ent);
}
static int cache_ent_key_cmp(struct mlx5r_cache_rb_key key1,
struct mlx5r_cache_rb_key key2)
{
int res;
res = key1.ats - key2.ats;
if (res)
return res;
res = key1.access_mode - key2.access_mode;
if (res)
return res;
res = key1.access_flags - key2.access_flags;
if (res)
return res;
/*
* keep ndescs the last in the compare table since the find function
* searches for an exact match on all properties and only closest
* match in size.
*/
return key1.ndescs - key2.ndescs;
}
static int mlx5_cache_ent_insert(struct mlx5_mkey_cache *cache,
struct mlx5_cache_ent *ent)
{
struct rb_node **new = &cache->rb_root.rb_node, *parent = NULL;
struct mlx5_cache_ent *cur;
int cmp;
/* Figure out where to put new node */
while (*new) {
cur = rb_entry(*new, struct mlx5_cache_ent, node);
parent = *new;
cmp = cache_ent_key_cmp(cur->rb_key, ent->rb_key);
if (cmp > 0)
new = &((*new)->rb_left);
if (cmp < 0)
new = &((*new)->rb_right);
if (cmp == 0)
return -EEXIST;
}
/* Add new node and rebalance tree. */
rb_link_node(&ent->node, parent, new);
rb_insert_color(&ent->node, &cache->rb_root);
return 0;
}
static struct mlx5_cache_ent *
mkey_cache_ent_from_rb_key(struct mlx5_ib_dev *dev,
struct mlx5r_cache_rb_key rb_key)
{
struct rb_node *node = dev->cache.rb_root.rb_node;
struct mlx5_cache_ent *cur, *smallest = NULL;
u64 ndescs_limit;
int cmp;
/*
* Find the smallest ent with order >= requested_order.
*/
while (node) {
cur = rb_entry(node, struct mlx5_cache_ent, node);
cmp = cache_ent_key_cmp(cur->rb_key, rb_key);
if (cmp > 0) {
smallest = cur;
node = node->rb_left;
}
if (cmp < 0)
node = node->rb_right;
if (cmp == 0)
return cur;
}
/*
* Limit the usage of mkeys larger than twice the required size while
* also allowing the usage of smallest cache entry for small MRs.
*/
ndescs_limit = max_t(u64, rb_key.ndescs * 2,
MLX5_MR_CACHE_PERSISTENT_ENTRY_MIN_DESCS);
return (smallest &&
smallest->rb_key.access_mode == rb_key.access_mode &&
smallest->rb_key.access_flags == rb_key.access_flags &&
smallest->rb_key.ats == rb_key.ats &&
smallest->rb_key.ndescs <= ndescs_limit) ?
smallest :
NULL;
}
static struct mlx5_ib_mr *_mlx5_mr_cache_alloc(struct mlx5_ib_dev *dev,
struct mlx5_cache_ent *ent,
int access_flags)
{
struct mlx5_ib_mr *mr;
int err;
mr = kzalloc(sizeof(*mr), GFP_KERNEL);
if (!mr)
return ERR_PTR(-ENOMEM);
spin_lock_irq(&ent->mkeys_queue.lock);
ent->in_use++;
if (!ent->mkeys_queue.ci) {
queue_adjust_cache_locked(ent);
ent->miss++;
spin_unlock_irq(&ent->mkeys_queue.lock);
err = create_cache_mkey(ent, &mr->mmkey.key);
if (err) {
spin_lock_irq(&ent->mkeys_queue.lock);
ent->in_use--;
spin_unlock_irq(&ent->mkeys_queue.lock);
kfree(mr);
return ERR_PTR(err);
}
} else {
mr->mmkey.key = pop_mkey_locked(ent);
queue_adjust_cache_locked(ent);
spin_unlock_irq(&ent->mkeys_queue.lock);
}
mr->mmkey.cache_ent = ent;
mr->mmkey.type = MLX5_MKEY_MR;
mr->mmkey.rb_key = ent->rb_key;
mr->mmkey.cacheable = true;
init_waitqueue_head(&mr->mmkey.wait);
return mr;
}
static int get_unchangeable_access_flags(struct mlx5_ib_dev *dev,
int access_flags)
{
int ret = 0;
if ((access_flags & IB_ACCESS_REMOTE_ATOMIC) &&
MLX5_CAP_GEN(dev->mdev, atomic) &&
MLX5_CAP_GEN(dev->mdev, umr_modify_atomic_disabled))
ret |= IB_ACCESS_REMOTE_ATOMIC;
if ((access_flags & IB_ACCESS_RELAXED_ORDERING) &&
MLX5_CAP_GEN(dev->mdev, relaxed_ordering_write) &&
!MLX5_CAP_GEN(dev->mdev, relaxed_ordering_write_umr))
ret |= IB_ACCESS_RELAXED_ORDERING;
if ((access_flags & IB_ACCESS_RELAXED_ORDERING) &&
(MLX5_CAP_GEN(dev->mdev, relaxed_ordering_read) ||
MLX5_CAP_GEN(dev->mdev, relaxed_ordering_read_pci_enabled)) &&
!MLX5_CAP_GEN(dev->mdev, relaxed_ordering_read_umr))
ret |= IB_ACCESS_RELAXED_ORDERING;
return ret;
}
struct mlx5_ib_mr *mlx5_mr_cache_alloc(struct mlx5_ib_dev *dev,
int access_flags, int access_mode,
int ndescs)
{
struct mlx5r_cache_rb_key rb_key = {
.ndescs = ndescs,
.access_mode = access_mode,
.access_flags = get_unchangeable_access_flags(dev, access_flags)
};
struct mlx5_cache_ent *ent = mkey_cache_ent_from_rb_key(dev, rb_key);
if (!ent)
return ERR_PTR(-EOPNOTSUPP);
return _mlx5_mr_cache_alloc(dev, ent, access_flags);
}
static void mlx5_mkey_cache_debugfs_cleanup(struct mlx5_ib_dev *dev)
{
if (!mlx5_debugfs_root || dev->is_rep)
return;
debugfs_remove_recursive(dev->cache.fs_root);
dev->cache.fs_root = NULL;
}
static void mlx5_mkey_cache_debugfs_add_ent(struct mlx5_ib_dev *dev,
struct mlx5_cache_ent *ent)
{
int order = order_base_2(ent->rb_key.ndescs);
struct dentry *dir;
if (!mlx5_debugfs_root || dev->is_rep)
return;
if (ent->rb_key.access_mode == MLX5_MKC_ACCESS_MODE_KSM)
order = MLX5_IMR_KSM_CACHE_ENTRY + 2;
sprintf(ent->name, "%d", order);
dir = debugfs_create_dir(ent->name, dev->cache.fs_root);
debugfs_create_file("size", 0600, dir, ent, &size_fops);
debugfs_create_file("limit", 0600, dir, ent, &limit_fops);
debugfs_create_ulong("cur", 0400, dir, &ent->mkeys_queue.ci);
debugfs_create_u32("miss", 0600, dir, &ent->miss);
}
static void mlx5_mkey_cache_debugfs_init(struct mlx5_ib_dev *dev)
{
struct dentry *dbg_root = mlx5_debugfs_get_dev_root(dev->mdev);
struct mlx5_mkey_cache *cache = &dev->cache;
if (!mlx5_debugfs_root || dev->is_rep)
return;
cache->fs_root = debugfs_create_dir("mr_cache", dbg_root);
}
static void delay_time_func(struct timer_list *t)
{
struct mlx5_ib_dev *dev = from_timer(dev, t, delay_timer);
WRITE_ONCE(dev->fill_delay, 0);
}
static int mlx5r_mkeys_init(struct mlx5_cache_ent *ent)
{
struct mlx5_mkeys_page *page;
page = kzalloc(sizeof(*page), GFP_KERNEL);
if (!page)
return -ENOMEM;
INIT_LIST_HEAD(&ent->mkeys_queue.pages_list);
spin_lock_init(&ent->mkeys_queue.lock);
list_add_tail(&page->list, &ent->mkeys_queue.pages_list);
ent->mkeys_queue.num_pages++;
return 0;
}
static void mlx5r_mkeys_uninit(struct mlx5_cache_ent *ent)
{
struct mlx5_mkeys_page *page;
WARN_ON(ent->mkeys_queue.ci || ent->mkeys_queue.num_pages > 1);
page = list_last_entry(&ent->mkeys_queue.pages_list,
struct mlx5_mkeys_page, list);
list_del(&page->list);
kfree(page);
}
struct mlx5_cache_ent *
mlx5r_cache_create_ent_locked(struct mlx5_ib_dev *dev,
struct mlx5r_cache_rb_key rb_key,
bool persistent_entry)
{
struct mlx5_cache_ent *ent;
int order;
int ret;
ent = kzalloc(sizeof(*ent), GFP_KERNEL);
if (!ent)
return ERR_PTR(-ENOMEM);
ret = mlx5r_mkeys_init(ent);
if (ret)
goto mkeys_err;
ent->rb_key = rb_key;
ent->dev = dev;
ent->is_tmp = !persistent_entry;
INIT_DELAYED_WORK(&ent->dwork, delayed_cache_work_func);
ret = mlx5_cache_ent_insert(&dev->cache, ent);
if (ret)
goto ent_insert_err;
if (persistent_entry) {
if (rb_key.access_mode == MLX5_MKC_ACCESS_MODE_KSM)
order = MLX5_IMR_KSM_CACHE_ENTRY;
else
order = order_base_2(rb_key.ndescs) - 2;
if ((dev->mdev->profile.mask & MLX5_PROF_MASK_MR_CACHE) &&
!dev->is_rep && mlx5_core_is_pf(dev->mdev) &&
mlx5r_umr_can_load_pas(dev, 0))
ent->limit = dev->mdev->profile.mr_cache[order].limit;
else
ent->limit = 0;
mlx5_mkey_cache_debugfs_add_ent(dev, ent);
}
return ent;
ent_insert_err:
mlx5r_mkeys_uninit(ent);
mkeys_err:
kfree(ent);
return ERR_PTR(ret);
}
int mlx5_mkey_cache_init(struct mlx5_ib_dev *dev)
{
struct mlx5_mkey_cache *cache = &dev->cache;
struct rb_root *root = &dev->cache.rb_root;
struct mlx5r_cache_rb_key rb_key = {
.access_mode = MLX5_MKC_ACCESS_MODE_MTT,
};
struct mlx5_cache_ent *ent;
struct rb_node *node;
int ret;
int i;
mutex_init(&dev->slow_path_mutex);
mutex_init(&dev->cache.rb_lock);
dev->cache.rb_root = RB_ROOT;
cache->wq = alloc_ordered_workqueue("mkey_cache", WQ_MEM_RECLAIM);
if (!cache->wq) {
mlx5_ib_warn(dev, "failed to create work queue\n");
return -ENOMEM;
}
mlx5_cmd_init_async_ctx(dev->mdev, &dev->async_ctx);
timer_setup(&dev->delay_timer, delay_time_func, 0);
mlx5_mkey_cache_debugfs_init(dev);
mutex_lock(&cache->rb_lock);
for (i = 0; i <= mkey_cache_max_order(dev); i++) {
rb_key.ndescs = MLX5_MR_CACHE_PERSISTENT_ENTRY_MIN_DESCS << i;
ent = mlx5r_cache_create_ent_locked(dev, rb_key, true);
if (IS_ERR(ent)) {
ret = PTR_ERR(ent);
goto err;
}
}
ret = mlx5_odp_init_mkey_cache(dev);
if (ret)
goto err;
mutex_unlock(&cache->rb_lock);
for (node = rb_first(root); node; node = rb_next(node)) {
ent = rb_entry(node, struct mlx5_cache_ent, node);
spin_lock_irq(&ent->mkeys_queue.lock);
queue_adjust_cache_locked(ent);
spin_unlock_irq(&ent->mkeys_queue.lock);
}
return 0;
err:
mutex_unlock(&cache->rb_lock);
mlx5_mkey_cache_debugfs_cleanup(dev);
mlx5_ib_warn(dev, "failed to create mkey cache entry\n");
return ret;
}
void mlx5_mkey_cache_cleanup(struct mlx5_ib_dev *dev)
{
struct rb_root *root = &dev->cache.rb_root;
struct mlx5_cache_ent *ent;
struct rb_node *node;
if (!dev->cache.wq)
return;
mutex_lock(&dev->cache.rb_lock);
for (node = rb_first(root); node; node = rb_next(node)) {
ent = rb_entry(node, struct mlx5_cache_ent, node);
spin_lock_irq(&ent->mkeys_queue.lock);
ent->disabled = true;
spin_unlock_irq(&ent->mkeys_queue.lock);
cancel_delayed_work(&ent->dwork);
}
mutex_unlock(&dev->cache.rb_lock);
/*
* After all entries are disabled and will not reschedule on WQ,
* flush it and all async commands.
*/
flush_workqueue(dev->cache.wq);
mlx5_mkey_cache_debugfs_cleanup(dev);
mlx5_cmd_cleanup_async_ctx(&dev->async_ctx);
/* At this point all entries are disabled and have no concurrent work. */
mutex_lock(&dev->cache.rb_lock);
node = rb_first(root);
while (node) {
ent = rb_entry(node, struct mlx5_cache_ent, node);
node = rb_next(node);
clean_keys(dev, ent);
rb_erase(&ent->node, root);
mlx5r_mkeys_uninit(ent);
kfree(ent);
}
mutex_unlock(&dev->cache.rb_lock);
destroy_workqueue(dev->cache.wq);
del_timer_sync(&dev->delay_timer);
}
struct ib_mr *mlx5_ib_get_dma_mr(struct ib_pd *pd, int acc)
{
struct mlx5_ib_dev *dev = to_mdev(pd->device);
int inlen = MLX5_ST_SZ_BYTES(create_mkey_in);
struct mlx5_ib_mr *mr;
void *mkc;
u32 *in;
int err;
mr = kzalloc(sizeof(*mr), GFP_KERNEL);
if (!mr)
return ERR_PTR(-ENOMEM);
in = kzalloc(inlen, GFP_KERNEL);
if (!in) {
err = -ENOMEM;
goto err_free;
}
mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry);
MLX5_SET(mkc, mkc, access_mode_1_0, MLX5_MKC_ACCESS_MODE_PA);
MLX5_SET(mkc, mkc, length64, 1);
set_mkc_access_pd_addr_fields(mkc, acc | IB_ACCESS_RELAXED_ORDERING, 0,
pd);
MLX5_SET(mkc, mkc, ma_translation_mode, MLX5_CAP_GEN(dev->mdev, ats));
err = mlx5_ib_create_mkey(dev, &mr->mmkey, in, inlen);
if (err)
goto err_in;
kfree(in);
mr->mmkey.type = MLX5_MKEY_MR;
mr->ibmr.lkey = mr->mmkey.key;
mr->ibmr.rkey = mr->mmkey.key;
mr->umem = NULL;
return &mr->ibmr;
err_in:
kfree(in);
err_free:
kfree(mr);
return ERR_PTR(err);
}
static int get_octo_len(u64 addr, u64 len, int page_shift)
{
u64 page_size = 1ULL << page_shift;
u64 offset;
int npages;
offset = addr & (page_size - 1);
npages = ALIGN(len + offset, page_size) >> page_shift;
return (npages + 1) / 2;
}
static int mkey_cache_max_order(struct mlx5_ib_dev *dev)
{
if (MLX5_CAP_GEN(dev->mdev, umr_extended_translation_offset))
return MKEY_CACHE_LAST_STD_ENTRY;
return MLX5_MAX_UMR_SHIFT;
}
static void set_mr_fields(struct mlx5_ib_dev *dev, struct mlx5_ib_mr *mr,
u64 length, int access_flags, u64 iova)
{
mr->ibmr.lkey = mr->mmkey.key;
mr->ibmr.rkey = mr->mmkey.key;
mr->ibmr.length = length;
mr->ibmr.device = &dev->ib_dev;
mr->ibmr.iova = iova;
mr->access_flags = access_flags;
}
static unsigned int mlx5_umem_dmabuf_default_pgsz(struct ib_umem *umem,
u64 iova)
{
/*
* The alignment of iova has already been checked upon entering
* UVERBS_METHOD_REG_DMABUF_MR
*/
umem->iova = iova;
return PAGE_SIZE;
}
static struct mlx5_ib_mr *alloc_cacheable_mr(struct ib_pd *pd,
struct ib_umem *umem, u64 iova,
int access_flags, int access_mode)
{
struct mlx5_ib_dev *dev = to_mdev(pd->device);
struct mlx5r_cache_rb_key rb_key = {};
struct mlx5_cache_ent *ent;
struct mlx5_ib_mr *mr;
unsigned int page_size;
if (umem->is_dmabuf)
page_size = mlx5_umem_dmabuf_default_pgsz(umem, iova);
else
page_size = mlx5_umem_mkc_find_best_pgsz(dev, umem, iova);
if (WARN_ON(!page_size))
return ERR_PTR(-EINVAL);
rb_key.access_mode = access_mode;
rb_key.ndescs = ib_umem_num_dma_blocks(umem, page_size);
rb_key.ats = mlx5_umem_needs_ats(dev, umem, access_flags);
rb_key.access_flags = get_unchangeable_access_flags(dev, access_flags);
ent = mkey_cache_ent_from_rb_key(dev, rb_key);
/*
* If the MR can't come from the cache then synchronously create an uncached
* one.
*/
if (!ent) {
mutex_lock(&dev->slow_path_mutex);
mr = reg_create(pd, umem, iova, access_flags, page_size, false, access_mode);
mutex_unlock(&dev->slow_path_mutex);
if (IS_ERR(mr))
return mr;
mr->mmkey.rb_key = rb_key;
mr->mmkey.cacheable = true;
return mr;
}
mr = _mlx5_mr_cache_alloc(dev, ent, access_flags);
if (IS_ERR(mr))
return mr;
mr->ibmr.pd = pd;
mr->umem = umem;
mr->page_shift = order_base_2(page_size);
set_mr_fields(dev, mr, umem->length, access_flags, iova);
return mr;
}
static struct ib_mr *
reg_create_crossing_vhca_mr(struct ib_pd *pd, u64 iova, u64 length, int access_flags,
u32 crossed_lkey)
{
struct mlx5_ib_dev *dev = to_mdev(pd->device);
int access_mode = MLX5_MKC_ACCESS_MODE_CROSSING;
struct mlx5_ib_mr *mr;
void *mkc;
int inlen;
u32 *in;
int err;
if (!MLX5_CAP_GEN(dev->mdev, crossing_vhca_mkey))
return ERR_PTR(-EOPNOTSUPP);
mr = kzalloc(sizeof(*mr), GFP_KERNEL);
if (!mr)
return ERR_PTR(-ENOMEM);
inlen = MLX5_ST_SZ_BYTES(create_mkey_in);
in = kvzalloc(inlen, GFP_KERNEL);
if (!in) {
err = -ENOMEM;
goto err_1;
}
mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry);
MLX5_SET(mkc, mkc, crossing_target_vhca_id,
MLX5_CAP_GEN(dev->mdev, vhca_id));
MLX5_SET(mkc, mkc, translations_octword_size, crossed_lkey);
MLX5_SET(mkc, mkc, access_mode_1_0, access_mode & 0x3);
MLX5_SET(mkc, mkc, access_mode_4_2, (access_mode >> 2) & 0x7);
/* for this crossing mkey IOVA should be 0 and len should be IOVA + len */
set_mkc_access_pd_addr_fields(mkc, access_flags, 0, pd);
MLX5_SET64(mkc, mkc, len, iova + length);
MLX5_SET(mkc, mkc, free, 0);
MLX5_SET(mkc, mkc, umr_en, 0);
err = mlx5_ib_create_mkey(dev, &mr->mmkey, in, inlen);
if (err)
goto err_2;
mr->mmkey.type = MLX5_MKEY_MR;
set_mr_fields(dev, mr, length, access_flags, iova);
mr->ibmr.pd = pd;
kvfree(in);
mlx5_ib_dbg(dev, "crossing mkey = 0x%x\n", mr->mmkey.key);
return &mr->ibmr;
err_2:
kvfree(in);
err_1:
kfree(mr);
return ERR_PTR(err);
}
/*
* If ibmr is NULL it will be allocated by reg_create.
* Else, the given ibmr will be used.
*/
static struct mlx5_ib_mr *reg_create(struct ib_pd *pd, struct ib_umem *umem,
u64 iova, int access_flags,
unsigned int page_size, bool populate,
int access_mode)
{
struct mlx5_ib_dev *dev = to_mdev(pd->device);
struct mlx5_ib_mr *mr;
__be64 *pas;
void *mkc;
int inlen;
u32 *in;
int err;
bool pg_cap = !!(MLX5_CAP_GEN(dev->mdev, pg)) &&
(access_mode == MLX5_MKC_ACCESS_MODE_MTT);
bool ksm_mode = (access_mode == MLX5_MKC_ACCESS_MODE_KSM);
if (!page_size)
return ERR_PTR(-EINVAL);
mr = kzalloc(sizeof(*mr), GFP_KERNEL);
if (!mr)
return ERR_PTR(-ENOMEM);
mr->ibmr.pd = pd;
mr->access_flags = access_flags;
mr->page_shift = order_base_2(page_size);
inlen = MLX5_ST_SZ_BYTES(create_mkey_in);
if (populate)
inlen += sizeof(*pas) *
roundup(ib_umem_num_dma_blocks(umem, page_size), 2);
in = kvzalloc(inlen, GFP_KERNEL);
if (!in) {
err = -ENOMEM;
goto err_1;
}
pas = (__be64 *)MLX5_ADDR_OF(create_mkey_in, in, klm_pas_mtt);
if (populate) {
if (WARN_ON(access_flags & IB_ACCESS_ON_DEMAND || ksm_mode)) {
err = -EINVAL;
goto err_2;
}
mlx5_ib_populate_pas(umem, 1UL << mr->page_shift, pas,
pg_cap ? MLX5_IB_MTT_PRESENT : 0);
}
/* The pg_access bit allows setting the access flags
* in the page list submitted with the command.
*/
MLX5_SET(create_mkey_in, in, pg_access, !!(pg_cap));
mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry);
set_mkc_access_pd_addr_fields(mkc, access_flags, iova,
populate ? pd : dev->umrc.pd);
/* In case a data direct flow, overwrite the pdn field by its internal kernel PD */
if (umem->is_dmabuf && ksm_mode)
MLX5_SET(mkc, mkc, pd, dev->ddr.pdn);
MLX5_SET(mkc, mkc, free, !populate);
MLX5_SET(mkc, mkc, access_mode_1_0, access_mode);
MLX5_SET(mkc, mkc, umr_en, 1);
MLX5_SET64(mkc, mkc, len, umem->length);
MLX5_SET(mkc, mkc, bsf_octword_size, 0);
if (ksm_mode)
MLX5_SET(mkc, mkc, translations_octword_size,
get_octo_len(iova, umem->length, mr->page_shift) * 2);
else
MLX5_SET(mkc, mkc, translations_octword_size,
get_octo_len(iova, umem->length, mr->page_shift));
MLX5_SET(mkc, mkc, log_page_size, mr->page_shift);
if (mlx5_umem_needs_ats(dev, umem, access_flags))
MLX5_SET(mkc, mkc, ma_translation_mode, 1);
if (populate) {
MLX5_SET(create_mkey_in, in, translations_octword_actual_size,
get_octo_len(iova, umem->length, mr->page_shift));
}
err = mlx5_ib_create_mkey(dev, &mr->mmkey, in, inlen);
if (err) {
mlx5_ib_warn(dev, "create mkey failed\n");
goto err_2;
}
mr->mmkey.type = MLX5_MKEY_MR;
mr->mmkey.ndescs = get_octo_len(iova, umem->length, mr->page_shift);
mr->umem = umem;
set_mr_fields(dev, mr, umem->length, access_flags, iova);
kvfree(in);
mlx5_ib_dbg(dev, "mkey = 0x%x\n", mr->mmkey.key);
return mr;
err_2:
kvfree(in);
err_1:
kfree(mr);
return ERR_PTR(err);
}
static struct ib_mr *mlx5_ib_get_dm_mr(struct ib_pd *pd, u64 start_addr,
u64 length, int acc, int mode)
{
struct mlx5_ib_dev *dev = to_mdev(pd->device);
int inlen = MLX5_ST_SZ_BYTES(create_mkey_in);
struct mlx5_ib_mr *mr;
void *mkc;
u32 *in;
int err;
mr = kzalloc(sizeof(*mr), GFP_KERNEL);
if (!mr)
return ERR_PTR(-ENOMEM);
in = kzalloc(inlen, GFP_KERNEL);
if (!in) {
err = -ENOMEM;
goto err_free;
}
mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry);
MLX5_SET(mkc, mkc, access_mode_1_0, mode & 0x3);
MLX5_SET(mkc, mkc, access_mode_4_2, (mode >> 2) & 0x7);
MLX5_SET64(mkc, mkc, len, length);
set_mkc_access_pd_addr_fields(mkc, acc, start_addr, pd);
err = mlx5_ib_create_mkey(dev, &mr->mmkey, in, inlen);
if (err)
goto err_in;
kfree(in);
set_mr_fields(dev, mr, length, acc, start_addr);
return &mr->ibmr;
err_in:
kfree(in);
err_free:
kfree(mr);
return ERR_PTR(err);
}
int mlx5_ib_advise_mr(struct ib_pd *pd,
enum ib_uverbs_advise_mr_advice advice,
u32 flags,
struct ib_sge *sg_list,
u32 num_sge,
struct uverbs_attr_bundle *attrs)
{
if (advice != IB_UVERBS_ADVISE_MR_ADVICE_PREFETCH &&
advice != IB_UVERBS_ADVISE_MR_ADVICE_PREFETCH_WRITE &&
advice != IB_UVERBS_ADVISE_MR_ADVICE_PREFETCH_NO_FAULT)
return -EOPNOTSUPP;
return mlx5_ib_advise_mr_prefetch(pd, advice, flags,
sg_list, num_sge);
}
struct ib_mr *mlx5_ib_reg_dm_mr(struct ib_pd *pd, struct ib_dm *dm,
struct ib_dm_mr_attr *attr,
struct uverbs_attr_bundle *attrs)
{
struct mlx5_ib_dm *mdm = to_mdm(dm);
struct mlx5_core_dev *dev = to_mdev(dm->device)->mdev;
u64 start_addr = mdm->dev_addr + attr->offset;
int mode;
switch (mdm->type) {
case MLX5_IB_UAPI_DM_TYPE_MEMIC:
if (attr->access_flags & ~MLX5_IB_DM_MEMIC_ALLOWED_ACCESS)
return ERR_PTR(-EINVAL);
mode = MLX5_MKC_ACCESS_MODE_MEMIC;
start_addr -= pci_resource_start(dev->pdev, 0);
break;
case MLX5_IB_UAPI_DM_TYPE_STEERING_SW_ICM:
case MLX5_IB_UAPI_DM_TYPE_HEADER_MODIFY_SW_ICM:
case MLX5_IB_UAPI_DM_TYPE_HEADER_MODIFY_PATTERN_SW_ICM:
case MLX5_IB_UAPI_DM_TYPE_ENCAP_SW_ICM:
if (attr->access_flags & ~MLX5_IB_DM_SW_ICM_ALLOWED_ACCESS)
return ERR_PTR(-EINVAL);
mode = MLX5_MKC_ACCESS_MODE_SW_ICM;
break;
default:
return ERR_PTR(-EINVAL);
}
return mlx5_ib_get_dm_mr(pd, start_addr, attr->length,
attr->access_flags, mode);
}
static struct ib_mr *create_real_mr(struct ib_pd *pd, struct ib_umem *umem,
u64 iova, int access_flags)
{
struct mlx5_ib_dev *dev = to_mdev(pd->device);
struct mlx5_ib_mr *mr = NULL;
bool xlt_with_umr;
int err;
xlt_with_umr = mlx5r_umr_can_load_pas(dev, umem->length);
if (xlt_with_umr) {
mr = alloc_cacheable_mr(pd, umem, iova, access_flags,
MLX5_MKC_ACCESS_MODE_MTT);
} else {
unsigned int page_size =
mlx5_umem_mkc_find_best_pgsz(dev, umem, iova);
mutex_lock(&dev->slow_path_mutex);
mr = reg_create(pd, umem, iova, access_flags, page_size,
true, MLX5_MKC_ACCESS_MODE_MTT);
mutex_unlock(&dev->slow_path_mutex);
}
if (IS_ERR(mr)) {
ib_umem_release(umem);
return ERR_CAST(mr);
}
mlx5_ib_dbg(dev, "mkey 0x%x\n", mr->mmkey.key);
atomic_add(ib_umem_num_pages(umem), &dev->mdev->priv.reg_pages);
if (xlt_with_umr) {
/*
* If the MR was created with reg_create then it will be
* configured properly but left disabled. It is safe to go ahead
* and configure it again via UMR while enabling it.
*/
err = mlx5r_umr_update_mr_pas(mr, MLX5_IB_UPD_XLT_ENABLE);
if (err) {
mlx5_ib_dereg_mr(&mr->ibmr, NULL);
return ERR_PTR(err);
}
}
return &mr->ibmr;
}
static struct ib_mr *create_user_odp_mr(struct ib_pd *pd, u64 start, u64 length,
u64 iova, int access_flags,
struct ib_udata *udata)
{
struct mlx5_ib_dev *dev = to_mdev(pd->device);
struct ib_umem_odp *odp;
struct mlx5_ib_mr *mr;
int err;
if (!IS_ENABLED(CONFIG_INFINIBAND_ON_DEMAND_PAGING))
return ERR_PTR(-EOPNOTSUPP);
err = mlx5r_odp_create_eq(dev, &dev->odp_pf_eq);
if (err)
return ERR_PTR(err);
if (!start && length == U64_MAX) {
if (iova != 0)
return ERR_PTR(-EINVAL);
if (!(dev->odp_caps.general_caps & IB_ODP_SUPPORT_IMPLICIT))
return ERR_PTR(-EINVAL);
mr = mlx5_ib_alloc_implicit_mr(to_mpd(pd), access_flags);
if (IS_ERR(mr))
return ERR_CAST(mr);
return &mr->ibmr;
}
/* ODP requires xlt update via umr to work. */
if (!mlx5r_umr_can_load_pas(dev, length))
return ERR_PTR(-EINVAL);
odp = ib_umem_odp_get(&dev->ib_dev, start, length, access_flags,
&mlx5_mn_ops);
if (IS_ERR(odp))
return ERR_CAST(odp);
mr = alloc_cacheable_mr(pd, &odp->umem, iova, access_flags,
MLX5_MKC_ACCESS_MODE_MTT);
if (IS_ERR(mr)) {
ib_umem_release(&odp->umem);
return ERR_CAST(mr);
}
xa_init(&mr->implicit_children);
odp->private = mr;
err = mlx5r_store_odp_mkey(dev, &mr->mmkey);
if (err)
goto err_dereg_mr;
err = mlx5_ib_init_odp_mr(mr);
if (err)
goto err_dereg_mr;
return &mr->ibmr;
err_dereg_mr:
mlx5_ib_dereg_mr(&mr->ibmr, NULL);
return ERR_PTR(err);
}
struct ib_mr *mlx5_ib_reg_user_mr(struct ib_pd *pd, u64 start, u64 length,
u64 iova, int access_flags,
struct ib_udata *udata)
{
struct mlx5_ib_dev *dev = to_mdev(pd->device);
struct ib_umem *umem;
int err;
if (!IS_ENABLED(CONFIG_INFINIBAND_USER_MEM))
return ERR_PTR(-EOPNOTSUPP);
mlx5_ib_dbg(dev, "start 0x%llx, iova 0x%llx, length 0x%llx, access_flags 0x%x\n",
start, iova, length, access_flags);
err = mlx5r_umr_resource_init(dev);
if (err)
return ERR_PTR(err);
if (access_flags & IB_ACCESS_ON_DEMAND)
return create_user_odp_mr(pd, start, length, iova, access_flags,
udata);
umem = ib_umem_get(&dev->ib_dev, start, length, access_flags);
if (IS_ERR(umem))
return ERR_CAST(umem);
return create_real_mr(pd, umem, iova, access_flags);
}
static void mlx5_ib_dmabuf_invalidate_cb(struct dma_buf_attachment *attach)
{
struct ib_umem_dmabuf *umem_dmabuf = attach->importer_priv;
struct mlx5_ib_mr *mr = umem_dmabuf->private;
dma_resv_assert_held(umem_dmabuf->attach->dmabuf->resv);
if (!umem_dmabuf->sgt)
return;
mlx5r_umr_update_mr_pas(mr, MLX5_IB_UPD_XLT_ZAP);
ib_umem_dmabuf_unmap_pages(umem_dmabuf);
}
static struct dma_buf_attach_ops mlx5_ib_dmabuf_attach_ops = {
.allow_peer2peer = 1,
.move_notify = mlx5_ib_dmabuf_invalidate_cb,
};
static struct ib_mr *
reg_user_mr_dmabuf(struct ib_pd *pd, struct device *dma_device,
u64 offset, u64 length, u64 virt_addr,
int fd, int access_flags, int access_mode)
{
bool pinned_mode = (access_mode == MLX5_MKC_ACCESS_MODE_KSM);
struct mlx5_ib_dev *dev = to_mdev(pd->device);
struct mlx5_ib_mr *mr = NULL;
struct ib_umem_dmabuf *umem_dmabuf;
int err;
err = mlx5r_umr_resource_init(dev);
if (err)
return ERR_PTR(err);
if (!pinned_mode)
umem_dmabuf = ib_umem_dmabuf_get(&dev->ib_dev,
offset, length, fd,
access_flags,
&mlx5_ib_dmabuf_attach_ops);
else
umem_dmabuf = ib_umem_dmabuf_get_pinned_with_dma_device(&dev->ib_dev,
dma_device, offset, length,
fd, access_flags);
if (IS_ERR(umem_dmabuf)) {
mlx5_ib_dbg(dev, "umem_dmabuf get failed (%ld)\n",
PTR_ERR(umem_dmabuf));
return ERR_CAST(umem_dmabuf);
}
mr = alloc_cacheable_mr(pd, &umem_dmabuf->umem, virt_addr,
access_flags, access_mode);
if (IS_ERR(mr)) {
ib_umem_release(&umem_dmabuf->umem);
return ERR_CAST(mr);
}
mlx5_ib_dbg(dev, "mkey 0x%x\n", mr->mmkey.key);
atomic_add(ib_umem_num_pages(mr->umem), &dev->mdev->priv.reg_pages);
umem_dmabuf->private = mr;
if (!pinned_mode) {
err = mlx5r_store_odp_mkey(dev, &mr->mmkey);
if (err)
goto err_dereg_mr;
} else {
mr->data_direct = true;
}
err = mlx5_ib_init_dmabuf_mr(mr);
if (err)
goto err_dereg_mr;
return &mr->ibmr;
err_dereg_mr:
__mlx5_ib_dereg_mr(&mr->ibmr);
return ERR_PTR(err);
}
static struct ib_mr *
reg_user_mr_dmabuf_by_data_direct(struct ib_pd *pd, u64 offset,
u64 length, u64 virt_addr,
int fd, int access_flags)
{
struct mlx5_ib_dev *dev = to_mdev(pd->device);
struct mlx5_data_direct_dev *data_direct_dev;
struct ib_mr *crossing_mr;
struct ib_mr *crossed_mr;
int ret = 0;
/* As of HW behaviour the IOVA must be page aligned in KSM mode */
if (!PAGE_ALIGNED(virt_addr) || (access_flags & IB_ACCESS_ON_DEMAND))
return ERR_PTR(-EOPNOTSUPP);
mutex_lock(&dev->data_direct_lock);
data_direct_dev = dev->data_direct_dev;
if (!data_direct_dev) {
ret = -EINVAL;
goto end;
}
/* The device's 'data direct mkey' was created without RO flags to
* simplify things and allow for a single mkey per device.
* Since RO is not a must, mask it out accordingly.
*/
access_flags &= ~IB_ACCESS_RELAXED_ORDERING;
crossed_mr = reg_user_mr_dmabuf(pd, &data_direct_dev->pdev->dev,
offset, length, virt_addr, fd,
access_flags, MLX5_MKC_ACCESS_MODE_KSM);
if (IS_ERR(crossed_mr)) {
ret = PTR_ERR(crossed_mr);
goto end;
}
mutex_lock(&dev->slow_path_mutex);
crossing_mr = reg_create_crossing_vhca_mr(pd, virt_addr, length, access_flags,
crossed_mr->lkey);
mutex_unlock(&dev->slow_path_mutex);
if (IS_ERR(crossing_mr)) {
__mlx5_ib_dereg_mr(crossed_mr);
ret = PTR_ERR(crossing_mr);
goto end;
}
list_add_tail(&to_mmr(crossed_mr)->dd_node, &dev->data_direct_mr_list);
to_mmr(crossing_mr)->dd_crossed_mr = to_mmr(crossed_mr);
to_mmr(crossing_mr)->data_direct = true;
end:
mutex_unlock(&dev->data_direct_lock);
return ret ? ERR_PTR(ret) : crossing_mr;
}
struct ib_mr *mlx5_ib_reg_user_mr_dmabuf(struct ib_pd *pd, u64 offset,
u64 length, u64 virt_addr,
int fd, int access_flags,
struct uverbs_attr_bundle *attrs)
{
struct mlx5_ib_dev *dev = to_mdev(pd->device);
int mlx5_access_flags = 0;
int err;
if (!IS_ENABLED(CONFIG_INFINIBAND_USER_MEM) ||
!IS_ENABLED(CONFIG_INFINIBAND_ON_DEMAND_PAGING))
return ERR_PTR(-EOPNOTSUPP);
if (uverbs_attr_is_valid(attrs, MLX5_IB_ATTR_REG_DMABUF_MR_ACCESS_FLAGS)) {
err = uverbs_get_flags32(&mlx5_access_flags, attrs,
MLX5_IB_ATTR_REG_DMABUF_MR_ACCESS_FLAGS,
MLX5_IB_UAPI_REG_DMABUF_ACCESS_DATA_DIRECT);
if (err)
return ERR_PTR(err);
}
mlx5_ib_dbg(dev,
"offset 0x%llx, virt_addr 0x%llx, length 0x%llx, fd %d, access_flags 0x%x, mlx5_access_flags 0x%x\n",
offset, virt_addr, length, fd, access_flags, mlx5_access_flags);
/* dmabuf requires xlt update via umr to work. */
if (!mlx5r_umr_can_load_pas(dev, length))
return ERR_PTR(-EINVAL);
if (mlx5_access_flags & MLX5_IB_UAPI_REG_DMABUF_ACCESS_DATA_DIRECT)
return reg_user_mr_dmabuf_by_data_direct(pd, offset, length, virt_addr,
fd, access_flags);
return reg_user_mr_dmabuf(pd, pd->device->dma_device,
offset, length, virt_addr,
fd, access_flags, MLX5_MKC_ACCESS_MODE_MTT);
}
/*
* True if the change in access flags can be done via UMR, only some access
* flags can be updated.
*/
static bool can_use_umr_rereg_access(struct mlx5_ib_dev *dev,
unsigned int current_access_flags,
unsigned int target_access_flags)
{
unsigned int diffs = current_access_flags ^ target_access_flags;
if (diffs & ~(IB_ACCESS_LOCAL_WRITE | IB_ACCESS_REMOTE_WRITE |
IB_ACCESS_REMOTE_READ | IB_ACCESS_RELAXED_ORDERING |
IB_ACCESS_REMOTE_ATOMIC))
return false;
return mlx5r_umr_can_reconfig(dev, current_access_flags,
target_access_flags);
}
static bool can_use_umr_rereg_pas(struct mlx5_ib_mr *mr,
struct ib_umem *new_umem,
int new_access_flags, u64 iova,
unsigned long *page_size)
{
struct mlx5_ib_dev *dev = to_mdev(mr->ibmr.device);
/* We only track the allocated sizes of MRs from the cache */
if (!mr->mmkey.cache_ent)
return false;
if (!mlx5r_umr_can_load_pas(dev, new_umem->length))
return false;
*page_size = mlx5_umem_mkc_find_best_pgsz(dev, new_umem, iova);
if (WARN_ON(!*page_size))
return false;
return (mr->mmkey.cache_ent->rb_key.ndescs) >=
ib_umem_num_dma_blocks(new_umem, *page_size);
}
static int umr_rereg_pas(struct mlx5_ib_mr *mr, struct ib_pd *pd,
int access_flags, int flags, struct ib_umem *new_umem,
u64 iova, unsigned long page_size)
{
struct mlx5_ib_dev *dev = to_mdev(mr->ibmr.device);
int upd_flags = MLX5_IB_UPD_XLT_ADDR | MLX5_IB_UPD_XLT_ENABLE;
struct ib_umem *old_umem = mr->umem;
int err;
/*
* To keep everything simple the MR is revoked before we start to mess
* with it. This ensure the change is atomic relative to any use of the
* MR.
*/
err = mlx5r_umr_revoke_mr(mr);
if (err)
return err;
if (flags & IB_MR_REREG_PD) {
mr->ibmr.pd = pd;
upd_flags |= MLX5_IB_UPD_XLT_PD;
}
if (flags & IB_MR_REREG_ACCESS) {
mr->access_flags = access_flags;
upd_flags |= MLX5_IB_UPD_XLT_ACCESS;
}
mr->ibmr.iova = iova;
mr->ibmr.length = new_umem->length;
mr->page_shift = order_base_2(page_size);
mr->umem = new_umem;
err = mlx5r_umr_update_mr_pas(mr, upd_flags);
if (err) {
/*
* The MR is revoked at this point so there is no issue to free
* new_umem.
*/
mr->umem = old_umem;
return err;
}
atomic_sub(ib_umem_num_pages(old_umem), &dev->mdev->priv.reg_pages);
ib_umem_release(old_umem);
atomic_add(ib_umem_num_pages(new_umem), &dev->mdev->priv.reg_pages);
return 0;
}
struct ib_mr *mlx5_ib_rereg_user_mr(struct ib_mr *ib_mr, int flags, u64 start,
u64 length, u64 iova, int new_access_flags,
struct ib_pd *new_pd,
struct ib_udata *udata)
{
struct mlx5_ib_dev *dev = to_mdev(ib_mr->device);
struct mlx5_ib_mr *mr = to_mmr(ib_mr);
int err;
if (!IS_ENABLED(CONFIG_INFINIBAND_USER_MEM) || mr->data_direct)
return ERR_PTR(-EOPNOTSUPP);
mlx5_ib_dbg(
dev,
"start 0x%llx, iova 0x%llx, length 0x%llx, access_flags 0x%x\n",
start, iova, length, new_access_flags);
if (flags & ~(IB_MR_REREG_TRANS | IB_MR_REREG_PD | IB_MR_REREG_ACCESS))
return ERR_PTR(-EOPNOTSUPP);
if (!(flags & IB_MR_REREG_ACCESS))
new_access_flags = mr->access_flags;
if (!(flags & IB_MR_REREG_PD))
new_pd = ib_mr->pd;
if (!(flags & IB_MR_REREG_TRANS)) {
struct ib_umem *umem;
/* Fast path for PD/access change */
if (can_use_umr_rereg_access(dev, mr->access_flags,
new_access_flags)) {
err = mlx5r_umr_rereg_pd_access(mr, new_pd,
new_access_flags);
if (err)
return ERR_PTR(err);
return NULL;
}
/* DM or ODP MR's don't have a normal umem so we can't re-use it */
if (!mr->umem || is_odp_mr(mr) || is_dmabuf_mr(mr))
goto recreate;
/*
* Only one active MR can refer to a umem at one time, revoke
* the old MR before assigning the umem to the new one.
*/
err = mlx5r_umr_revoke_mr(mr);
if (err)
return ERR_PTR(err);
umem = mr->umem;
mr->umem = NULL;
atomic_sub(ib_umem_num_pages(umem), &dev->mdev->priv.reg_pages);
return create_real_mr(new_pd, umem, mr->ibmr.iova,
new_access_flags);
}
/*
* DM doesn't have a PAS list so we can't re-use it, odp/dmabuf does
* but the logic around releasing the umem is different
*/
if (!mr->umem || is_odp_mr(mr) || is_dmabuf_mr(mr))
goto recreate;
if (!(new_access_flags & IB_ACCESS_ON_DEMAND) &&
can_use_umr_rereg_access(dev, mr->access_flags, new_access_flags)) {
struct ib_umem *new_umem;
unsigned long page_size;
new_umem = ib_umem_get(&dev->ib_dev, start, length,
new_access_flags);
if (IS_ERR(new_umem))
return ERR_CAST(new_umem);
/* Fast path for PAS change */
if (can_use_umr_rereg_pas(mr, new_umem, new_access_flags, iova,
&page_size)) {
err = umr_rereg_pas(mr, new_pd, new_access_flags, flags,
new_umem, iova, page_size);
if (err) {
ib_umem_release(new_umem);
return ERR_PTR(err);
}
return NULL;
}
return create_real_mr(new_pd, new_umem, iova, new_access_flags);
}
/*
* Everything else has no state we can preserve, just create a new MR
* from scratch
*/
recreate:
return mlx5_ib_reg_user_mr(new_pd, start, length, iova,
new_access_flags, udata);
}
static int
mlx5_alloc_priv_descs(struct ib_device *device,
struct mlx5_ib_mr *mr,
int ndescs,
int desc_size)
{
struct mlx5_ib_dev *dev = to_mdev(device);
struct device *ddev = &dev->mdev->pdev->dev;
int size = ndescs * desc_size;
int add_size;
int ret;
add_size = max_t(int, MLX5_UMR_ALIGN - ARCH_KMALLOC_MINALIGN, 0);
if (is_power_of_2(MLX5_UMR_ALIGN) && add_size) {
int end = max_t(int, MLX5_UMR_ALIGN, roundup_pow_of_two(size));
add_size = min_t(int, end - size, add_size);
}
mr->descs_alloc = kzalloc(size + add_size, GFP_KERNEL);
if (!mr->descs_alloc)
return -ENOMEM;
mr->descs = PTR_ALIGN(mr->descs_alloc, MLX5_UMR_ALIGN);
mr->desc_map = dma_map_single(ddev, mr->descs, size, DMA_TO_DEVICE);
if (dma_mapping_error(ddev, mr->desc_map)) {
ret = -ENOMEM;
goto err;
}
return 0;
err:
kfree(mr->descs_alloc);
return ret;
}
static void
mlx5_free_priv_descs(struct mlx5_ib_mr *mr)
{
if (!mr->umem && !mr->data_direct && mr->descs) {
struct ib_device *device = mr->ibmr.device;
int size = mr->max_descs * mr->desc_size;
struct mlx5_ib_dev *dev = to_mdev(device);
dma_unmap_single(&dev->mdev->pdev->dev, mr->desc_map, size,
DMA_TO_DEVICE);
kfree(mr->descs_alloc);
mr->descs = NULL;
}
}
static int cache_ent_find_and_store(struct mlx5_ib_dev *dev,
struct mlx5_ib_mr *mr)
{
struct mlx5_mkey_cache *cache = &dev->cache;
struct mlx5_cache_ent *ent;
int ret;
if (mr->mmkey.cache_ent) {
spin_lock_irq(&mr->mmkey.cache_ent->mkeys_queue.lock);
mr->mmkey.cache_ent->in_use--;
goto end;
}
mutex_lock(&cache->rb_lock);
ent = mkey_cache_ent_from_rb_key(dev, mr->mmkey.rb_key);
if (ent) {
if (ent->rb_key.ndescs == mr->mmkey.rb_key.ndescs) {
if (ent->disabled) {
mutex_unlock(&cache->rb_lock);
return -EOPNOTSUPP;
}
mr->mmkey.cache_ent = ent;
spin_lock_irq(&mr->mmkey.cache_ent->mkeys_queue.lock);
mutex_unlock(&cache->rb_lock);
goto end;
}
}
ent = mlx5r_cache_create_ent_locked(dev, mr->mmkey.rb_key, false);
mutex_unlock(&cache->rb_lock);
if (IS_ERR(ent))
return PTR_ERR(ent);
mr->mmkey.cache_ent = ent;
spin_lock_irq(&mr->mmkey.cache_ent->mkeys_queue.lock);
end:
ret = push_mkey_locked(mr->mmkey.cache_ent, mr->mmkey.key);
spin_unlock_irq(&mr->mmkey.cache_ent->mkeys_queue.lock);
return ret;
}
static int mlx5_ib_revoke_data_direct_mr(struct mlx5_ib_mr *mr)
{
struct mlx5_ib_dev *dev = to_mdev(mr->ibmr.device);
struct ib_umem_dmabuf *umem_dmabuf = to_ib_umem_dmabuf(mr->umem);
int err;
lockdep_assert_held(&dev->data_direct_lock);
mr->revoked = true;
err = mlx5r_umr_revoke_mr(mr);
if (WARN_ON(err))
return err;
ib_umem_dmabuf_revoke(umem_dmabuf);
return 0;
}
void mlx5_ib_revoke_data_direct_mrs(struct mlx5_ib_dev *dev)
{
struct mlx5_ib_mr *mr, *next;
lockdep_assert_held(&dev->data_direct_lock);
list_for_each_entry_safe(mr, next, &dev->data_direct_mr_list, dd_node) {
list_del(&mr->dd_node);
mlx5_ib_revoke_data_direct_mr(mr);
}
}
static int mlx5_revoke_mr(struct mlx5_ib_mr *mr)
{
struct mlx5_ib_dev *dev = to_mdev(mr->ibmr.device);
struct mlx5_cache_ent *ent = mr->mmkey.cache_ent;
if (mr->mmkey.cacheable && !mlx5r_umr_revoke_mr(mr) && !cache_ent_find_and_store(dev, mr)) {
ent = mr->mmkey.cache_ent;
/* upon storing to a clean temp entry - schedule its cleanup */
spin_lock_irq(&ent->mkeys_queue.lock);
if (ent->is_tmp && !ent->tmp_cleanup_scheduled) {
mod_delayed_work(ent->dev->cache.wq, &ent->dwork,
msecs_to_jiffies(30 * 1000));
ent->tmp_cleanup_scheduled = true;
}
spin_unlock_irq(&ent->mkeys_queue.lock);
return 0;
}
if (ent) {
spin_lock_irq(&ent->mkeys_queue.lock);
ent->in_use--;
mr->mmkey.cache_ent = NULL;
spin_unlock_irq(&ent->mkeys_queue.lock);
}
return destroy_mkey(dev, mr);
}
static int __mlx5_ib_dereg_mr(struct ib_mr *ibmr)
{
struct mlx5_ib_mr *mr = to_mmr(ibmr);
struct mlx5_ib_dev *dev = to_mdev(ibmr->device);
int rc;
/*
* Any async use of the mr must hold the refcount, once the refcount
* goes to zero no other thread, such as ODP page faults, prefetch, any
* UMR activity, etc can touch the mkey. Thus it is safe to destroy it.
*/
if (IS_ENABLED(CONFIG_INFINIBAND_ON_DEMAND_PAGING) &&
refcount_read(&mr->mmkey.usecount) != 0 &&
xa_erase(&mr_to_mdev(mr)->odp_mkeys, mlx5_base_mkey(mr->mmkey.key)))
mlx5r_deref_wait_odp_mkey(&mr->mmkey);
if (ibmr->type == IB_MR_TYPE_INTEGRITY) {
xa_cmpxchg(&dev->sig_mrs, mlx5_base_mkey(mr->mmkey.key),
mr->sig, NULL, GFP_KERNEL);
if (mr->mtt_mr) {
rc = mlx5_ib_dereg_mr(&mr->mtt_mr->ibmr, NULL);
if (rc)
return rc;
mr->mtt_mr = NULL;
}
if (mr->klm_mr) {
rc = mlx5_ib_dereg_mr(&mr->klm_mr->ibmr, NULL);
if (rc)
return rc;
mr->klm_mr = NULL;
}
if (mlx5_core_destroy_psv(dev->mdev,
mr->sig->psv_memory.psv_idx))
mlx5_ib_warn(dev, "failed to destroy mem psv %d\n",
mr->sig->psv_memory.psv_idx);
if (mlx5_core_destroy_psv(dev->mdev, mr->sig->psv_wire.psv_idx))
mlx5_ib_warn(dev, "failed to destroy wire psv %d\n",
mr->sig->psv_wire.psv_idx);
kfree(mr->sig);
mr->sig = NULL;
}
/* Stop DMA */
rc = mlx5_revoke_mr(mr);
if (rc)
return rc;
if (mr->umem) {
bool is_odp = is_odp_mr(mr);
if (!is_odp)
atomic_sub(ib_umem_num_pages(mr->umem),
&dev->mdev->priv.reg_pages);
ib_umem_release(mr->umem);
if (is_odp)
mlx5_ib_free_odp_mr(mr);
}
if (!mr->mmkey.cache_ent)
mlx5_free_priv_descs(mr);
kfree(mr);
return 0;
}
static int dereg_crossing_data_direct_mr(struct mlx5_ib_dev *dev,
struct mlx5_ib_mr *mr)
{
struct mlx5_ib_mr *dd_crossed_mr = mr->dd_crossed_mr;
int ret;
ret = __mlx5_ib_dereg_mr(&mr->ibmr);
if (ret)
return ret;
mutex_lock(&dev->data_direct_lock);
if (!dd_crossed_mr->revoked)
list_del(&dd_crossed_mr->dd_node);
ret = __mlx5_ib_dereg_mr(&dd_crossed_mr->ibmr);
mutex_unlock(&dev->data_direct_lock);
return ret;
}
int mlx5_ib_dereg_mr(struct ib_mr *ibmr, struct ib_udata *udata)
{
struct mlx5_ib_mr *mr = to_mmr(ibmr);
struct mlx5_ib_dev *dev = to_mdev(ibmr->device);
if (mr->data_direct)
return dereg_crossing_data_direct_mr(dev, mr);
return __mlx5_ib_dereg_mr(ibmr);
}
static void mlx5_set_umr_free_mkey(struct ib_pd *pd, u32 *in, int ndescs,
int access_mode, int page_shift)
{
struct mlx5_ib_dev *dev = to_mdev(pd->device);
void *mkc;
mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry);
/* This is only used from the kernel, so setting the PD is OK. */
set_mkc_access_pd_addr_fields(mkc, IB_ACCESS_RELAXED_ORDERING, 0, pd);
MLX5_SET(mkc, mkc, free, 1);
MLX5_SET(mkc, mkc, translations_octword_size, ndescs);
MLX5_SET(mkc, mkc, access_mode_1_0, access_mode & 0x3);
MLX5_SET(mkc, mkc, access_mode_4_2, (access_mode >> 2) & 0x7);
MLX5_SET(mkc, mkc, umr_en, 1);
MLX5_SET(mkc, mkc, log_page_size, page_shift);
if (access_mode == MLX5_MKC_ACCESS_MODE_PA ||
access_mode == MLX5_MKC_ACCESS_MODE_MTT)
MLX5_SET(mkc, mkc, ma_translation_mode, MLX5_CAP_GEN(dev->mdev, ats));
}
static int _mlx5_alloc_mkey_descs(struct ib_pd *pd, struct mlx5_ib_mr *mr,
int ndescs, int desc_size, int page_shift,
int access_mode, u32 *in, int inlen)
{
struct mlx5_ib_dev *dev = to_mdev(pd->device);
int err;
mr->access_mode = access_mode;
mr->desc_size = desc_size;
mr->max_descs = ndescs;
err = mlx5_alloc_priv_descs(pd->device, mr, ndescs, desc_size);
if (err)
return err;
mlx5_set_umr_free_mkey(pd, in, ndescs, access_mode, page_shift);
err = mlx5_ib_create_mkey(dev, &mr->mmkey, in, inlen);
if (err)
goto err_free_descs;
mr->mmkey.type = MLX5_MKEY_MR;
mr->ibmr.lkey = mr->mmkey.key;
mr->ibmr.rkey = mr->mmkey.key;
return 0;
err_free_descs:
mlx5_free_priv_descs(mr);
return err;
}
static struct mlx5_ib_mr *mlx5_ib_alloc_pi_mr(struct ib_pd *pd,
u32 max_num_sg, u32 max_num_meta_sg,
int desc_size, int access_mode)
{
int inlen = MLX5_ST_SZ_BYTES(create_mkey_in);
int ndescs = ALIGN(max_num_sg + max_num_meta_sg, 4);
int page_shift = 0;
struct mlx5_ib_mr *mr;
u32 *in;
int err;
mr = kzalloc(sizeof(*mr), GFP_KERNEL);
if (!mr)
return ERR_PTR(-ENOMEM);
mr->ibmr.pd = pd;
mr->ibmr.device = pd->device;
in = kzalloc(inlen, GFP_KERNEL);
if (!in) {
err = -ENOMEM;
goto err_free;
}
if (access_mode == MLX5_MKC_ACCESS_MODE_MTT)
page_shift = PAGE_SHIFT;
err = _mlx5_alloc_mkey_descs(pd, mr, ndescs, desc_size, page_shift,
access_mode, in, inlen);
if (err)
goto err_free_in;
mr->umem = NULL;
kfree(in);
return mr;
err_free_in:
kfree(in);
err_free:
kfree(mr);
return ERR_PTR(err);
}
static int mlx5_alloc_mem_reg_descs(struct ib_pd *pd, struct mlx5_ib_mr *mr,
int ndescs, u32 *in, int inlen)
{
return _mlx5_alloc_mkey_descs(pd, mr, ndescs, sizeof(struct mlx5_mtt),
PAGE_SHIFT, MLX5_MKC_ACCESS_MODE_MTT, in,
inlen);
}
static int mlx5_alloc_sg_gaps_descs(struct ib_pd *pd, struct mlx5_ib_mr *mr,
int ndescs, u32 *in, int inlen)
{
return _mlx5_alloc_mkey_descs(pd, mr, ndescs, sizeof(struct mlx5_klm),
0, MLX5_MKC_ACCESS_MODE_KLMS, in, inlen);
}
static int mlx5_alloc_integrity_descs(struct ib_pd *pd, struct mlx5_ib_mr *mr,
int max_num_sg, int max_num_meta_sg,
u32 *in, int inlen)
{
struct mlx5_ib_dev *dev = to_mdev(pd->device);
u32 psv_index[2];
void *mkc;
int err;
mr->sig = kzalloc(sizeof(*mr->sig), GFP_KERNEL);
if (!mr->sig)
return -ENOMEM;
/* create mem & wire PSVs */
err = mlx5_core_create_psv(dev->mdev, to_mpd(pd)->pdn, 2, psv_index);
if (err)
goto err_free_sig;
mr->sig->psv_memory.psv_idx = psv_index[0];
mr->sig->psv_wire.psv_idx = psv_index[1];
mr->sig->sig_status_checked = true;
mr->sig->sig_err_exists = false;
/* Next UMR, Arm SIGERR */
++mr->sig->sigerr_count;
mr->klm_mr = mlx5_ib_alloc_pi_mr(pd, max_num_sg, max_num_meta_sg,
sizeof(struct mlx5_klm),
MLX5_MKC_ACCESS_MODE_KLMS);
if (IS_ERR(mr->klm_mr)) {
err = PTR_ERR(mr->klm_mr);
goto err_destroy_psv;
}
mr->mtt_mr = mlx5_ib_alloc_pi_mr(pd, max_num_sg, max_num_meta_sg,
sizeof(struct mlx5_mtt),
MLX5_MKC_ACCESS_MODE_MTT);
if (IS_ERR(mr->mtt_mr)) {
err = PTR_ERR(mr->mtt_mr);
goto err_free_klm_mr;
}
/* Set bsf descriptors for mkey */
mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry);
MLX5_SET(mkc, mkc, bsf_en, 1);
MLX5_SET(mkc, mkc, bsf_octword_size, MLX5_MKEY_BSF_OCTO_SIZE);
err = _mlx5_alloc_mkey_descs(pd, mr, 4, sizeof(struct mlx5_klm), 0,
MLX5_MKC_ACCESS_MODE_KLMS, in, inlen);
if (err)
goto err_free_mtt_mr;
err = xa_err(xa_store(&dev->sig_mrs, mlx5_base_mkey(mr->mmkey.key),
mr->sig, GFP_KERNEL));
if (err)
goto err_free_descs;
return 0;
err_free_descs:
destroy_mkey(dev, mr);
mlx5_free_priv_descs(mr);
err_free_mtt_mr:
mlx5_ib_dereg_mr(&mr->mtt_mr->ibmr, NULL);
mr->mtt_mr = NULL;
err_free_klm_mr:
mlx5_ib_dereg_mr(&mr->klm_mr->ibmr, NULL);
mr->klm_mr = NULL;
err_destroy_psv:
if (mlx5_core_destroy_psv(dev->mdev, mr->sig->psv_memory.psv_idx))
mlx5_ib_warn(dev, "failed to destroy mem psv %d\n",
mr->sig->psv_memory.psv_idx);
if (mlx5_core_destroy_psv(dev->mdev, mr->sig->psv_wire.psv_idx))
mlx5_ib_warn(dev, "failed to destroy wire psv %d\n",
mr->sig->psv_wire.psv_idx);
err_free_sig:
kfree(mr->sig);
return err;
}
static struct ib_mr *__mlx5_ib_alloc_mr(struct ib_pd *pd,
enum ib_mr_type mr_type, u32 max_num_sg,
u32 max_num_meta_sg)
{
struct mlx5_ib_dev *dev = to_mdev(pd->device);
int inlen = MLX5_ST_SZ_BYTES(create_mkey_in);
int ndescs = ALIGN(max_num_sg, 4);
struct mlx5_ib_mr *mr;
u32 *in;
int err;
mr = kzalloc(sizeof(*mr), GFP_KERNEL);
if (!mr)
return ERR_PTR(-ENOMEM);
in = kzalloc(inlen, GFP_KERNEL);
if (!in) {
err = -ENOMEM;
goto err_free;
}
mr->ibmr.device = pd->device;
mr->umem = NULL;
switch (mr_type) {
case IB_MR_TYPE_MEM_REG:
err = mlx5_alloc_mem_reg_descs(pd, mr, ndescs, in, inlen);
break;
case IB_MR_TYPE_SG_GAPS:
err = mlx5_alloc_sg_gaps_descs(pd, mr, ndescs, in, inlen);
break;
case IB_MR_TYPE_INTEGRITY:
err = mlx5_alloc_integrity_descs(pd, mr, max_num_sg,
max_num_meta_sg, in, inlen);
break;
default:
mlx5_ib_warn(dev, "Invalid mr type %d\n", mr_type);
err = -EINVAL;
}
if (err)
goto err_free_in;
kfree(in);
return &mr->ibmr;
err_free_in:
kfree(in);
err_free:
kfree(mr);
return ERR_PTR(err);
}
struct ib_mr *mlx5_ib_alloc_mr(struct ib_pd *pd, enum ib_mr_type mr_type,
u32 max_num_sg)
{
return __mlx5_ib_alloc_mr(pd, mr_type, max_num_sg, 0);
}
struct ib_mr *mlx5_ib_alloc_mr_integrity(struct ib_pd *pd,
u32 max_num_sg, u32 max_num_meta_sg)
{
return __mlx5_ib_alloc_mr(pd, IB_MR_TYPE_INTEGRITY, max_num_sg,
max_num_meta_sg);
}
int mlx5_ib_alloc_mw(struct ib_mw *ibmw, struct ib_udata *udata)
{
struct mlx5_ib_dev *dev = to_mdev(ibmw->device);
int inlen = MLX5_ST_SZ_BYTES(create_mkey_in);
struct mlx5_ib_mw *mw = to_mmw(ibmw);
unsigned int ndescs;
u32 *in = NULL;
void *mkc;
int err;
struct mlx5_ib_alloc_mw req = {};
struct {
__u32 comp_mask;
__u32 response_length;
} resp = {};
err = ib_copy_from_udata(&req, udata, min(udata->inlen, sizeof(req)));
if (err)
return err;
if (req.comp_mask || req.reserved1 || req.reserved2)
return -EOPNOTSUPP;
if (udata->inlen > sizeof(req) &&
!ib_is_udata_cleared(udata, sizeof(req),
udata->inlen - sizeof(req)))
return -EOPNOTSUPP;
ndescs = req.num_klms ? roundup(req.num_klms, 4) : roundup(1, 4);
in = kzalloc(inlen, GFP_KERNEL);
if (!in)
return -ENOMEM;
mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry);
MLX5_SET(mkc, mkc, free, 1);
MLX5_SET(mkc, mkc, translations_octword_size, ndescs);
MLX5_SET(mkc, mkc, pd, to_mpd(ibmw->pd)->pdn);
MLX5_SET(mkc, mkc, umr_en, 1);
MLX5_SET(mkc, mkc, lr, 1);
MLX5_SET(mkc, mkc, access_mode_1_0, MLX5_MKC_ACCESS_MODE_KLMS);
MLX5_SET(mkc, mkc, en_rinval, !!((ibmw->type == IB_MW_TYPE_2)));
MLX5_SET(mkc, mkc, qpn, 0xffffff);
err = mlx5_ib_create_mkey(dev, &mw->mmkey, in, inlen);
if (err)
goto free;
mw->mmkey.type = MLX5_MKEY_MW;
ibmw->rkey = mw->mmkey.key;
mw->mmkey.ndescs = ndescs;
resp.response_length =
min(offsetofend(typeof(resp), response_length), udata->outlen);
if (resp.response_length) {
err = ib_copy_to_udata(udata, &resp, resp.response_length);
if (err)
goto free_mkey;
}
if (IS_ENABLED(CONFIG_INFINIBAND_ON_DEMAND_PAGING)) {
err = mlx5r_store_odp_mkey(dev, &mw->mmkey);
if (err)
goto free_mkey;
}
kfree(in);
return 0;
free_mkey:
mlx5_core_destroy_mkey(dev->mdev, mw->mmkey.key);
free:
kfree(in);
return err;
}
int mlx5_ib_dealloc_mw(struct ib_mw *mw)
{
struct mlx5_ib_dev *dev = to_mdev(mw->device);
struct mlx5_ib_mw *mmw = to_mmw(mw);
if (IS_ENABLED(CONFIG_INFINIBAND_ON_DEMAND_PAGING) &&
xa_erase(&dev->odp_mkeys, mlx5_base_mkey(mmw->mmkey.key)))
/*
* pagefault_single_data_segment() may be accessing mmw
* if the user bound an ODP MR to this MW.
*/
mlx5r_deref_wait_odp_mkey(&mmw->mmkey);
return mlx5_core_destroy_mkey(dev->mdev, mmw->mmkey.key);
}
int mlx5_ib_check_mr_status(struct ib_mr *ibmr, u32 check_mask,
struct ib_mr_status *mr_status)
{
struct mlx5_ib_mr *mmr = to_mmr(ibmr);
int ret = 0;
if (check_mask & ~IB_MR_CHECK_SIG_STATUS) {
pr_err("Invalid status check mask\n");
ret = -EINVAL;
goto done;
}
mr_status->fail_status = 0;
if (check_mask & IB_MR_CHECK_SIG_STATUS) {
if (!mmr->sig) {
ret = -EINVAL;
pr_err("signature status check requested on a non-signature enabled MR\n");
goto done;
}
mmr->sig->sig_status_checked = true;
if (!mmr->sig->sig_err_exists)
goto done;
if (ibmr->lkey == mmr->sig->err_item.key)
memcpy(&mr_status->sig_err, &mmr->sig->err_item,
sizeof(mr_status->sig_err));
else {
mr_status->sig_err.err_type = IB_SIG_BAD_GUARD;
mr_status->sig_err.sig_err_offset = 0;
mr_status->sig_err.key = mmr->sig->err_item.key;
}
mmr->sig->sig_err_exists = false;
mr_status->fail_status |= IB_MR_CHECK_SIG_STATUS;
}
done:
return ret;
}
static int
mlx5_ib_map_pa_mr_sg_pi(struct ib_mr *ibmr, struct scatterlist *data_sg,
int data_sg_nents, unsigned int *data_sg_offset,
struct scatterlist *meta_sg, int meta_sg_nents,
unsigned int *meta_sg_offset)
{
struct mlx5_ib_mr *mr = to_mmr(ibmr);
unsigned int sg_offset = 0;
int n = 0;
mr->meta_length = 0;
if (data_sg_nents == 1) {
n++;
mr->mmkey.ndescs = 1;
if (data_sg_offset)
sg_offset = *data_sg_offset;
mr->data_length = sg_dma_len(data_sg) - sg_offset;
mr->data_iova = sg_dma_address(data_sg) + sg_offset;
if (meta_sg_nents == 1) {
n++;
mr->meta_ndescs = 1;
if (meta_sg_offset)
sg_offset = *meta_sg_offset;
else
sg_offset = 0;
mr->meta_length = sg_dma_len(meta_sg) - sg_offset;
mr->pi_iova = sg_dma_address(meta_sg) + sg_offset;
}
ibmr->length = mr->data_length + mr->meta_length;
}
return n;
}
static int
mlx5_ib_sg_to_klms(struct mlx5_ib_mr *mr,
struct scatterlist *sgl,
unsigned short sg_nents,
unsigned int *sg_offset_p,
struct scatterlist *meta_sgl,
unsigned short meta_sg_nents,
unsigned int *meta_sg_offset_p)
{
struct scatterlist *sg = sgl;
struct mlx5_klm *klms = mr->descs;
unsigned int sg_offset = sg_offset_p ? *sg_offset_p : 0;
u32 lkey = mr->ibmr.pd->local_dma_lkey;
int i, j = 0;
mr->ibmr.iova = sg_dma_address(sg) + sg_offset;
mr->ibmr.length = 0;
for_each_sg(sgl, sg, sg_nents, i) {
if (unlikely(i >= mr->max_descs))
break;
klms[i].va = cpu_to_be64(sg_dma_address(sg) + sg_offset);
klms[i].bcount = cpu_to_be32(sg_dma_len(sg) - sg_offset);
klms[i].key = cpu_to_be32(lkey);
mr->ibmr.length += sg_dma_len(sg) - sg_offset;
sg_offset = 0;
}
if (sg_offset_p)
*sg_offset_p = sg_offset;
mr->mmkey.ndescs = i;
mr->data_length = mr->ibmr.length;
if (meta_sg_nents) {
sg = meta_sgl;
sg_offset = meta_sg_offset_p ? *meta_sg_offset_p : 0;
for_each_sg(meta_sgl, sg, meta_sg_nents, j) {
if (unlikely(i + j >= mr->max_descs))
break;
klms[i + j].va = cpu_to_be64(sg_dma_address(sg) +
sg_offset);
klms[i + j].bcount = cpu_to_be32(sg_dma_len(sg) -
sg_offset);
klms[i + j].key = cpu_to_be32(lkey);
mr->ibmr.length += sg_dma_len(sg) - sg_offset;
sg_offset = 0;
}
if (meta_sg_offset_p)
*meta_sg_offset_p = sg_offset;
mr->meta_ndescs = j;
mr->meta_length = mr->ibmr.length - mr->data_length;
}
return i + j;
}
static int mlx5_set_page(struct ib_mr *ibmr, u64 addr)
{
struct mlx5_ib_mr *mr = to_mmr(ibmr);
__be64 *descs;
if (unlikely(mr->mmkey.ndescs == mr->max_descs))
return -ENOMEM;
descs = mr->descs;
descs[mr->mmkey.ndescs++] = cpu_to_be64(addr | MLX5_EN_RD | MLX5_EN_WR);
return 0;
}
static int mlx5_set_page_pi(struct ib_mr *ibmr, u64 addr)
{
struct mlx5_ib_mr *mr = to_mmr(ibmr);
__be64 *descs;
if (unlikely(mr->mmkey.ndescs + mr->meta_ndescs == mr->max_descs))
return -ENOMEM;
descs = mr->descs;
descs[mr->mmkey.ndescs + mr->meta_ndescs++] =
cpu_to_be64(addr | MLX5_EN_RD | MLX5_EN_WR);
return 0;
}
static int
mlx5_ib_map_mtt_mr_sg_pi(struct ib_mr *ibmr, struct scatterlist *data_sg,
int data_sg_nents, unsigned int *data_sg_offset,
struct scatterlist *meta_sg, int meta_sg_nents,
unsigned int *meta_sg_offset)
{
struct mlx5_ib_mr *mr = to_mmr(ibmr);
struct mlx5_ib_mr *pi_mr = mr->mtt_mr;
int n;
pi_mr->mmkey.ndescs = 0;
pi_mr->meta_ndescs = 0;
pi_mr->meta_length = 0;
ib_dma_sync_single_for_cpu(ibmr->device, pi_mr->desc_map,
pi_mr->desc_size * pi_mr->max_descs,
DMA_TO_DEVICE);
pi_mr->ibmr.page_size = ibmr->page_size;
n = ib_sg_to_pages(&pi_mr->ibmr, data_sg, data_sg_nents, data_sg_offset,
mlx5_set_page);
if (n != data_sg_nents)
return n;
pi_mr->data_iova = pi_mr->ibmr.iova;
pi_mr->data_length = pi_mr->ibmr.length;
pi_mr->ibmr.length = pi_mr->data_length;
ibmr->length = pi_mr->data_length;
if (meta_sg_nents) {
u64 page_mask = ~((u64)ibmr->page_size - 1);
u64 iova = pi_mr->data_iova;
n += ib_sg_to_pages(&pi_mr->ibmr, meta_sg, meta_sg_nents,
meta_sg_offset, mlx5_set_page_pi);
pi_mr->meta_length = pi_mr->ibmr.length;
/*
* PI address for the HW is the offset of the metadata address
* relative to the first data page address.
* It equals to first data page address + size of data pages +
* metadata offset at the first metadata page
*/
pi_mr->pi_iova = (iova & page_mask) +
pi_mr->mmkey.ndescs * ibmr->page_size +
(pi_mr->ibmr.iova & ~page_mask);
/*
* In order to use one MTT MR for data and metadata, we register
* also the gaps between the end of the data and the start of
* the metadata (the sig MR will verify that the HW will access
* to right addresses). This mapping is safe because we use
* internal mkey for the registration.
*/
pi_mr->ibmr.length = pi_mr->pi_iova + pi_mr->meta_length - iova;
pi_mr->ibmr.iova = iova;
ibmr->length += pi_mr->meta_length;
}
ib_dma_sync_single_for_device(ibmr->device, pi_mr->desc_map,
pi_mr->desc_size * pi_mr->max_descs,
DMA_TO_DEVICE);
return n;
}
static int
mlx5_ib_map_klm_mr_sg_pi(struct ib_mr *ibmr, struct scatterlist *data_sg,
int data_sg_nents, unsigned int *data_sg_offset,
struct scatterlist *meta_sg, int meta_sg_nents,
unsigned int *meta_sg_offset)
{
struct mlx5_ib_mr *mr = to_mmr(ibmr);
struct mlx5_ib_mr *pi_mr = mr->klm_mr;
int n;
pi_mr->mmkey.ndescs = 0;
pi_mr->meta_ndescs = 0;
pi_mr->meta_length = 0;
ib_dma_sync_single_for_cpu(ibmr->device, pi_mr->desc_map,
pi_mr->desc_size * pi_mr->max_descs,
DMA_TO_DEVICE);
n = mlx5_ib_sg_to_klms(pi_mr, data_sg, data_sg_nents, data_sg_offset,
meta_sg, meta_sg_nents, meta_sg_offset);
ib_dma_sync_single_for_device(ibmr->device, pi_mr->desc_map,
pi_mr->desc_size * pi_mr->max_descs,
DMA_TO_DEVICE);
/* This is zero-based memory region */
pi_mr->data_iova = 0;
pi_mr->ibmr.iova = 0;
pi_mr->pi_iova = pi_mr->data_length;
ibmr->length = pi_mr->ibmr.length;
return n;
}
int mlx5_ib_map_mr_sg_pi(struct ib_mr *ibmr, struct scatterlist *data_sg,
int data_sg_nents, unsigned int *data_sg_offset,
struct scatterlist *meta_sg, int meta_sg_nents,
unsigned int *meta_sg_offset)
{
struct mlx5_ib_mr *mr = to_mmr(ibmr);
struct mlx5_ib_mr *pi_mr = NULL;
int n;
WARN_ON(ibmr->type != IB_MR_TYPE_INTEGRITY);
mr->mmkey.ndescs = 0;
mr->data_length = 0;
mr->data_iova = 0;
mr->meta_ndescs = 0;
mr->pi_iova = 0;
/*
* As a performance optimization, if possible, there is no need to
* perform UMR operation to register the data/metadata buffers.
* First try to map the sg lists to PA descriptors with local_dma_lkey.
* Fallback to UMR only in case of a failure.
*/
n = mlx5_ib_map_pa_mr_sg_pi(ibmr, data_sg, data_sg_nents,
data_sg_offset, meta_sg, meta_sg_nents,
meta_sg_offset);
if (n == data_sg_nents + meta_sg_nents)
goto out;
/*
* As a performance optimization, if possible, there is no need to map
* the sg lists to KLM descriptors. First try to map the sg lists to MTT
* descriptors and fallback to KLM only in case of a failure.
* It's more efficient for the HW to work with MTT descriptors
* (especially in high load).
* Use KLM (indirect access) only if it's mandatory.
*/
pi_mr = mr->mtt_mr;
n = mlx5_ib_map_mtt_mr_sg_pi(ibmr, data_sg, data_sg_nents,
data_sg_offset, meta_sg, meta_sg_nents,
meta_sg_offset);
if (n == data_sg_nents + meta_sg_nents)
goto out;
pi_mr = mr->klm_mr;
n = mlx5_ib_map_klm_mr_sg_pi(ibmr, data_sg, data_sg_nents,
data_sg_offset, meta_sg, meta_sg_nents,
meta_sg_offset);
if (unlikely(n != data_sg_nents + meta_sg_nents))
return -ENOMEM;
out:
/* This is zero-based memory region */
ibmr->iova = 0;
mr->pi_mr = pi_mr;
if (pi_mr)
ibmr->sig_attrs->meta_length = pi_mr->meta_length;
else
ibmr->sig_attrs->meta_length = mr->meta_length;
return 0;
}
int mlx5_ib_map_mr_sg(struct ib_mr *ibmr, struct scatterlist *sg, int sg_nents,
unsigned int *sg_offset)
{
struct mlx5_ib_mr *mr = to_mmr(ibmr);
int n;
mr->mmkey.ndescs = 0;
ib_dma_sync_single_for_cpu(ibmr->device, mr->desc_map,
mr->desc_size * mr->max_descs,
DMA_TO_DEVICE);
if (mr->access_mode == MLX5_MKC_ACCESS_MODE_KLMS)
n = mlx5_ib_sg_to_klms(mr, sg, sg_nents, sg_offset, NULL, 0,
NULL);
else
n = ib_sg_to_pages(ibmr, sg, sg_nents, sg_offset,
mlx5_set_page);
ib_dma_sync_single_for_device(ibmr->device, mr->desc_map,
mr->desc_size * mr->max_descs,
DMA_TO_DEVICE);
return n;
}