// SPDX-License-Identifier: GPL-2.0-or-later
/*
* Cedrus VPU driver
*
* Copyright (c) 2013 Jens Kuske <[email protected]>
* Copyright (c) 2018 Bootlin
*/
#include <linux/delay.h>
#include <linux/types.h>
#include <media/videobuf2-dma-contig.h>
#include "cedrus.h"
#include "cedrus_hw.h"
#include "cedrus_regs.h"
enum cedrus_h264_sram_off {
CEDRUS_SRAM_H264_PRED_WEIGHT_TABLE = 0x000,
CEDRUS_SRAM_H264_FRAMEBUFFER_LIST = 0x100,
CEDRUS_SRAM_H264_REF_LIST_0 = 0x190,
CEDRUS_SRAM_H264_REF_LIST_1 = 0x199,
CEDRUS_SRAM_H264_SCALING_LIST_8x8_0 = 0x200,
CEDRUS_SRAM_H264_SCALING_LIST_8x8_1 = 0x210,
CEDRUS_SRAM_H264_SCALING_LIST_4x4 = 0x220,
};
struct cedrus_h264_sram_ref_pic {
__le32 top_field_order_cnt;
__le32 bottom_field_order_cnt;
__le32 frame_info;
__le32 luma_ptr;
__le32 chroma_ptr;
__le32 mv_col_top_ptr;
__le32 mv_col_bot_ptr;
__le32 reserved;
} __packed;
#define CEDRUS_H264_FRAME_NUM 18
#define CEDRUS_NEIGHBOR_INFO_BUF_SIZE (32 * SZ_1K)
#define CEDRUS_MIN_PIC_INFO_BUF_SIZE (130 * SZ_1K)
static void cedrus_h264_write_sram(struct cedrus_dev *dev,
enum cedrus_h264_sram_off off,
const void *data, size_t len)
{
const u32 *buffer = data;
size_t count = DIV_ROUND_UP(len, 4);
cedrus_write(dev, VE_AVC_SRAM_PORT_OFFSET, off << 2);
while (count--)
cedrus_write(dev, VE_AVC_SRAM_PORT_DATA, *buffer++);
}
static dma_addr_t cedrus_h264_mv_col_buf_addr(struct cedrus_buffer *buf,
unsigned int field)
{
dma_addr_t addr = buf->codec.h264.mv_col_buf_dma;
/* Adjust for the field */
addr += field * buf->codec.h264.mv_col_buf_size / 2;
return addr;
}
static void cedrus_fill_ref_pic(struct cedrus_ctx *ctx,
struct cedrus_buffer *buf,
unsigned int top_field_order_cnt,
unsigned int bottom_field_order_cnt,
struct cedrus_h264_sram_ref_pic *pic)
{
struct vb2_buffer *vbuf = &buf->m2m_buf.vb.vb2_buf;
pic->top_field_order_cnt = cpu_to_le32(top_field_order_cnt);
pic->bottom_field_order_cnt = cpu_to_le32(bottom_field_order_cnt);
pic->frame_info = cpu_to_le32(buf->codec.h264.pic_type << 8);
pic->luma_ptr = cpu_to_le32(cedrus_buf_addr(vbuf, &ctx->dst_fmt, 0));
pic->chroma_ptr = cpu_to_le32(cedrus_buf_addr(vbuf, &ctx->dst_fmt, 1));
pic->mv_col_top_ptr = cpu_to_le32(cedrus_h264_mv_col_buf_addr(buf, 0));
pic->mv_col_bot_ptr = cpu_to_le32(cedrus_h264_mv_col_buf_addr(buf, 1));
}
static int cedrus_write_frame_list(struct cedrus_ctx *ctx,
struct cedrus_run *run)
{
struct cedrus_h264_sram_ref_pic pic_list[CEDRUS_H264_FRAME_NUM];
const struct v4l2_ctrl_h264_decode_params *decode = run->h264.decode_params;
const struct v4l2_ctrl_h264_sps *sps = run->h264.sps;
struct vb2_queue *cap_q;
struct cedrus_buffer *output_buf;
struct cedrus_dev *dev = ctx->dev;
unsigned long used_dpbs = 0;
unsigned int position;
int output = -1;
unsigned int i;
cap_q = v4l2_m2m_get_vq(ctx->fh.m2m_ctx, V4L2_BUF_TYPE_VIDEO_CAPTURE);
memset(pic_list, 0, sizeof(pic_list));
for (i = 0; i < ARRAY_SIZE(decode->dpb); i++) {
const struct v4l2_h264_dpb_entry *dpb = &decode->dpb[i];
struct cedrus_buffer *cedrus_buf;
struct vb2_buffer *buf;
if (!(dpb->flags & V4L2_H264_DPB_ENTRY_FLAG_VALID))
continue;
buf = vb2_find_buffer(cap_q, dpb->reference_ts);
if (!buf)
continue;
cedrus_buf = vb2_to_cedrus_buffer(buf);
position = cedrus_buf->codec.h264.position;
used_dpbs |= BIT(position);
if (run->dst->vb2_buf.timestamp == dpb->reference_ts) {
output = position;
continue;
}
if (!(dpb->flags & V4L2_H264_DPB_ENTRY_FLAG_ACTIVE))
continue;
cedrus_fill_ref_pic(ctx, cedrus_buf,
dpb->top_field_order_cnt,
dpb->bottom_field_order_cnt,
&pic_list[position]);
}
if (output >= 0)
position = output;
else
position = find_first_zero_bit(&used_dpbs, CEDRUS_H264_FRAME_NUM);
output_buf = vb2_to_cedrus_buffer(&run->dst->vb2_buf);
output_buf->codec.h264.position = position;
if (!output_buf->codec.h264.mv_col_buf_size) {
const struct v4l2_ctrl_h264_sps *sps = run->h264.sps;
unsigned int field_size;
field_size = DIV_ROUND_UP(ctx->src_fmt.width, 16) *
DIV_ROUND_UP(ctx->src_fmt.height, 16) * 16;
if (!(sps->flags & V4L2_H264_SPS_FLAG_DIRECT_8X8_INFERENCE))
field_size = field_size * 2;
if (!(sps->flags & V4L2_H264_SPS_FLAG_FRAME_MBS_ONLY))
field_size = field_size * 2;
output_buf->codec.h264.mv_col_buf_size = field_size * 2;
/* Buffer is never accessed by CPU, so we can skip kernel mapping. */
output_buf->codec.h264.mv_col_buf =
dma_alloc_attrs(dev->dev,
output_buf->codec.h264.mv_col_buf_size,
&output_buf->codec.h264.mv_col_buf_dma,
GFP_KERNEL, DMA_ATTR_NO_KERNEL_MAPPING);
if (!output_buf->codec.h264.mv_col_buf) {
output_buf->codec.h264.mv_col_buf_size = 0;
return -ENOMEM;
}
}
if (decode->flags & V4L2_H264_DECODE_PARAM_FLAG_FIELD_PIC)
output_buf->codec.h264.pic_type = CEDRUS_H264_PIC_TYPE_FIELD;
else if (sps->flags & V4L2_H264_SPS_FLAG_MB_ADAPTIVE_FRAME_FIELD)
output_buf->codec.h264.pic_type = CEDRUS_H264_PIC_TYPE_MBAFF;
else
output_buf->codec.h264.pic_type = CEDRUS_H264_PIC_TYPE_FRAME;
cedrus_fill_ref_pic(ctx, output_buf,
decode->top_field_order_cnt,
decode->bottom_field_order_cnt,
&pic_list[position]);
cedrus_h264_write_sram(dev, CEDRUS_SRAM_H264_FRAMEBUFFER_LIST,
pic_list, sizeof(pic_list));
cedrus_write(dev, VE_H264_OUTPUT_FRAME_IDX, position);
return 0;
}
#define CEDRUS_MAX_REF_IDX 32
static void _cedrus_write_ref_list(struct cedrus_ctx *ctx,
struct cedrus_run *run,
const struct v4l2_h264_reference *ref_list,
u8 num_ref, enum cedrus_h264_sram_off sram)
{
const struct v4l2_ctrl_h264_decode_params *decode = run->h264.decode_params;
struct vb2_queue *cap_q;
struct cedrus_dev *dev = ctx->dev;
u8 sram_array[CEDRUS_MAX_REF_IDX];
unsigned int i;
size_t size;
cap_q = v4l2_m2m_get_vq(ctx->fh.m2m_ctx, V4L2_BUF_TYPE_VIDEO_CAPTURE);
memset(sram_array, 0, sizeof(sram_array));
for (i = 0; i < num_ref; i++) {
const struct v4l2_h264_dpb_entry *dpb;
const struct cedrus_buffer *cedrus_buf;
unsigned int position;
struct vb2_buffer *buf;
u8 dpb_idx;
dpb_idx = ref_list[i].index;
dpb = &decode->dpb[dpb_idx];
if (!(dpb->flags & V4L2_H264_DPB_ENTRY_FLAG_ACTIVE))
continue;
buf = vb2_find_buffer(cap_q, dpb->reference_ts);
if (!buf)
continue;
cedrus_buf = vb2_to_cedrus_buffer(buf);
position = cedrus_buf->codec.h264.position;
sram_array[i] |= position << 1;
if (ref_list[i].fields == V4L2_H264_BOTTOM_FIELD_REF)
sram_array[i] |= BIT(0);
}
size = min_t(size_t, ALIGN(num_ref, 4), sizeof(sram_array));
cedrus_h264_write_sram(dev, sram, &sram_array, size);
}
static void cedrus_write_ref_list0(struct cedrus_ctx *ctx,
struct cedrus_run *run)
{
const struct v4l2_ctrl_h264_slice_params *slice = run->h264.slice_params;
_cedrus_write_ref_list(ctx, run,
slice->ref_pic_list0,
slice->num_ref_idx_l0_active_minus1 + 1,
CEDRUS_SRAM_H264_REF_LIST_0);
}
static void cedrus_write_ref_list1(struct cedrus_ctx *ctx,
struct cedrus_run *run)
{
const struct v4l2_ctrl_h264_slice_params *slice = run->h264.slice_params;
_cedrus_write_ref_list(ctx, run,
slice->ref_pic_list1,
slice->num_ref_idx_l1_active_minus1 + 1,
CEDRUS_SRAM_H264_REF_LIST_1);
}
static void cedrus_write_scaling_lists(struct cedrus_ctx *ctx,
struct cedrus_run *run)
{
const struct v4l2_ctrl_h264_scaling_matrix *scaling =
run->h264.scaling_matrix;
const struct v4l2_ctrl_h264_pps *pps = run->h264.pps;
struct cedrus_dev *dev = ctx->dev;
if (!(pps->flags & V4L2_H264_PPS_FLAG_SCALING_MATRIX_PRESENT))
return;
cedrus_h264_write_sram(dev, CEDRUS_SRAM_H264_SCALING_LIST_8x8_0,
scaling->scaling_list_8x8[0],
sizeof(scaling->scaling_list_8x8[0]));
cedrus_h264_write_sram(dev, CEDRUS_SRAM_H264_SCALING_LIST_8x8_1,
scaling->scaling_list_8x8[1],
sizeof(scaling->scaling_list_8x8[1]));
cedrus_h264_write_sram(dev, CEDRUS_SRAM_H264_SCALING_LIST_4x4,
scaling->scaling_list_4x4,
sizeof(scaling->scaling_list_4x4));
}
static void cedrus_write_pred_weight_table(struct cedrus_ctx *ctx,
struct cedrus_run *run)
{
const struct v4l2_ctrl_h264_pred_weights *pred_weight =
run->h264.pred_weights;
struct cedrus_dev *dev = ctx->dev;
int i, j, k;
cedrus_write(dev, VE_H264_SHS_WP,
((pred_weight->chroma_log2_weight_denom & 0x7) << 4) |
((pred_weight->luma_log2_weight_denom & 0x7) << 0));
cedrus_write(dev, VE_AVC_SRAM_PORT_OFFSET,
CEDRUS_SRAM_H264_PRED_WEIGHT_TABLE << 2);
for (i = 0; i < ARRAY_SIZE(pred_weight->weight_factors); i++) {
const struct v4l2_h264_weight_factors *factors =
&pred_weight->weight_factors[i];
for (j = 0; j < ARRAY_SIZE(factors->luma_weight); j++) {
u32 val;
val = (((u32)factors->luma_offset[j] & 0x1ff) << 16) |
(factors->luma_weight[j] & 0x1ff);
cedrus_write(dev, VE_AVC_SRAM_PORT_DATA, val);
}
for (j = 0; j < ARRAY_SIZE(factors->chroma_weight); j++) {
for (k = 0; k < ARRAY_SIZE(factors->chroma_weight[0]); k++) {
u32 val;
val = (((u32)factors->chroma_offset[j][k] & 0x1ff) << 16) |
(factors->chroma_weight[j][k] & 0x1ff);
cedrus_write(dev, VE_AVC_SRAM_PORT_DATA, val);
}
}
}
}
/*
* It turns out that using VE_H264_VLD_OFFSET to skip bits is not reliable. In
* rare cases frame is not decoded correctly. However, setting offset to 0 and
* skipping appropriate amount of bits with flush bits trigger always works.
*/
static void cedrus_skip_bits(struct cedrus_dev *dev, int num)
{
int count = 0;
while (count < num) {
int tmp = min(num - count, 32);
cedrus_write(dev, VE_H264_TRIGGER_TYPE,
VE_H264_TRIGGER_TYPE_FLUSH_BITS |
VE_H264_TRIGGER_TYPE_N_BITS(tmp));
while (cedrus_read(dev, VE_H264_STATUS) & VE_H264_STATUS_VLD_BUSY)
udelay(1);
count += tmp;
}
}
static void cedrus_set_params(struct cedrus_ctx *ctx,
struct cedrus_run *run)
{
const struct v4l2_ctrl_h264_decode_params *decode = run->h264.decode_params;
const struct v4l2_ctrl_h264_slice_params *slice = run->h264.slice_params;
const struct v4l2_ctrl_h264_pps *pps = run->h264.pps;
const struct v4l2_ctrl_h264_sps *sps = run->h264.sps;
struct vb2_buffer *src_buf = &run->src->vb2_buf;
struct cedrus_dev *dev = ctx->dev;
dma_addr_t src_buf_addr;
size_t slice_bytes = vb2_get_plane_payload(src_buf, 0);
unsigned int pic_width_in_mbs;
bool mbaff_pic;
u32 reg;
cedrus_write(dev, VE_H264_VLD_LEN, slice_bytes * 8);
cedrus_write(dev, VE_H264_VLD_OFFSET, 0);
src_buf_addr = vb2_dma_contig_plane_dma_addr(src_buf, 0);
cedrus_write(dev, VE_H264_VLD_END, src_buf_addr + slice_bytes);
cedrus_write(dev, VE_H264_VLD_ADDR,
VE_H264_VLD_ADDR_VAL(src_buf_addr) |
VE_H264_VLD_ADDR_FIRST | VE_H264_VLD_ADDR_VALID |
VE_H264_VLD_ADDR_LAST);
if (ctx->src_fmt.width > 2048) {
cedrus_write(dev, VE_BUF_CTRL,
VE_BUF_CTRL_INTRAPRED_MIXED_RAM |
VE_BUF_CTRL_DBLK_MIXED_RAM);
cedrus_write(dev, VE_DBLK_DRAM_BUF_ADDR,
ctx->codec.h264.deblk_buf_dma);
cedrus_write(dev, VE_INTRAPRED_DRAM_BUF_ADDR,
ctx->codec.h264.intra_pred_buf_dma);
} else {
cedrus_write(dev, VE_BUF_CTRL,
VE_BUF_CTRL_INTRAPRED_INT_SRAM |
VE_BUF_CTRL_DBLK_INT_SRAM);
}
/*
* FIXME: Since the bitstream parsing is done in software, and
* in userspace, this shouldn't be needed anymore. But it
* turns out that removing it breaks the decoding process,
* without any clear indication why.
*/
cedrus_write(dev, VE_H264_TRIGGER_TYPE,
VE_H264_TRIGGER_TYPE_INIT_SWDEC);
cedrus_skip_bits(dev, slice->header_bit_size);
if (V4L2_H264_CTRL_PRED_WEIGHTS_REQUIRED(pps, slice))
cedrus_write_pred_weight_table(ctx, run);
if ((slice->slice_type == V4L2_H264_SLICE_TYPE_P) ||
(slice->slice_type == V4L2_H264_SLICE_TYPE_SP) ||
(slice->slice_type == V4L2_H264_SLICE_TYPE_B))
cedrus_write_ref_list0(ctx, run);
if (slice->slice_type == V4L2_H264_SLICE_TYPE_B)
cedrus_write_ref_list1(ctx, run);
// picture parameters
reg = 0;
/*
* FIXME: the kernel headers are allowing the default value to
* be passed, but the libva doesn't give us that.
*/
reg |= (slice->num_ref_idx_l0_active_minus1 & 0x1f) << 10;
reg |= (slice->num_ref_idx_l1_active_minus1 & 0x1f) << 5;
reg |= (pps->weighted_bipred_idc & 0x3) << 2;
if (pps->flags & V4L2_H264_PPS_FLAG_ENTROPY_CODING_MODE)
reg |= VE_H264_PPS_ENTROPY_CODING_MODE;
if (pps->flags & V4L2_H264_PPS_FLAG_WEIGHTED_PRED)
reg |= VE_H264_PPS_WEIGHTED_PRED;
if (pps->flags & V4L2_H264_PPS_FLAG_CONSTRAINED_INTRA_PRED)
reg |= VE_H264_PPS_CONSTRAINED_INTRA_PRED;
if (pps->flags & V4L2_H264_PPS_FLAG_TRANSFORM_8X8_MODE)
reg |= VE_H264_PPS_TRANSFORM_8X8_MODE;
cedrus_write(dev, VE_H264_PPS, reg);
// sequence parameters
reg = 0;
reg |= (sps->chroma_format_idc & 0x7) << 19;
reg |= (sps->pic_width_in_mbs_minus1 & 0xff) << 8;
reg |= sps->pic_height_in_map_units_minus1 & 0xff;
if (sps->flags & V4L2_H264_SPS_FLAG_FRAME_MBS_ONLY)
reg |= VE_H264_SPS_MBS_ONLY;
if (sps->flags & V4L2_H264_SPS_FLAG_MB_ADAPTIVE_FRAME_FIELD)
reg |= VE_H264_SPS_MB_ADAPTIVE_FRAME_FIELD;
if (sps->flags & V4L2_H264_SPS_FLAG_DIRECT_8X8_INFERENCE)
reg |= VE_H264_SPS_DIRECT_8X8_INFERENCE;
cedrus_write(dev, VE_H264_SPS, reg);
mbaff_pic = !(decode->flags & V4L2_H264_DECODE_PARAM_FLAG_FIELD_PIC) &&
(sps->flags & V4L2_H264_SPS_FLAG_MB_ADAPTIVE_FRAME_FIELD);
pic_width_in_mbs = sps->pic_width_in_mbs_minus1 + 1;
// slice parameters
reg = 0;
reg |= ((slice->first_mb_in_slice % pic_width_in_mbs) & 0xff) << 24;
reg |= (((slice->first_mb_in_slice / pic_width_in_mbs) *
(mbaff_pic + 1)) & 0xff) << 16;
reg |= decode->nal_ref_idc ? BIT(12) : 0;
reg |= (slice->slice_type & 0xf) << 8;
reg |= slice->cabac_init_idc & 0x3;
if (ctx->fh.m2m_ctx->new_frame)
reg |= VE_H264_SHS_FIRST_SLICE_IN_PIC;
if (decode->flags & V4L2_H264_DECODE_PARAM_FLAG_FIELD_PIC)
reg |= VE_H264_SHS_FIELD_PIC;
if (decode->flags & V4L2_H264_DECODE_PARAM_FLAG_BOTTOM_FIELD)
reg |= VE_H264_SHS_BOTTOM_FIELD;
if (slice->flags & V4L2_H264_SLICE_FLAG_DIRECT_SPATIAL_MV_PRED)
reg |= VE_H264_SHS_DIRECT_SPATIAL_MV_PRED;
cedrus_write(dev, VE_H264_SHS, reg);
reg = 0;
reg |= VE_H264_SHS2_NUM_REF_IDX_ACTIVE_OVRD;
reg |= (slice->num_ref_idx_l0_active_minus1 & 0x1f) << 24;
reg |= (slice->num_ref_idx_l1_active_minus1 & 0x1f) << 16;
reg |= (slice->disable_deblocking_filter_idc & 0x3) << 8;
reg |= (slice->slice_alpha_c0_offset_div2 & 0xf) << 4;
reg |= slice->slice_beta_offset_div2 & 0xf;
cedrus_write(dev, VE_H264_SHS2, reg);
reg = 0;
reg |= (pps->second_chroma_qp_index_offset & 0x3f) << 16;
reg |= (pps->chroma_qp_index_offset & 0x3f) << 8;
reg |= (pps->pic_init_qp_minus26 + 26 + slice->slice_qp_delta) & 0x3f;
if (!(pps->flags & V4L2_H264_PPS_FLAG_SCALING_MATRIX_PRESENT))
reg |= VE_H264_SHS_QP_SCALING_MATRIX_DEFAULT;
cedrus_write(dev, VE_H264_SHS_QP, reg);
// clear status flags
cedrus_write(dev, VE_H264_STATUS, cedrus_read(dev, VE_H264_STATUS));
// enable int
cedrus_write(dev, VE_H264_CTRL,
VE_H264_CTRL_SLICE_DECODE_INT |
VE_H264_CTRL_DECODE_ERR_INT |
VE_H264_CTRL_VLD_DATA_REQ_INT);
}
static enum cedrus_irq_status
cedrus_h264_irq_status(struct cedrus_ctx *ctx)
{
struct cedrus_dev *dev = ctx->dev;
u32 reg = cedrus_read(dev, VE_H264_STATUS);
if (reg & (VE_H264_STATUS_DECODE_ERR_INT |
VE_H264_STATUS_VLD_DATA_REQ_INT))
return CEDRUS_IRQ_ERROR;
if (reg & VE_H264_CTRL_SLICE_DECODE_INT)
return CEDRUS_IRQ_OK;
return CEDRUS_IRQ_NONE;
}
static void cedrus_h264_irq_clear(struct cedrus_ctx *ctx)
{
struct cedrus_dev *dev = ctx->dev;
cedrus_write(dev, VE_H264_STATUS,
VE_H264_STATUS_INT_MASK);
}
static void cedrus_h264_irq_disable(struct cedrus_ctx *ctx)
{
struct cedrus_dev *dev = ctx->dev;
u32 reg = cedrus_read(dev, VE_H264_CTRL);
cedrus_write(dev, VE_H264_CTRL,
reg & ~VE_H264_CTRL_INT_MASK);
}
static int cedrus_h264_setup(struct cedrus_ctx *ctx, struct cedrus_run *run)
{
struct cedrus_dev *dev = ctx->dev;
int ret;
cedrus_engine_enable(ctx);
cedrus_write(dev, VE_H264_SDROT_CTRL, 0);
cedrus_write(dev, VE_H264_EXTRA_BUFFER1,
ctx->codec.h264.pic_info_buf_dma);
cedrus_write(dev, VE_H264_EXTRA_BUFFER2,
ctx->codec.h264.neighbor_info_buf_dma);
cedrus_write_scaling_lists(ctx, run);
ret = cedrus_write_frame_list(ctx, run);
if (ret)
return ret;
cedrus_set_params(ctx, run);
return 0;
}
static int cedrus_h264_start(struct cedrus_ctx *ctx)
{
struct cedrus_dev *dev = ctx->dev;
unsigned int pic_info_size;
int ret;
/*
* NOTE: All buffers allocated here are only used by HW, so we
* can add DMA_ATTR_NO_KERNEL_MAPPING flag when allocating them.
*/
/* Formula for picture buffer size is taken from CedarX source. */
if (ctx->src_fmt.width > 2048)
pic_info_size = CEDRUS_H264_FRAME_NUM * 0x4000;
else
pic_info_size = CEDRUS_H264_FRAME_NUM * 0x1000;
/*
* FIXME: If V4L2_H264_SPS_FLAG_FRAME_MBS_ONLY is set,
* there is no need to multiply by 2.
*/
pic_info_size += ctx->src_fmt.height * 2 * 64;
if (pic_info_size < CEDRUS_MIN_PIC_INFO_BUF_SIZE)
pic_info_size = CEDRUS_MIN_PIC_INFO_BUF_SIZE;
ctx->codec.h264.pic_info_buf_size = pic_info_size;
ctx->codec.h264.pic_info_buf =
dma_alloc_attrs(dev->dev, ctx->codec.h264.pic_info_buf_size,
&ctx->codec.h264.pic_info_buf_dma,
GFP_KERNEL, DMA_ATTR_NO_KERNEL_MAPPING);
if (!ctx->codec.h264.pic_info_buf)
return -ENOMEM;
/*
* That buffer is supposed to be 16kiB in size, and be aligned
* on 16kiB as well. However, dma_alloc_attrs provides the
* guarantee that we'll have a DMA address aligned on the
* smallest page order that is greater to the requested size,
* so we don't have to overallocate.
*/
ctx->codec.h264.neighbor_info_buf =
dma_alloc_attrs(dev->dev, CEDRUS_NEIGHBOR_INFO_BUF_SIZE,
&ctx->codec.h264.neighbor_info_buf_dma,
GFP_KERNEL, DMA_ATTR_NO_KERNEL_MAPPING);
if (!ctx->codec.h264.neighbor_info_buf) {
ret = -ENOMEM;
goto err_pic_buf;
}
if (ctx->src_fmt.width > 2048) {
/*
* Formulas for deblock and intra prediction buffer sizes
* are taken from CedarX source.
*/
ctx->codec.h264.deblk_buf_size =
ALIGN(ctx->src_fmt.width, 32) * 12;
ctx->codec.h264.deblk_buf =
dma_alloc_attrs(dev->dev,
ctx->codec.h264.deblk_buf_size,
&ctx->codec.h264.deblk_buf_dma,
GFP_KERNEL, DMA_ATTR_NO_KERNEL_MAPPING);
if (!ctx->codec.h264.deblk_buf) {
ret = -ENOMEM;
goto err_neighbor_buf;
}
/*
* NOTE: Multiplying by two deviates from CedarX logic, but it
* is for some unknown reason needed for H264 4K decoding on H6.
*/
ctx->codec.h264.intra_pred_buf_size =
ALIGN(ctx->src_fmt.width, 64) * 5 * 2;
ctx->codec.h264.intra_pred_buf =
dma_alloc_attrs(dev->dev,
ctx->codec.h264.intra_pred_buf_size,
&ctx->codec.h264.intra_pred_buf_dma,
GFP_KERNEL, DMA_ATTR_NO_KERNEL_MAPPING);
if (!ctx->codec.h264.intra_pred_buf) {
ret = -ENOMEM;
goto err_deblk_buf;
}
}
return 0;
err_deblk_buf:
dma_free_attrs(dev->dev, ctx->codec.h264.deblk_buf_size,
ctx->codec.h264.deblk_buf,
ctx->codec.h264.deblk_buf_dma,
DMA_ATTR_NO_KERNEL_MAPPING);
err_neighbor_buf:
dma_free_attrs(dev->dev, CEDRUS_NEIGHBOR_INFO_BUF_SIZE,
ctx->codec.h264.neighbor_info_buf,
ctx->codec.h264.neighbor_info_buf_dma,
DMA_ATTR_NO_KERNEL_MAPPING);
err_pic_buf:
dma_free_attrs(dev->dev, ctx->codec.h264.pic_info_buf_size,
ctx->codec.h264.pic_info_buf,
ctx->codec.h264.pic_info_buf_dma,
DMA_ATTR_NO_KERNEL_MAPPING);
return ret;
}
static void cedrus_h264_stop(struct cedrus_ctx *ctx)
{
struct cedrus_dev *dev = ctx->dev;
struct cedrus_buffer *buf;
struct vb2_queue *vq;
unsigned int i;
vq = v4l2_m2m_get_vq(ctx->fh.m2m_ctx, V4L2_BUF_TYPE_VIDEO_CAPTURE);
for (i = 0; i < vb2_get_num_buffers(vq); i++) {
struct vb2_buffer *vb = vb2_get_buffer(vq, i);
if (!vb)
continue;
buf = vb2_to_cedrus_buffer(vb);
if (buf->codec.h264.mv_col_buf_size > 0) {
dma_free_attrs(dev->dev,
buf->codec.h264.mv_col_buf_size,
buf->codec.h264.mv_col_buf,
buf->codec.h264.mv_col_buf_dma,
DMA_ATTR_NO_KERNEL_MAPPING);
buf->codec.h264.mv_col_buf_size = 0;
}
}
dma_free_attrs(dev->dev, CEDRUS_NEIGHBOR_INFO_BUF_SIZE,
ctx->codec.h264.neighbor_info_buf,
ctx->codec.h264.neighbor_info_buf_dma,
DMA_ATTR_NO_KERNEL_MAPPING);
dma_free_attrs(dev->dev, ctx->codec.h264.pic_info_buf_size,
ctx->codec.h264.pic_info_buf,
ctx->codec.h264.pic_info_buf_dma,
DMA_ATTR_NO_KERNEL_MAPPING);
if (ctx->codec.h264.deblk_buf_size)
dma_free_attrs(dev->dev, ctx->codec.h264.deblk_buf_size,
ctx->codec.h264.deblk_buf,
ctx->codec.h264.deblk_buf_dma,
DMA_ATTR_NO_KERNEL_MAPPING);
if (ctx->codec.h264.intra_pred_buf_size)
dma_free_attrs(dev->dev, ctx->codec.h264.intra_pred_buf_size,
ctx->codec.h264.intra_pred_buf,
ctx->codec.h264.intra_pred_buf_dma,
DMA_ATTR_NO_KERNEL_MAPPING);
}
static void cedrus_h264_trigger(struct cedrus_ctx *ctx)
{
struct cedrus_dev *dev = ctx->dev;
cedrus_write(dev, VE_H264_TRIGGER_TYPE,
VE_H264_TRIGGER_TYPE_AVC_SLICE_DECODE);
}
struct cedrus_dec_ops cedrus_dec_ops_h264 = {
.irq_clear = cedrus_h264_irq_clear,
.irq_disable = cedrus_h264_irq_disable,
.irq_status = cedrus_h264_irq_status,
.setup = cedrus_h264_setup,
.start = cedrus_h264_start,
.stop = cedrus_h264_stop,
.trigger = cedrus_h264_trigger,
};