// SPDX-License-Identifier: GPL-2.0+
/*
* Copyright (c) 2021 Aspeed Technology Inc.
*/
#include "aspeed-hace.h"
#include <crypto/des.h>
#include <crypto/engine.h>
#include <crypto/internal/des.h>
#include <crypto/internal/skcipher.h>
#include <linux/dma-mapping.h>
#include <linux/err.h>
#include <linux/io.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/scatterlist.h>
#include <linux/string.h>
#ifdef CONFIG_CRYPTO_DEV_ASPEED_HACE_CRYPTO_DEBUG
#define CIPHER_DBG(h, fmt, ...) \
dev_info((h)->dev, "%s() " fmt, __func__, ##__VA_ARGS__)
#else
#define CIPHER_DBG(h, fmt, ...) \
dev_dbg((h)->dev, "%s() " fmt, __func__, ##__VA_ARGS__)
#endif
static int aspeed_crypto_do_fallback(struct skcipher_request *areq)
{
struct aspeed_cipher_reqctx *rctx = skcipher_request_ctx(areq);
struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(areq);
struct aspeed_cipher_ctx *ctx = crypto_skcipher_ctx(tfm);
int err;
skcipher_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
skcipher_request_set_callback(&rctx->fallback_req, areq->base.flags,
areq->base.complete, areq->base.data);
skcipher_request_set_crypt(&rctx->fallback_req, areq->src, areq->dst,
areq->cryptlen, areq->iv);
if (rctx->enc_cmd & HACE_CMD_ENCRYPT)
err = crypto_skcipher_encrypt(&rctx->fallback_req);
else
err = crypto_skcipher_decrypt(&rctx->fallback_req);
return err;
}
static bool aspeed_crypto_need_fallback(struct skcipher_request *areq)
{
struct aspeed_cipher_reqctx *rctx = skcipher_request_ctx(areq);
if (areq->cryptlen == 0)
return true;
if ((rctx->enc_cmd & HACE_CMD_DES_SELECT) &&
!IS_ALIGNED(areq->cryptlen, DES_BLOCK_SIZE))
return true;
if ((!(rctx->enc_cmd & HACE_CMD_DES_SELECT)) &&
!IS_ALIGNED(areq->cryptlen, AES_BLOCK_SIZE))
return true;
return false;
}
static int aspeed_hace_crypto_handle_queue(struct aspeed_hace_dev *hace_dev,
struct skcipher_request *req)
{
if (hace_dev->version == AST2500_VERSION &&
aspeed_crypto_need_fallback(req)) {
CIPHER_DBG(hace_dev, "SW fallback\n");
return aspeed_crypto_do_fallback(req);
}
return crypto_transfer_skcipher_request_to_engine(
hace_dev->crypt_engine_crypto, req);
}
static int aspeed_crypto_do_request(struct crypto_engine *engine, void *areq)
{
struct skcipher_request *req = skcipher_request_cast(areq);
struct crypto_skcipher *cipher = crypto_skcipher_reqtfm(req);
struct aspeed_cipher_ctx *ctx = crypto_skcipher_ctx(cipher);
struct aspeed_hace_dev *hace_dev = ctx->hace_dev;
struct aspeed_engine_crypto *crypto_engine;
int rc;
crypto_engine = &hace_dev->crypto_engine;
crypto_engine->req = req;
crypto_engine->flags |= CRYPTO_FLAGS_BUSY;
rc = ctx->start(hace_dev);
if (rc != -EINPROGRESS)
return -EIO;
return 0;
}
static int aspeed_sk_complete(struct aspeed_hace_dev *hace_dev, int err)
{
struct aspeed_engine_crypto *crypto_engine = &hace_dev->crypto_engine;
struct aspeed_cipher_reqctx *rctx;
struct skcipher_request *req;
CIPHER_DBG(hace_dev, "\n");
req = crypto_engine->req;
rctx = skcipher_request_ctx(req);
if (rctx->enc_cmd & HACE_CMD_IV_REQUIRE) {
if (rctx->enc_cmd & HACE_CMD_DES_SELECT)
memcpy(req->iv, crypto_engine->cipher_ctx +
DES_KEY_SIZE, DES_KEY_SIZE);
else
memcpy(req->iv, crypto_engine->cipher_ctx,
AES_BLOCK_SIZE);
}
crypto_engine->flags &= ~CRYPTO_FLAGS_BUSY;
crypto_finalize_skcipher_request(hace_dev->crypt_engine_crypto, req,
err);
return err;
}
static int aspeed_sk_transfer_sg(struct aspeed_hace_dev *hace_dev)
{
struct aspeed_engine_crypto *crypto_engine = &hace_dev->crypto_engine;
struct device *dev = hace_dev->dev;
struct aspeed_cipher_reqctx *rctx;
struct skcipher_request *req;
CIPHER_DBG(hace_dev, "\n");
req = crypto_engine->req;
rctx = skcipher_request_ctx(req);
if (req->src == req->dst) {
dma_unmap_sg(dev, req->src, rctx->src_nents, DMA_BIDIRECTIONAL);
} else {
dma_unmap_sg(dev, req->src, rctx->src_nents, DMA_TO_DEVICE);
dma_unmap_sg(dev, req->dst, rctx->dst_nents, DMA_FROM_DEVICE);
}
return aspeed_sk_complete(hace_dev, 0);
}
static int aspeed_sk_transfer(struct aspeed_hace_dev *hace_dev)
{
struct aspeed_engine_crypto *crypto_engine = &hace_dev->crypto_engine;
struct aspeed_cipher_reqctx *rctx;
struct skcipher_request *req;
struct scatterlist *out_sg;
int nbytes = 0;
int rc = 0;
req = crypto_engine->req;
rctx = skcipher_request_ctx(req);
out_sg = req->dst;
/* Copy output buffer to dst scatter-gather lists */
nbytes = sg_copy_from_buffer(out_sg, rctx->dst_nents,
crypto_engine->cipher_addr, req->cryptlen);
if (!nbytes) {
dev_warn(hace_dev->dev, "invalid sg copy, %s:0x%x, %s:0x%x\n",
"nbytes", nbytes, "cryptlen", req->cryptlen);
rc = -EINVAL;
}
CIPHER_DBG(hace_dev, "%s:%d, %s:%d, %s:%d, %s:%p\n",
"nbytes", nbytes, "req->cryptlen", req->cryptlen,
"nb_out_sg", rctx->dst_nents,
"cipher addr", crypto_engine->cipher_addr);
return aspeed_sk_complete(hace_dev, rc);
}
static int aspeed_sk_start(struct aspeed_hace_dev *hace_dev)
{
struct aspeed_engine_crypto *crypto_engine = &hace_dev->crypto_engine;
struct aspeed_cipher_reqctx *rctx;
struct skcipher_request *req;
struct scatterlist *in_sg;
int nbytes;
req = crypto_engine->req;
rctx = skcipher_request_ctx(req);
in_sg = req->src;
nbytes = sg_copy_to_buffer(in_sg, rctx->src_nents,
crypto_engine->cipher_addr, req->cryptlen);
CIPHER_DBG(hace_dev, "%s:%d, %s:%d, %s:%d, %s:%p\n",
"nbytes", nbytes, "req->cryptlen", req->cryptlen,
"nb_in_sg", rctx->src_nents,
"cipher addr", crypto_engine->cipher_addr);
if (!nbytes) {
dev_warn(hace_dev->dev, "invalid sg copy, %s:0x%x, %s:0x%x\n",
"nbytes", nbytes, "cryptlen", req->cryptlen);
return -EINVAL;
}
crypto_engine->resume = aspeed_sk_transfer;
/* Trigger engines */
ast_hace_write(hace_dev, crypto_engine->cipher_dma_addr,
ASPEED_HACE_SRC);
ast_hace_write(hace_dev, crypto_engine->cipher_dma_addr,
ASPEED_HACE_DEST);
ast_hace_write(hace_dev, req->cryptlen, ASPEED_HACE_DATA_LEN);
ast_hace_write(hace_dev, rctx->enc_cmd, ASPEED_HACE_CMD);
return -EINPROGRESS;
}
static int aspeed_sk_start_sg(struct aspeed_hace_dev *hace_dev)
{
struct aspeed_engine_crypto *crypto_engine = &hace_dev->crypto_engine;
struct aspeed_sg_list *src_list, *dst_list;
dma_addr_t src_dma_addr, dst_dma_addr;
struct aspeed_cipher_reqctx *rctx;
struct skcipher_request *req;
struct scatterlist *s;
int src_sg_len;
int dst_sg_len;
int total, i;
int rc;
CIPHER_DBG(hace_dev, "\n");
req = crypto_engine->req;
rctx = skcipher_request_ctx(req);
rctx->enc_cmd |= HACE_CMD_DES_SG_CTRL | HACE_CMD_SRC_SG_CTRL |
HACE_CMD_AES_KEY_HW_EXP | HACE_CMD_MBUS_REQ_SYNC_EN;
/* BIDIRECTIONAL */
if (req->dst == req->src) {
src_sg_len = dma_map_sg(hace_dev->dev, req->src,
rctx->src_nents, DMA_BIDIRECTIONAL);
dst_sg_len = src_sg_len;
if (!src_sg_len) {
dev_warn(hace_dev->dev, "dma_map_sg() src error\n");
return -EINVAL;
}
} else {
src_sg_len = dma_map_sg(hace_dev->dev, req->src,
rctx->src_nents, DMA_TO_DEVICE);
if (!src_sg_len) {
dev_warn(hace_dev->dev, "dma_map_sg() src error\n");
return -EINVAL;
}
dst_sg_len = dma_map_sg(hace_dev->dev, req->dst,
rctx->dst_nents, DMA_FROM_DEVICE);
if (!dst_sg_len) {
dev_warn(hace_dev->dev, "dma_map_sg() dst error\n");
rc = -EINVAL;
goto free_req_src;
}
}
src_list = (struct aspeed_sg_list *)crypto_engine->cipher_addr;
src_dma_addr = crypto_engine->cipher_dma_addr;
total = req->cryptlen;
for_each_sg(req->src, s, src_sg_len, i) {
u32 phy_addr = sg_dma_address(s);
u32 len = sg_dma_len(s);
if (total > len)
total -= len;
else {
/* last sg list */
len = total;
len |= BIT(31);
total = 0;
}
src_list[i].phy_addr = cpu_to_le32(phy_addr);
src_list[i].len = cpu_to_le32(len);
}
if (total != 0) {
rc = -EINVAL;
goto free_req;
}
if (req->dst == req->src) {
dst_list = src_list;
dst_dma_addr = src_dma_addr;
} else {
dst_list = (struct aspeed_sg_list *)crypto_engine->dst_sg_addr;
dst_dma_addr = crypto_engine->dst_sg_dma_addr;
total = req->cryptlen;
for_each_sg(req->dst, s, dst_sg_len, i) {
u32 phy_addr = sg_dma_address(s);
u32 len = sg_dma_len(s);
if (total > len)
total -= len;
else {
/* last sg list */
len = total;
len |= BIT(31);
total = 0;
}
dst_list[i].phy_addr = cpu_to_le32(phy_addr);
dst_list[i].len = cpu_to_le32(len);
}
dst_list[dst_sg_len].phy_addr = 0;
dst_list[dst_sg_len].len = 0;
}
if (total != 0) {
rc = -EINVAL;
goto free_req;
}
crypto_engine->resume = aspeed_sk_transfer_sg;
/* Memory barrier to ensure all data setup before engine starts */
mb();
/* Trigger engines */
ast_hace_write(hace_dev, src_dma_addr, ASPEED_HACE_SRC);
ast_hace_write(hace_dev, dst_dma_addr, ASPEED_HACE_DEST);
ast_hace_write(hace_dev, req->cryptlen, ASPEED_HACE_DATA_LEN);
ast_hace_write(hace_dev, rctx->enc_cmd, ASPEED_HACE_CMD);
return -EINPROGRESS;
free_req:
if (req->dst == req->src) {
dma_unmap_sg(hace_dev->dev, req->src, rctx->src_nents,
DMA_BIDIRECTIONAL);
} else {
dma_unmap_sg(hace_dev->dev, req->dst, rctx->dst_nents,
DMA_TO_DEVICE);
dma_unmap_sg(hace_dev->dev, req->src, rctx->src_nents,
DMA_TO_DEVICE);
}
return rc;
free_req_src:
dma_unmap_sg(hace_dev->dev, req->src, rctx->src_nents, DMA_TO_DEVICE);
return rc;
}
static int aspeed_hace_skcipher_trigger(struct aspeed_hace_dev *hace_dev)
{
struct aspeed_engine_crypto *crypto_engine = &hace_dev->crypto_engine;
struct aspeed_cipher_reqctx *rctx;
struct crypto_skcipher *cipher;
struct aspeed_cipher_ctx *ctx;
struct skcipher_request *req;
CIPHER_DBG(hace_dev, "\n");
req = crypto_engine->req;
rctx = skcipher_request_ctx(req);
cipher = crypto_skcipher_reqtfm(req);
ctx = crypto_skcipher_ctx(cipher);
/* enable interrupt */
rctx->enc_cmd |= HACE_CMD_ISR_EN;
rctx->dst_nents = sg_nents(req->dst);
rctx->src_nents = sg_nents(req->src);
ast_hace_write(hace_dev, crypto_engine->cipher_ctx_dma,
ASPEED_HACE_CONTEXT);
if (rctx->enc_cmd & HACE_CMD_IV_REQUIRE) {
if (rctx->enc_cmd & HACE_CMD_DES_SELECT)
memcpy(crypto_engine->cipher_ctx + DES_BLOCK_SIZE,
req->iv, DES_BLOCK_SIZE);
else
memcpy(crypto_engine->cipher_ctx, req->iv,
AES_BLOCK_SIZE);
}
if (hace_dev->version == AST2600_VERSION) {
memcpy(crypto_engine->cipher_ctx + 16, ctx->key, ctx->key_len);
return aspeed_sk_start_sg(hace_dev);
}
memcpy(crypto_engine->cipher_ctx + 16, ctx->key, AES_MAX_KEYLENGTH);
return aspeed_sk_start(hace_dev);
}
static int aspeed_des_crypt(struct skcipher_request *req, u32 cmd)
{
struct aspeed_cipher_reqctx *rctx = skcipher_request_ctx(req);
struct crypto_skcipher *cipher = crypto_skcipher_reqtfm(req);
struct aspeed_cipher_ctx *ctx = crypto_skcipher_ctx(cipher);
struct aspeed_hace_dev *hace_dev = ctx->hace_dev;
u32 crypto_alg = cmd & HACE_CMD_OP_MODE_MASK;
CIPHER_DBG(hace_dev, "\n");
if (crypto_alg == HACE_CMD_CBC || crypto_alg == HACE_CMD_ECB) {
if (!IS_ALIGNED(req->cryptlen, DES_BLOCK_SIZE))
return -EINVAL;
}
rctx->enc_cmd = cmd | HACE_CMD_DES_SELECT | HACE_CMD_RI_WO_DATA_ENABLE |
HACE_CMD_DES | HACE_CMD_CONTEXT_LOAD_ENABLE |
HACE_CMD_CONTEXT_SAVE_ENABLE;
return aspeed_hace_crypto_handle_queue(hace_dev, req);
}
static int aspeed_des_setkey(struct crypto_skcipher *cipher, const u8 *key,
unsigned int keylen)
{
struct aspeed_cipher_ctx *ctx = crypto_skcipher_ctx(cipher);
struct crypto_tfm *tfm = crypto_skcipher_tfm(cipher);
struct aspeed_hace_dev *hace_dev = ctx->hace_dev;
int rc;
CIPHER_DBG(hace_dev, "keylen: %d bits\n", keylen);
if (keylen != DES_KEY_SIZE && keylen != DES3_EDE_KEY_SIZE) {
dev_warn(hace_dev->dev, "invalid keylen: %d bits\n", keylen);
return -EINVAL;
}
if (keylen == DES_KEY_SIZE) {
rc = crypto_des_verify_key(tfm, key);
if (rc)
return rc;
} else if (keylen == DES3_EDE_KEY_SIZE) {
rc = crypto_des3_ede_verify_key(tfm, key);
if (rc)
return rc;
}
memcpy(ctx->key, key, keylen);
ctx->key_len = keylen;
crypto_skcipher_clear_flags(ctx->fallback_tfm, CRYPTO_TFM_REQ_MASK);
crypto_skcipher_set_flags(ctx->fallback_tfm, cipher->base.crt_flags &
CRYPTO_TFM_REQ_MASK);
return crypto_skcipher_setkey(ctx->fallback_tfm, key, keylen);
}
static int aspeed_tdes_ctr_decrypt(struct skcipher_request *req)
{
return aspeed_des_crypt(req, HACE_CMD_DECRYPT | HACE_CMD_CTR |
HACE_CMD_TRIPLE_DES);
}
static int aspeed_tdes_ctr_encrypt(struct skcipher_request *req)
{
return aspeed_des_crypt(req, HACE_CMD_ENCRYPT | HACE_CMD_CTR |
HACE_CMD_TRIPLE_DES);
}
static int aspeed_tdes_cbc_decrypt(struct skcipher_request *req)
{
return aspeed_des_crypt(req, HACE_CMD_DECRYPT | HACE_CMD_CBC |
HACE_CMD_TRIPLE_DES);
}
static int aspeed_tdes_cbc_encrypt(struct skcipher_request *req)
{
return aspeed_des_crypt(req, HACE_CMD_ENCRYPT | HACE_CMD_CBC |
HACE_CMD_TRIPLE_DES);
}
static int aspeed_tdes_ecb_decrypt(struct skcipher_request *req)
{
return aspeed_des_crypt(req, HACE_CMD_DECRYPT | HACE_CMD_ECB |
HACE_CMD_TRIPLE_DES);
}
static int aspeed_tdes_ecb_encrypt(struct skcipher_request *req)
{
return aspeed_des_crypt(req, HACE_CMD_ENCRYPT | HACE_CMD_ECB |
HACE_CMD_TRIPLE_DES);
}
static int aspeed_des_ctr_decrypt(struct skcipher_request *req)
{
return aspeed_des_crypt(req, HACE_CMD_DECRYPT | HACE_CMD_CTR |
HACE_CMD_SINGLE_DES);
}
static int aspeed_des_ctr_encrypt(struct skcipher_request *req)
{
return aspeed_des_crypt(req, HACE_CMD_ENCRYPT | HACE_CMD_CTR |
HACE_CMD_SINGLE_DES);
}
static int aspeed_des_cbc_decrypt(struct skcipher_request *req)
{
return aspeed_des_crypt(req, HACE_CMD_DECRYPT | HACE_CMD_CBC |
HACE_CMD_SINGLE_DES);
}
static int aspeed_des_cbc_encrypt(struct skcipher_request *req)
{
return aspeed_des_crypt(req, HACE_CMD_ENCRYPT | HACE_CMD_CBC |
HACE_CMD_SINGLE_DES);
}
static int aspeed_des_ecb_decrypt(struct skcipher_request *req)
{
return aspeed_des_crypt(req, HACE_CMD_DECRYPT | HACE_CMD_ECB |
HACE_CMD_SINGLE_DES);
}
static int aspeed_des_ecb_encrypt(struct skcipher_request *req)
{
return aspeed_des_crypt(req, HACE_CMD_ENCRYPT | HACE_CMD_ECB |
HACE_CMD_SINGLE_DES);
}
static int aspeed_aes_crypt(struct skcipher_request *req, u32 cmd)
{
struct aspeed_cipher_reqctx *rctx = skcipher_request_ctx(req);
struct crypto_skcipher *cipher = crypto_skcipher_reqtfm(req);
struct aspeed_cipher_ctx *ctx = crypto_skcipher_ctx(cipher);
struct aspeed_hace_dev *hace_dev = ctx->hace_dev;
u32 crypto_alg = cmd & HACE_CMD_OP_MODE_MASK;
if (crypto_alg == HACE_CMD_CBC || crypto_alg == HACE_CMD_ECB) {
if (!IS_ALIGNED(req->cryptlen, AES_BLOCK_SIZE))
return -EINVAL;
}
CIPHER_DBG(hace_dev, "%s\n",
(cmd & HACE_CMD_ENCRYPT) ? "encrypt" : "decrypt");
cmd |= HACE_CMD_AES_SELECT | HACE_CMD_RI_WO_DATA_ENABLE |
HACE_CMD_CONTEXT_LOAD_ENABLE | HACE_CMD_CONTEXT_SAVE_ENABLE;
switch (ctx->key_len) {
case AES_KEYSIZE_128:
cmd |= HACE_CMD_AES128;
break;
case AES_KEYSIZE_192:
cmd |= HACE_CMD_AES192;
break;
case AES_KEYSIZE_256:
cmd |= HACE_CMD_AES256;
break;
default:
return -EINVAL;
}
rctx->enc_cmd = cmd;
return aspeed_hace_crypto_handle_queue(hace_dev, req);
}
static int aspeed_aes_setkey(struct crypto_skcipher *cipher, const u8 *key,
unsigned int keylen)
{
struct aspeed_cipher_ctx *ctx = crypto_skcipher_ctx(cipher);
struct aspeed_hace_dev *hace_dev = ctx->hace_dev;
struct crypto_aes_ctx gen_aes_key;
CIPHER_DBG(hace_dev, "keylen: %d bits\n", (keylen * 8));
if (keylen != AES_KEYSIZE_128 && keylen != AES_KEYSIZE_192 &&
keylen != AES_KEYSIZE_256)
return -EINVAL;
if (ctx->hace_dev->version == AST2500_VERSION) {
aes_expandkey(&gen_aes_key, key, keylen);
memcpy(ctx->key, gen_aes_key.key_enc, AES_MAX_KEYLENGTH);
} else {
memcpy(ctx->key, key, keylen);
}
ctx->key_len = keylen;
crypto_skcipher_clear_flags(ctx->fallback_tfm, CRYPTO_TFM_REQ_MASK);
crypto_skcipher_set_flags(ctx->fallback_tfm, cipher->base.crt_flags &
CRYPTO_TFM_REQ_MASK);
return crypto_skcipher_setkey(ctx->fallback_tfm, key, keylen);
}
static int aspeed_aes_ctr_decrypt(struct skcipher_request *req)
{
return aspeed_aes_crypt(req, HACE_CMD_DECRYPT | HACE_CMD_CTR);
}
static int aspeed_aes_ctr_encrypt(struct skcipher_request *req)
{
return aspeed_aes_crypt(req, HACE_CMD_ENCRYPT | HACE_CMD_CTR);
}
static int aspeed_aes_cbc_decrypt(struct skcipher_request *req)
{
return aspeed_aes_crypt(req, HACE_CMD_DECRYPT | HACE_CMD_CBC);
}
static int aspeed_aes_cbc_encrypt(struct skcipher_request *req)
{
return aspeed_aes_crypt(req, HACE_CMD_ENCRYPT | HACE_CMD_CBC);
}
static int aspeed_aes_ecb_decrypt(struct skcipher_request *req)
{
return aspeed_aes_crypt(req, HACE_CMD_DECRYPT | HACE_CMD_ECB);
}
static int aspeed_aes_ecb_encrypt(struct skcipher_request *req)
{
return aspeed_aes_crypt(req, HACE_CMD_ENCRYPT | HACE_CMD_ECB);
}
static int aspeed_crypto_cra_init(struct crypto_skcipher *tfm)
{
struct aspeed_cipher_ctx *ctx = crypto_skcipher_ctx(tfm);
struct skcipher_alg *alg = crypto_skcipher_alg(tfm);
const char *name = crypto_tfm_alg_name(&tfm->base);
struct aspeed_hace_alg *crypto_alg;
crypto_alg = container_of(alg, struct aspeed_hace_alg, alg.skcipher.base);
ctx->hace_dev = crypto_alg->hace_dev;
ctx->start = aspeed_hace_skcipher_trigger;
CIPHER_DBG(ctx->hace_dev, "%s\n", name);
ctx->fallback_tfm = crypto_alloc_skcipher(name, 0, CRYPTO_ALG_ASYNC |
CRYPTO_ALG_NEED_FALLBACK);
if (IS_ERR(ctx->fallback_tfm)) {
dev_err(ctx->hace_dev->dev, "ERROR: Cannot allocate fallback for %s %ld\n",
name, PTR_ERR(ctx->fallback_tfm));
return PTR_ERR(ctx->fallback_tfm);
}
crypto_skcipher_set_reqsize(tfm, sizeof(struct aspeed_cipher_reqctx) +
crypto_skcipher_reqsize(ctx->fallback_tfm));
return 0;
}
static void aspeed_crypto_cra_exit(struct crypto_skcipher *tfm)
{
struct aspeed_cipher_ctx *ctx = crypto_skcipher_ctx(tfm);
struct aspeed_hace_dev *hace_dev = ctx->hace_dev;
CIPHER_DBG(hace_dev, "%s\n", crypto_tfm_alg_name(&tfm->base));
crypto_free_skcipher(ctx->fallback_tfm);
}
static struct aspeed_hace_alg aspeed_crypto_algs[] = {
{
.alg.skcipher.base = {
.min_keysize = AES_MIN_KEY_SIZE,
.max_keysize = AES_MAX_KEY_SIZE,
.setkey = aspeed_aes_setkey,
.encrypt = aspeed_aes_ecb_encrypt,
.decrypt = aspeed_aes_ecb_decrypt,
.init = aspeed_crypto_cra_init,
.exit = aspeed_crypto_cra_exit,
.base = {
.cra_name = "ecb(aes)",
.cra_driver_name = "aspeed-ecb-aes",
.cra_priority = 300,
.cra_flags = CRYPTO_ALG_KERN_DRIVER_ONLY |
CRYPTO_ALG_ASYNC |
CRYPTO_ALG_NEED_FALLBACK,
.cra_blocksize = AES_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct aspeed_cipher_ctx),
.cra_alignmask = 0x0f,
.cra_module = THIS_MODULE,
}
},
.alg.skcipher.op = {
.do_one_request = aspeed_crypto_do_request,
},
},
{
.alg.skcipher.base = {
.ivsize = AES_BLOCK_SIZE,
.min_keysize = AES_MIN_KEY_SIZE,
.max_keysize = AES_MAX_KEY_SIZE,
.setkey = aspeed_aes_setkey,
.encrypt = aspeed_aes_cbc_encrypt,
.decrypt = aspeed_aes_cbc_decrypt,
.init = aspeed_crypto_cra_init,
.exit = aspeed_crypto_cra_exit,
.base = {
.cra_name = "cbc(aes)",
.cra_driver_name = "aspeed-cbc-aes",
.cra_priority = 300,
.cra_flags = CRYPTO_ALG_KERN_DRIVER_ONLY |
CRYPTO_ALG_ASYNC |
CRYPTO_ALG_NEED_FALLBACK,
.cra_blocksize = AES_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct aspeed_cipher_ctx),
.cra_alignmask = 0x0f,
.cra_module = THIS_MODULE,
}
},
.alg.skcipher.op = {
.do_one_request = aspeed_crypto_do_request,
},
},
{
.alg.skcipher.base = {
.min_keysize = DES_KEY_SIZE,
.max_keysize = DES_KEY_SIZE,
.setkey = aspeed_des_setkey,
.encrypt = aspeed_des_ecb_encrypt,
.decrypt = aspeed_des_ecb_decrypt,
.init = aspeed_crypto_cra_init,
.exit = aspeed_crypto_cra_exit,
.base = {
.cra_name = "ecb(des)",
.cra_driver_name = "aspeed-ecb-des",
.cra_priority = 300,
.cra_flags = CRYPTO_ALG_KERN_DRIVER_ONLY |
CRYPTO_ALG_ASYNC |
CRYPTO_ALG_NEED_FALLBACK,
.cra_blocksize = DES_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct aspeed_cipher_ctx),
.cra_alignmask = 0x0f,
.cra_module = THIS_MODULE,
}
},
.alg.skcipher.op = {
.do_one_request = aspeed_crypto_do_request,
},
},
{
.alg.skcipher.base = {
.ivsize = DES_BLOCK_SIZE,
.min_keysize = DES_KEY_SIZE,
.max_keysize = DES_KEY_SIZE,
.setkey = aspeed_des_setkey,
.encrypt = aspeed_des_cbc_encrypt,
.decrypt = aspeed_des_cbc_decrypt,
.init = aspeed_crypto_cra_init,
.exit = aspeed_crypto_cra_exit,
.base = {
.cra_name = "cbc(des)",
.cra_driver_name = "aspeed-cbc-des",
.cra_priority = 300,
.cra_flags = CRYPTO_ALG_KERN_DRIVER_ONLY |
CRYPTO_ALG_ASYNC |
CRYPTO_ALG_NEED_FALLBACK,
.cra_blocksize = DES_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct aspeed_cipher_ctx),
.cra_alignmask = 0x0f,
.cra_module = THIS_MODULE,
}
},
.alg.skcipher.op = {
.do_one_request = aspeed_crypto_do_request,
},
},
{
.alg.skcipher.base = {
.min_keysize = DES3_EDE_KEY_SIZE,
.max_keysize = DES3_EDE_KEY_SIZE,
.setkey = aspeed_des_setkey,
.encrypt = aspeed_tdes_ecb_encrypt,
.decrypt = aspeed_tdes_ecb_decrypt,
.init = aspeed_crypto_cra_init,
.exit = aspeed_crypto_cra_exit,
.base = {
.cra_name = "ecb(des3_ede)",
.cra_driver_name = "aspeed-ecb-tdes",
.cra_priority = 300,
.cra_flags = CRYPTO_ALG_KERN_DRIVER_ONLY |
CRYPTO_ALG_ASYNC |
CRYPTO_ALG_NEED_FALLBACK,
.cra_blocksize = DES_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct aspeed_cipher_ctx),
.cra_alignmask = 0x0f,
.cra_module = THIS_MODULE,
}
},
.alg.skcipher.op = {
.do_one_request = aspeed_crypto_do_request,
},
},
{
.alg.skcipher.base = {
.ivsize = DES_BLOCK_SIZE,
.min_keysize = DES3_EDE_KEY_SIZE,
.max_keysize = DES3_EDE_KEY_SIZE,
.setkey = aspeed_des_setkey,
.encrypt = aspeed_tdes_cbc_encrypt,
.decrypt = aspeed_tdes_cbc_decrypt,
.init = aspeed_crypto_cra_init,
.exit = aspeed_crypto_cra_exit,
.base = {
.cra_name = "cbc(des3_ede)",
.cra_driver_name = "aspeed-cbc-tdes",
.cra_priority = 300,
.cra_flags = CRYPTO_ALG_KERN_DRIVER_ONLY |
CRYPTO_ALG_ASYNC |
CRYPTO_ALG_NEED_FALLBACK,
.cra_blocksize = DES_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct aspeed_cipher_ctx),
.cra_alignmask = 0x0f,
.cra_module = THIS_MODULE,
}
},
.alg.skcipher.op = {
.do_one_request = aspeed_crypto_do_request,
},
},
};
static struct aspeed_hace_alg aspeed_crypto_algs_g6[] = {
{
.alg.skcipher.base = {
.ivsize = AES_BLOCK_SIZE,
.min_keysize = AES_MIN_KEY_SIZE,
.max_keysize = AES_MAX_KEY_SIZE,
.setkey = aspeed_aes_setkey,
.encrypt = aspeed_aes_ctr_encrypt,
.decrypt = aspeed_aes_ctr_decrypt,
.init = aspeed_crypto_cra_init,
.exit = aspeed_crypto_cra_exit,
.base = {
.cra_name = "ctr(aes)",
.cra_driver_name = "aspeed-ctr-aes",
.cra_priority = 300,
.cra_flags = CRYPTO_ALG_KERN_DRIVER_ONLY |
CRYPTO_ALG_ASYNC,
.cra_blocksize = 1,
.cra_ctxsize = sizeof(struct aspeed_cipher_ctx),
.cra_alignmask = 0x0f,
.cra_module = THIS_MODULE,
}
},
.alg.skcipher.op = {
.do_one_request = aspeed_crypto_do_request,
},
},
{
.alg.skcipher.base = {
.ivsize = DES_BLOCK_SIZE,
.min_keysize = DES_KEY_SIZE,
.max_keysize = DES_KEY_SIZE,
.setkey = aspeed_des_setkey,
.encrypt = aspeed_des_ctr_encrypt,
.decrypt = aspeed_des_ctr_decrypt,
.init = aspeed_crypto_cra_init,
.exit = aspeed_crypto_cra_exit,
.base = {
.cra_name = "ctr(des)",
.cra_driver_name = "aspeed-ctr-des",
.cra_priority = 300,
.cra_flags = CRYPTO_ALG_KERN_DRIVER_ONLY |
CRYPTO_ALG_ASYNC,
.cra_blocksize = 1,
.cra_ctxsize = sizeof(struct aspeed_cipher_ctx),
.cra_alignmask = 0x0f,
.cra_module = THIS_MODULE,
}
},
.alg.skcipher.op = {
.do_one_request = aspeed_crypto_do_request,
},
},
{
.alg.skcipher.base = {
.ivsize = DES_BLOCK_SIZE,
.min_keysize = DES3_EDE_KEY_SIZE,
.max_keysize = DES3_EDE_KEY_SIZE,
.setkey = aspeed_des_setkey,
.encrypt = aspeed_tdes_ctr_encrypt,
.decrypt = aspeed_tdes_ctr_decrypt,
.init = aspeed_crypto_cra_init,
.exit = aspeed_crypto_cra_exit,
.base = {
.cra_name = "ctr(des3_ede)",
.cra_driver_name = "aspeed-ctr-tdes",
.cra_priority = 300,
.cra_flags = CRYPTO_ALG_KERN_DRIVER_ONLY |
CRYPTO_ALG_ASYNC,
.cra_blocksize = 1,
.cra_ctxsize = sizeof(struct aspeed_cipher_ctx),
.cra_alignmask = 0x0f,
.cra_module = THIS_MODULE,
}
},
.alg.skcipher.op = {
.do_one_request = aspeed_crypto_do_request,
},
},
};
void aspeed_unregister_hace_crypto_algs(struct aspeed_hace_dev *hace_dev)
{
int i;
for (i = 0; i < ARRAY_SIZE(aspeed_crypto_algs); i++)
crypto_engine_unregister_skcipher(&aspeed_crypto_algs[i].alg.skcipher);
if (hace_dev->version != AST2600_VERSION)
return;
for (i = 0; i < ARRAY_SIZE(aspeed_crypto_algs_g6); i++)
crypto_engine_unregister_skcipher(&aspeed_crypto_algs_g6[i].alg.skcipher);
}
void aspeed_register_hace_crypto_algs(struct aspeed_hace_dev *hace_dev)
{
int rc, i;
CIPHER_DBG(hace_dev, "\n");
for (i = 0; i < ARRAY_SIZE(aspeed_crypto_algs); i++) {
aspeed_crypto_algs[i].hace_dev = hace_dev;
rc = crypto_engine_register_skcipher(&aspeed_crypto_algs[i].alg.skcipher);
if (rc) {
CIPHER_DBG(hace_dev, "Failed to register %s\n",
aspeed_crypto_algs[i].alg.skcipher.base.base.cra_name);
}
}
if (hace_dev->version != AST2600_VERSION)
return;
for (i = 0; i < ARRAY_SIZE(aspeed_crypto_algs_g6); i++) {
aspeed_crypto_algs_g6[i].hace_dev = hace_dev;
rc = crypto_engine_register_skcipher(&aspeed_crypto_algs_g6[i].alg.skcipher);
if (rc) {
CIPHER_DBG(hace_dev, "Failed to register %s\n",
aspeed_crypto_algs_g6[i].alg.skcipher.base.base.cra_name);
}
}
}