// SPDX-License-Identifier: GPL-2.0+
/*
* Copyright 2021-2022 Bootlin
* Author: Paul Kocialkowski <[email protected]>
*/
#include <linux/clk.h>
#include <linux/dma-mapping.h>
#include <linux/err.h>
#include <linux/interrupt.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/platform_device.h>
#include <linux/pm_runtime.h>
#include <linux/regmap.h>
#include <linux/reset.h>
#include <media/v4l2-device.h>
#include <media/v4l2-mc.h>
#include "sun6i_isp.h"
#include "sun6i_isp_capture.h"
#include "sun6i_isp_params.h"
#include "sun6i_isp_proc.h"
#include "sun6i_isp_reg.h"
/* Helpers */
u32 sun6i_isp_load_read(struct sun6i_isp_device *isp_dev, u32 offset)
{
u32 *data = (u32 *)(isp_dev->tables.load.data + offset);
return *data;
}
void sun6i_isp_load_write(struct sun6i_isp_device *isp_dev, u32 offset,
u32 value)
{
u32 *data = (u32 *)(isp_dev->tables.load.data + offset);
*data = value;
}
/* State */
/*
* The ISP works with a load buffer, which gets copied to the actual registers
* by the hardware before processing a frame when a specific flag is set.
* This is represented by tracking the ISP state in the different parts of
* the code with explicit sync points:
* - state update: to update the load buffer for the next frame if necessary;
* - state complete: to indicate that the state update was applied.
*/
static void sun6i_isp_state_ready(struct sun6i_isp_device *isp_dev)
{
struct regmap *regmap = isp_dev->regmap;
u32 value;
regmap_read(regmap, SUN6I_ISP_FE_CTRL_REG, &value);
value |= SUN6I_ISP_FE_CTRL_PARA_READY;
regmap_write(regmap, SUN6I_ISP_FE_CTRL_REG, value);
}
static void sun6i_isp_state_complete(struct sun6i_isp_device *isp_dev)
{
unsigned long flags;
spin_lock_irqsave(&isp_dev->state_lock, flags);
sun6i_isp_capture_state_complete(isp_dev);
sun6i_isp_params_state_complete(isp_dev);
spin_unlock_irqrestore(&isp_dev->state_lock, flags);
}
void sun6i_isp_state_update(struct sun6i_isp_device *isp_dev, bool ready_hold)
{
bool update = false;
unsigned long flags;
spin_lock_irqsave(&isp_dev->state_lock, flags);
sun6i_isp_capture_state_update(isp_dev, &update);
sun6i_isp_params_state_update(isp_dev, &update);
if (update && !ready_hold)
sun6i_isp_state_ready(isp_dev);
spin_unlock_irqrestore(&isp_dev->state_lock, flags);
}
/* Tables */
static int sun6i_isp_table_setup(struct sun6i_isp_device *isp_dev,
struct sun6i_isp_table *table)
{
table->data = dma_alloc_coherent(isp_dev->dev, table->size,
&table->address, GFP_KERNEL);
if (!table->data)
return -ENOMEM;
return 0;
}
static void sun6i_isp_table_cleanup(struct sun6i_isp_device *isp_dev,
struct sun6i_isp_table *table)
{
dma_free_coherent(isp_dev->dev, table->size, table->data,
table->address);
}
void sun6i_isp_tables_configure(struct sun6i_isp_device *isp_dev)
{
struct regmap *regmap = isp_dev->regmap;
regmap_write(regmap, SUN6I_ISP_REG_LOAD_ADDR_REG,
SUN6I_ISP_ADDR_VALUE(isp_dev->tables.load.address));
regmap_write(regmap, SUN6I_ISP_REG_SAVE_ADDR_REG,
SUN6I_ISP_ADDR_VALUE(isp_dev->tables.save.address));
regmap_write(regmap, SUN6I_ISP_LUT_TABLE_ADDR_REG,
SUN6I_ISP_ADDR_VALUE(isp_dev->tables.lut.address));
regmap_write(regmap, SUN6I_ISP_DRC_TABLE_ADDR_REG,
SUN6I_ISP_ADDR_VALUE(isp_dev->tables.drc.address));
regmap_write(regmap, SUN6I_ISP_STATS_ADDR_REG,
SUN6I_ISP_ADDR_VALUE(isp_dev->tables.stats.address));
}
static int sun6i_isp_tables_setup(struct sun6i_isp_device *isp_dev,
const struct sun6i_isp_variant *variant)
{
struct sun6i_isp_tables *tables = &isp_dev->tables;
int ret;
tables->load.size = variant->table_load_save_size;
ret = sun6i_isp_table_setup(isp_dev, &tables->load);
if (ret)
return ret;
tables->save.size = variant->table_load_save_size;
ret = sun6i_isp_table_setup(isp_dev, &tables->save);
if (ret)
return ret;
tables->lut.size = variant->table_lut_size;
ret = sun6i_isp_table_setup(isp_dev, &tables->lut);
if (ret)
return ret;
tables->drc.size = variant->table_drc_size;
ret = sun6i_isp_table_setup(isp_dev, &tables->drc);
if (ret)
return ret;
tables->stats.size = variant->table_stats_size;
ret = sun6i_isp_table_setup(isp_dev, &tables->stats);
if (ret)
return ret;
return 0;
}
static void sun6i_isp_tables_cleanup(struct sun6i_isp_device *isp_dev)
{
struct sun6i_isp_tables *tables = &isp_dev->tables;
sun6i_isp_table_cleanup(isp_dev, &tables->stats);
sun6i_isp_table_cleanup(isp_dev, &tables->drc);
sun6i_isp_table_cleanup(isp_dev, &tables->lut);
sun6i_isp_table_cleanup(isp_dev, &tables->save);
sun6i_isp_table_cleanup(isp_dev, &tables->load);
}
/* Media */
static const struct media_device_ops sun6i_isp_media_ops = {
.link_notify = v4l2_pipeline_link_notify,
};
/* V4L2 */
static int sun6i_isp_v4l2_setup(struct sun6i_isp_device *isp_dev)
{
struct sun6i_isp_v4l2 *v4l2 = &isp_dev->v4l2;
struct v4l2_device *v4l2_dev = &v4l2->v4l2_dev;
struct media_device *media_dev = &v4l2->media_dev;
struct device *dev = isp_dev->dev;
int ret;
/* Media Device */
strscpy(media_dev->model, SUN6I_ISP_DESCRIPTION,
sizeof(media_dev->model));
media_dev->ops = &sun6i_isp_media_ops;
media_dev->hw_revision = 0;
media_dev->dev = dev;
media_device_init(media_dev);
ret = media_device_register(media_dev);
if (ret) {
dev_err(dev, "failed to register media device\n");
return ret;
}
/* V4L2 Device */
v4l2_dev->mdev = media_dev;
ret = v4l2_device_register(dev, v4l2_dev);
if (ret) {
dev_err(dev, "failed to register v4l2 device\n");
goto error_media;
}
return 0;
error_media:
media_device_unregister(media_dev);
media_device_cleanup(media_dev);
return ret;
}
static void sun6i_isp_v4l2_cleanup(struct sun6i_isp_device *isp_dev)
{
struct sun6i_isp_v4l2 *v4l2 = &isp_dev->v4l2;
media_device_unregister(&v4l2->media_dev);
v4l2_device_unregister(&v4l2->v4l2_dev);
media_device_cleanup(&v4l2->media_dev);
}
/* Platform */
static irqreturn_t sun6i_isp_interrupt(int irq, void *private)
{
struct sun6i_isp_device *isp_dev = private;
struct regmap *regmap = isp_dev->regmap;
u32 status = 0, enable = 0;
regmap_read(regmap, SUN6I_ISP_FE_INT_STA_REG, &status);
regmap_read(regmap, SUN6I_ISP_FE_INT_EN_REG, &enable);
if (!status)
return IRQ_NONE;
else if (!(status & enable))
goto complete;
/*
* The ISP working cycle starts with a params-load, which makes the
* state from the load buffer active. Then it starts processing the
* frame and gives a finish interrupt. Soon after that, the next state
* coming from the load buffer will be applied for the next frame,
* giving a params-load as well.
*
* Because both frame finish and params-load are received almost
* at the same time (one ISR call), handle them in chronology order.
*/
if (status & SUN6I_ISP_FE_INT_STA_FINISH)
sun6i_isp_capture_finish(isp_dev);
if (status & SUN6I_ISP_FE_INT_STA_PARA_LOAD) {
sun6i_isp_state_complete(isp_dev);
sun6i_isp_state_update(isp_dev, false);
}
complete:
regmap_write(regmap, SUN6I_ISP_FE_INT_STA_REG, status);
return IRQ_HANDLED;
}
static int sun6i_isp_suspend(struct device *dev)
{
struct sun6i_isp_device *isp_dev = dev_get_drvdata(dev);
reset_control_assert(isp_dev->reset);
clk_disable_unprepare(isp_dev->clock_ram);
clk_disable_unprepare(isp_dev->clock_mod);
return 0;
}
static int sun6i_isp_resume(struct device *dev)
{
struct sun6i_isp_device *isp_dev = dev_get_drvdata(dev);
int ret;
ret = reset_control_deassert(isp_dev->reset);
if (ret) {
dev_err(dev, "failed to deassert reset\n");
return ret;
}
ret = clk_prepare_enable(isp_dev->clock_mod);
if (ret) {
dev_err(dev, "failed to enable module clock\n");
goto error_reset;
}
ret = clk_prepare_enable(isp_dev->clock_ram);
if (ret) {
dev_err(dev, "failed to enable ram clock\n");
goto error_clock_mod;
}
return 0;
error_clock_mod:
clk_disable_unprepare(isp_dev->clock_mod);
error_reset:
reset_control_assert(isp_dev->reset);
return ret;
}
static const struct dev_pm_ops sun6i_isp_pm_ops = {
.runtime_suspend = sun6i_isp_suspend,
.runtime_resume = sun6i_isp_resume,
};
static const struct regmap_config sun6i_isp_regmap_config = {
.reg_bits = 32,
.reg_stride = 4,
.val_bits = 32,
.max_register = 0x400,
};
static int sun6i_isp_resources_setup(struct sun6i_isp_device *isp_dev,
struct platform_device *platform_dev)
{
struct device *dev = isp_dev->dev;
void __iomem *io_base;
int irq;
int ret;
/* Registers */
io_base = devm_platform_ioremap_resource(platform_dev, 0);
if (IS_ERR(io_base))
return PTR_ERR(io_base);
isp_dev->regmap = devm_regmap_init_mmio_clk(dev, "bus", io_base,
&sun6i_isp_regmap_config);
if (IS_ERR(isp_dev->regmap)) {
dev_err(dev, "failed to init register map\n");
return PTR_ERR(isp_dev->regmap);
}
/* Clocks */
isp_dev->clock_mod = devm_clk_get(dev, "mod");
if (IS_ERR(isp_dev->clock_mod)) {
dev_err(dev, "failed to acquire module clock\n");
return PTR_ERR(isp_dev->clock_mod);
}
isp_dev->clock_ram = devm_clk_get(dev, "ram");
if (IS_ERR(isp_dev->clock_ram)) {
dev_err(dev, "failed to acquire ram clock\n");
return PTR_ERR(isp_dev->clock_ram);
}
ret = clk_set_rate_exclusive(isp_dev->clock_mod, 297000000);
if (ret) {
dev_err(dev, "failed to set mod clock rate\n");
return ret;
}
/* Reset */
isp_dev->reset = devm_reset_control_get_shared(dev, NULL);
if (IS_ERR(isp_dev->reset)) {
dev_err(dev, "failed to acquire reset\n");
ret = PTR_ERR(isp_dev->reset);
goto error_clock_rate_exclusive;
}
/* Interrupt */
irq = platform_get_irq(platform_dev, 0);
if (irq < 0) {
ret = irq;
goto error_clock_rate_exclusive;
}
ret = devm_request_irq(dev, irq, sun6i_isp_interrupt, IRQF_SHARED,
SUN6I_ISP_NAME, isp_dev);
if (ret) {
dev_err(dev, "failed to request interrupt\n");
goto error_clock_rate_exclusive;
}
/* Runtime PM */
pm_runtime_enable(dev);
return 0;
error_clock_rate_exclusive:
clk_rate_exclusive_put(isp_dev->clock_mod);
return ret;
}
static void sun6i_isp_resources_cleanup(struct sun6i_isp_device *isp_dev)
{
struct device *dev = isp_dev->dev;
pm_runtime_disable(dev);
clk_rate_exclusive_put(isp_dev->clock_mod);
}
static int sun6i_isp_probe(struct platform_device *platform_dev)
{
struct sun6i_isp_device *isp_dev;
struct device *dev = &platform_dev->dev;
const struct sun6i_isp_variant *variant;
int ret;
variant = of_device_get_match_data(dev);
if (!variant)
return -EINVAL;
isp_dev = devm_kzalloc(dev, sizeof(*isp_dev), GFP_KERNEL);
if (!isp_dev)
return -ENOMEM;
isp_dev->dev = dev;
platform_set_drvdata(platform_dev, isp_dev);
spin_lock_init(&isp_dev->state_lock);
ret = sun6i_isp_resources_setup(isp_dev, platform_dev);
if (ret)
return ret;
ret = sun6i_isp_tables_setup(isp_dev, variant);
if (ret) {
dev_err(dev, "failed to setup tables\n");
goto error_resources;
}
ret = sun6i_isp_v4l2_setup(isp_dev);
if (ret) {
dev_err(dev, "failed to setup v4l2\n");
goto error_tables;
}
ret = sun6i_isp_proc_setup(isp_dev);
if (ret) {
dev_err(dev, "failed to setup proc\n");
goto error_v4l2;
}
ret = sun6i_isp_capture_setup(isp_dev);
if (ret) {
dev_err(dev, "failed to setup capture\n");
goto error_proc;
}
ret = sun6i_isp_params_setup(isp_dev);
if (ret) {
dev_err(dev, "failed to setup params\n");
goto error_capture;
}
return 0;
error_capture:
sun6i_isp_capture_cleanup(isp_dev);
error_proc:
sun6i_isp_proc_cleanup(isp_dev);
error_v4l2:
sun6i_isp_v4l2_cleanup(isp_dev);
error_tables:
sun6i_isp_tables_cleanup(isp_dev);
error_resources:
sun6i_isp_resources_cleanup(isp_dev);
return ret;
}
static void sun6i_isp_remove(struct platform_device *platform_dev)
{
struct sun6i_isp_device *isp_dev = platform_get_drvdata(platform_dev);
sun6i_isp_params_cleanup(isp_dev);
sun6i_isp_capture_cleanup(isp_dev);
sun6i_isp_proc_cleanup(isp_dev);
sun6i_isp_v4l2_cleanup(isp_dev);
sun6i_isp_tables_cleanup(isp_dev);
sun6i_isp_resources_cleanup(isp_dev);
}
/*
* History of sun6i-isp:
* - sun4i-a10-isp: initial ISP tied to the CSI0 controller,
* apparently unused in software implementations;
* - sun6i-a31-isp: separate ISP loosely based on sun4i-a10-isp,
* adding extra modules and features;
* - sun9i-a80-isp: based on sun6i-a31-isp with some register offset changes
* and new modules like saturation and cnr;
* - sun8i-a23-isp/sun8i-h3-isp: based on sun9i-a80-isp with most modules
* related to raw removed;
* - sun8i-a83t-isp: based on sun9i-a80-isp with some register offset changes
* - sun8i-v3s-isp: based on sun8i-a83t-isp with a new disc module;
*/
static const struct sun6i_isp_variant sun8i_v3s_isp_variant = {
.table_load_save_size = 0x1000,
.table_lut_size = 0xe00,
.table_drc_size = 0x600,
.table_stats_size = 0x2100,
};
static const struct of_device_id sun6i_isp_of_match[] = {
{
.compatible = "allwinner,sun8i-v3s-isp",
.data = &sun8i_v3s_isp_variant,
},
{},
};
MODULE_DEVICE_TABLE(of, sun6i_isp_of_match);
static struct platform_driver sun6i_isp_platform_driver = {
.probe = sun6i_isp_probe,
.remove_new = sun6i_isp_remove,
.driver = {
.name = SUN6I_ISP_NAME,
.of_match_table = sun6i_isp_of_match,
.pm = &sun6i_isp_pm_ops,
},
};
module_platform_driver(sun6i_isp_platform_driver);
MODULE_DESCRIPTION("Allwinner A31 Image Signal Processor driver");
MODULE_AUTHOR("Paul Kocialkowski <[email protected]>");
MODULE_LICENSE("GPL");