linux/drivers/iio/light/rohm-bu27008.c

// SPDX-License-Identifier: GPL-2.0-only
/*
 * ROHM Colour Sensor driver for
 * - BU27008 RGBC sensor
 * - BU27010 RGBC + Flickering sensor
 *
 * Copyright (c) 2023, ROHM Semiconductor.
 */

#include <linux/bitfield.h>
#include <linux/bitops.h>
#include <linux/device.h>
#include <linux/i2c.h>
#include <linux/interrupt.h>
#include <linux/module.h>
#include <linux/property.h>
#include <linux/regmap.h>
#include <linux/regulator/consumer.h>
#include <linux/units.h>

#include <linux/iio/iio.h>
#include <linux/iio/iio-gts-helper.h>
#include <linux/iio/trigger.h>
#include <linux/iio/trigger_consumer.h>
#include <linux/iio/triggered_buffer.h>

/*
 * A word about register address and mask definitions.
 *
 * At a quick glance to the data-sheet register tables, the BU27010 has all the
 * registers that the BU27008 has. On top of that the BU27010 adds couple of new
 * ones.
 *
 * So, all definitions BU27008_REG_* are there also for BU27010 but none of the
 * BU27010_REG_* are present on BU27008. This makes sense as BU27010 just adds
 * some features (Flicker FIFO, more power control) on top of the BU27008.
 *
 * Unfortunately, some of the wheel has been re-invented. Even though the names
 * of the registers have stayed the same, pretty much all of the functionality
 * provided by the registers has changed place. Contents of all MODE_CONTROL
 * registers on BU27008 and BU27010 are different.
 *
 * Chip-specific mapping from register addresses/bits to functionality is done
 * in bu27_chip_data structures.
 */
#define BU27008_REG_SYSTEM_CONTROL	0x40
#define BU27008_MASK_SW_RESET		BIT(7)
#define BU27008_MASK_PART_ID		GENMASK(5, 0)
#define BU27008_ID			0x1a
#define BU27008_REG_MODE_CONTROL1	0x41
#define BU27008_MASK_MEAS_MODE		GENMASK(2, 0)
#define BU27008_MASK_CHAN_SEL		GENMASK(3, 2)

#define BU27008_REG_MODE_CONTROL2	0x42
#define BU27008_MASK_RGBC_GAIN		GENMASK(7, 3)
#define BU27008_MASK_IR_GAIN_LO		GENMASK(2, 0)
#define BU27008_SHIFT_IR_GAIN		3

#define BU27008_REG_MODE_CONTROL3	0x43
#define BU27008_MASK_VALID		BIT(7)
#define BU27008_MASK_INT_EN		BIT(1)
#define BU27008_INT_EN			BU27008_MASK_INT_EN
#define BU27008_INT_DIS			0
#define BU27008_MASK_MEAS_EN		BIT(0)
#define BU27008_MEAS_EN			BIT(0)
#define BU27008_MEAS_DIS		0

#define BU27008_REG_DATA0_LO		0x50
#define BU27008_REG_DATA1_LO		0x52
#define BU27008_REG_DATA2_LO		0x54
#define BU27008_REG_DATA3_LO		0x56
#define BU27008_REG_DATA3_HI		0x57
#define BU27008_REG_MANUFACTURER_ID	0x92
#define BU27008_REG_MAX BU27008_REG_MANUFACTURER_ID

/* BU27010 specific definitions */

#define BU27010_MASK_SW_RESET		BIT(7)
#define BU27010_ID			0x1b
#define BU27010_REG_POWER		0x3e
#define BU27010_MASK_POWER		BIT(0)

#define BU27010_REG_RESET		0x3f
#define BU27010_MASK_RESET		BIT(0)
#define BU27010_RESET_RELEASE		BU27010_MASK_RESET

#define BU27010_MASK_MEAS_EN		BIT(1)

#define BU27010_MASK_CHAN_SEL		GENMASK(7, 6)
#define BU27010_MASK_MEAS_MODE		GENMASK(5, 4)
#define BU27010_MASK_RGBC_GAIN		GENMASK(3, 0)

#define BU27010_MASK_DATA3_GAIN		GENMASK(7, 6)
#define BU27010_MASK_DATA2_GAIN		GENMASK(5, 4)
#define BU27010_MASK_DATA1_GAIN		GENMASK(3, 2)
#define BU27010_MASK_DATA0_GAIN		GENMASK(1, 0)

#define BU27010_MASK_FLC_MODE		BIT(7)
#define BU27010_MASK_FLC_GAIN		GENMASK(4, 0)

#define BU27010_REG_MODE_CONTROL4	0x44
/* If flicker is ever to be supported the IRQ must be handled as a field */
#define BU27010_IRQ_DIS_ALL		GENMASK(1, 0)
#define BU27010_DRDY_EN			BIT(0)
#define BU27010_MASK_INT_SEL		GENMASK(1, 0)

#define BU27010_REG_MODE_CONTROL5	0x45
#define BU27010_MASK_RGB_VALID		BIT(7)
#define BU27010_MASK_FLC_VALID		BIT(6)
#define BU27010_MASK_WAIT_EN		BIT(3)
#define BU27010_MASK_FIFO_EN		BIT(2)
#define BU27010_MASK_RGB_EN		BIT(1)
#define BU27010_MASK_FLC_EN		BIT(0)

#define BU27010_REG_DATA_FLICKER_LO	0x56
#define BU27010_MASK_DATA_FLICKER_HI	GENMASK(2, 0)
#define BU27010_REG_FLICKER_COUNT	0x5a
#define BU27010_REG_FIFO_LEVEL_LO	0x5b
#define BU27010_MASK_FIFO_LEVEL_HI	BIT(0)
#define BU27010_REG_FIFO_DATA_LO	0x5d
#define BU27010_REG_FIFO_DATA_HI	0x5e
#define BU27010_MASK_FIFO_DATA_HI	GENMASK(2, 0)
#define BU27010_REG_MANUFACTURER_ID	0x92
#define BU27010_REG_MAX BU27010_REG_MANUFACTURER_ID

/**
 * enum bu27008_chan_type - BU27008 channel types
 * @BU27008_RED:	Red channel. Always via data0.
 * @BU27008_GREEN:	Green channel. Always via data1.
 * @BU27008_BLUE:	Blue channel. Via data2 (when used).
 * @BU27008_CLEAR:	Clear channel. Via data2 or data3 (when used).
 * @BU27008_IR:		IR channel. Via data3 (when used).
 * @BU27008_LUX:	Illuminance channel, computed using RGB and IR.
 * @BU27008_NUM_CHANS:	Number of channel types.
 */
enum bu27008_chan_type {
	BU27008_RED,
	BU27008_GREEN,
	BU27008_BLUE,
	BU27008_CLEAR,
	BU27008_IR,
	BU27008_LUX,
	BU27008_NUM_CHANS
};

/**
 * enum bu27008_chan - BU27008 physical data channel
 * @BU27008_DATA0:		Always red.
 * @BU27008_DATA1:		Always green.
 * @BU27008_DATA2:		Blue or clear.
 * @BU27008_DATA3:		IR or clear.
 * @BU27008_NUM_HW_CHANS:	Number of physical channels
 */
enum bu27008_chan {
	BU27008_DATA0,
	BU27008_DATA1,
	BU27008_DATA2,
	BU27008_DATA3,
	BU27008_NUM_HW_CHANS
};

/* We can always measure red and green at same time */
#define ALWAYS_SCANNABLE (BIT(BU27008_RED) | BIT(BU27008_GREEN))

/* We use these data channel configs. Ensure scan_masks below follow them too */
#define BU27008_BLUE2_CLEAR3		0x0 /* buffer is R, G, B, C */
#define BU27008_CLEAR2_IR3		0x1 /* buffer is R, G, C, IR */
#define BU27008_BLUE2_IR3		0x2 /* buffer is R, G, B, IR */

static const unsigned long bu27008_scan_masks[] = {
	/* buffer is R, G, B, C */
	ALWAYS_SCANNABLE | BIT(BU27008_BLUE) | BIT(BU27008_CLEAR),
	/* buffer is R, G, C, IR */
	ALWAYS_SCANNABLE | BIT(BU27008_CLEAR) | BIT(BU27008_IR),
	/* buffer is R, G, B, IR */
	ALWAYS_SCANNABLE | BIT(BU27008_BLUE) | BIT(BU27008_IR),
	/* buffer is R, G, B, IR, LUX */
	ALWAYS_SCANNABLE | BIT(BU27008_BLUE) | BIT(BU27008_IR) | BIT(BU27008_LUX),
	0
};

/*
 * Available scales with gain 1x - 1024x, timings 55, 100, 200, 400 mS
 * Time impacts to gain: 1x, 2x, 4x, 8x.
 *
 * => Max total gain is HWGAIN * gain by integration time (8 * 1024) = 8192
 *
 * Max amplification is (HWGAIN * MAX integration-time multiplier) 1024 * 8
 * = 8192. With NANO scale we get rid of accuracy loss when we start with the
 * scale 16.0 for HWGAIN1, INT-TIME 55 mS. This way the nano scale for MAX
 * total gain 8192 will be 1953125
 */
#define BU27008_SCALE_1X 16

/*
 * On BU27010 available scales with gain 1x - 4096x,
 * timings 55, 100, 200, 400 mS. Time impacts to gain: 1x, 2x, 4x, 8x.
 *
 * => Max total gain is HWGAIN * gain by integration time (8 * 4096)
 *
 * Using NANO precision for scale we must use scale 64x corresponding gain 1x
 * to avoid precision loss.
 */
#define BU27010_SCALE_1X 64

/* See the data sheet for the "Gain Setting" table */
#define BU27008_GSEL_1X		0x00
#define BU27008_GSEL_4X		0x08
#define BU27008_GSEL_8X		0x09
#define BU27008_GSEL_16X	0x0a
#define BU27008_GSEL_32X	0x0b
#define BU27008_GSEL_64X	0x0c
#define BU27008_GSEL_256X	0x18
#define BU27008_GSEL_512X	0x19
#define BU27008_GSEL_1024X	0x1a

static const struct iio_gain_sel_pair bu27008_gains[] = {
	GAIN_SCALE_GAIN(1, BU27008_GSEL_1X),
	GAIN_SCALE_GAIN(4, BU27008_GSEL_4X),
	GAIN_SCALE_GAIN(8, BU27008_GSEL_8X),
	GAIN_SCALE_GAIN(16, BU27008_GSEL_16X),
	GAIN_SCALE_GAIN(32, BU27008_GSEL_32X),
	GAIN_SCALE_GAIN(64, BU27008_GSEL_64X),
	GAIN_SCALE_GAIN(256, BU27008_GSEL_256X),
	GAIN_SCALE_GAIN(512, BU27008_GSEL_512X),
	GAIN_SCALE_GAIN(1024, BU27008_GSEL_1024X),
};

static const struct iio_gain_sel_pair bu27008_gains_ir[] = {
	GAIN_SCALE_GAIN(2, BU27008_GSEL_1X),
	GAIN_SCALE_GAIN(4, BU27008_GSEL_4X),
	GAIN_SCALE_GAIN(8, BU27008_GSEL_8X),
	GAIN_SCALE_GAIN(16, BU27008_GSEL_16X),
	GAIN_SCALE_GAIN(32, BU27008_GSEL_32X),
	GAIN_SCALE_GAIN(64, BU27008_GSEL_64X),
	GAIN_SCALE_GAIN(256, BU27008_GSEL_256X),
	GAIN_SCALE_GAIN(512, BU27008_GSEL_512X),
	GAIN_SCALE_GAIN(1024, BU27008_GSEL_1024X),
};

#define BU27010_GSEL_1X		0x00	/* 000000 */
#define BU27010_GSEL_4X		0x08	/* 001000 */
#define BU27010_GSEL_16X	0x09	/* 001001 */
#define BU27010_GSEL_64X	0x0e	/* 001110 */
#define BU27010_GSEL_256X	0x1e	/* 011110 */
#define BU27010_GSEL_1024X	0x2e	/* 101110 */
#define BU27010_GSEL_4096X	0x3f	/* 111111 */

static const struct iio_gain_sel_pair bu27010_gains[] = {
	GAIN_SCALE_GAIN(1, BU27010_GSEL_1X),
	GAIN_SCALE_GAIN(4, BU27010_GSEL_4X),
	GAIN_SCALE_GAIN(16, BU27010_GSEL_16X),
	GAIN_SCALE_GAIN(64, BU27010_GSEL_64X),
	GAIN_SCALE_GAIN(256, BU27010_GSEL_256X),
	GAIN_SCALE_GAIN(1024, BU27010_GSEL_1024X),
	GAIN_SCALE_GAIN(4096, BU27010_GSEL_4096X),
};

static const struct iio_gain_sel_pair bu27010_gains_ir[] = {
	GAIN_SCALE_GAIN(2, BU27010_GSEL_1X),
	GAIN_SCALE_GAIN(4, BU27010_GSEL_4X),
	GAIN_SCALE_GAIN(16, BU27010_GSEL_16X),
	GAIN_SCALE_GAIN(64, BU27010_GSEL_64X),
	GAIN_SCALE_GAIN(256, BU27010_GSEL_256X),
	GAIN_SCALE_GAIN(1024, BU27010_GSEL_1024X),
	GAIN_SCALE_GAIN(4096, BU27010_GSEL_4096X),
};

#define BU27008_MEAS_MODE_100MS		0x00
#define BU27008_MEAS_MODE_55MS		0x01
#define BU27008_MEAS_MODE_200MS		0x02
#define BU27008_MEAS_MODE_400MS		0x04

#define BU27010_MEAS_MODE_100MS		0x00
#define BU27010_MEAS_MODE_55MS		0x03
#define BU27010_MEAS_MODE_200MS		0x01
#define BU27010_MEAS_MODE_400MS		0x02

#define BU27008_MEAS_TIME_MAX_MS	400

static const struct iio_itime_sel_mul bu27008_itimes[] = {
	GAIN_SCALE_ITIME_US(400000, BU27008_MEAS_MODE_400MS, 8),
	GAIN_SCALE_ITIME_US(200000, BU27008_MEAS_MODE_200MS, 4),
	GAIN_SCALE_ITIME_US(100000, BU27008_MEAS_MODE_100MS, 2),
	GAIN_SCALE_ITIME_US(55000, BU27008_MEAS_MODE_55MS, 1),
};

static const struct iio_itime_sel_mul bu27010_itimes[] = {
	GAIN_SCALE_ITIME_US(400000, BU27010_MEAS_MODE_400MS, 8),
	GAIN_SCALE_ITIME_US(200000, BU27010_MEAS_MODE_200MS, 4),
	GAIN_SCALE_ITIME_US(100000, BU27010_MEAS_MODE_100MS, 2),
	GAIN_SCALE_ITIME_US(55000, BU27010_MEAS_MODE_55MS, 1),
};

/*
 * All the RGBC channels share the same gain.
 * IR gain can be fine-tuned from the gain set for the RGBC by 2 bit, but this
 * would yield quite complex gain setting. Especially since not all bit
 * compinations are supported. And in any case setting GAIN for RGBC will
 * always also change the IR-gain.
 *
 * On top of this, the selector '0' which corresponds to hw-gain 1X on RGBC,
 * corresponds to gain 2X on IR. Rest of the selctors correspond to same gains
 * though. This, however, makes it not possible to use shared gain for all
 * RGBC and IR settings even though they are all changed at the one go.
 */
#define BU27008_CHAN(color, data, separate_avail)				\
{										\
	.type = IIO_INTENSITY,							\
	.modified = 1,								\
	.channel2 = IIO_MOD_LIGHT_##color,					\
	.info_mask_separate = BIT(IIO_CHAN_INFO_RAW) |				\
			      BIT(IIO_CHAN_INFO_SCALE),				\
	.info_mask_separate_available = (separate_avail),			\
	.info_mask_shared_by_all = BIT(IIO_CHAN_INFO_INT_TIME),			\
	.info_mask_shared_by_all_available = BIT(IIO_CHAN_INFO_INT_TIME),	\
	.address = BU27008_REG_##data##_LO,					\
	.scan_index = BU27008_##color,						\
	.scan_type = {								\
		.sign = 'u',							\
		.realbits = 16,							\
		.storagebits = 16,						\
		.endianness = IIO_LE,						\
	},									\
}

/* For raw reads we always configure DATA3 for CLEAR */
static const struct iio_chan_spec bu27008_channels[] = {
	BU27008_CHAN(RED, DATA0, BIT(IIO_CHAN_INFO_SCALE)),
	BU27008_CHAN(GREEN, DATA1, BIT(IIO_CHAN_INFO_SCALE)),
	BU27008_CHAN(BLUE, DATA2, BIT(IIO_CHAN_INFO_SCALE)),
	BU27008_CHAN(CLEAR, DATA2, BIT(IIO_CHAN_INFO_SCALE)),
	/*
	 * We don't allow setting scale for IR (because of shared gain bits).
	 * Hence we don't advertise available ones either.
	 */
	BU27008_CHAN(IR, DATA3, 0),
	{
		.type = IIO_LIGHT,
		.info_mask_separate = BIT(IIO_CHAN_INFO_RAW) |
				      BIT(IIO_CHAN_INFO_SCALE),
		.channel = BU27008_LUX,
		.scan_index = BU27008_LUX,
		.scan_type = {
			.sign = 'u',
			.realbits = 64,
			.storagebits = 64,
			.endianness = IIO_CPU,
		},
	},
	IIO_CHAN_SOFT_TIMESTAMP(BU27008_NUM_CHANS),
};

struct bu27008_data;

struct bu27_chip_data {
	const char *name;
	int (*chip_init)(struct bu27008_data *data);
	int (*get_gain_sel)(struct bu27008_data *data, int *sel);
	int (*write_gain_sel)(struct bu27008_data *data, int sel);
	const struct regmap_config *regmap_cfg;
	const struct iio_gain_sel_pair *gains;
	const struct iio_gain_sel_pair *gains_ir;
	const struct iio_itime_sel_mul *itimes;
	int num_gains;
	int num_gains_ir;
	int num_itimes;
	int scale1x;

	int drdy_en_reg;
	int drdy_en_mask;
	int meas_en_reg;
	int meas_en_mask;
	int valid_reg;
	int chan_sel_reg;
	int chan_sel_mask;
	int int_time_mask;
	u8 part_id;
};

struct bu27008_data {
	const struct bu27_chip_data *cd;
	struct regmap *regmap;
	struct iio_trigger *trig;
	struct device *dev;
	struct iio_gts gts;
	struct iio_gts gts_ir;
	int irq;

	/*
	 * Prevent changing gain/time config when scale is read/written.
	 * Similarly, protect the integration_time read/change sequence.
	 * Prevent changing gain/time when data is read.
	 */
	struct mutex mutex;
};

static const struct regmap_range bu27008_volatile_ranges[] = {
	{
		.range_min = BU27008_REG_SYSTEM_CONTROL,	/* SWRESET */
		.range_max = BU27008_REG_SYSTEM_CONTROL,
	}, {
		.range_min = BU27008_REG_MODE_CONTROL3,		/* VALID */
		.range_max = BU27008_REG_MODE_CONTROL3,
	}, {
		.range_min = BU27008_REG_DATA0_LO,		/* DATA */
		.range_max = BU27008_REG_DATA3_HI,
	},
};

static const struct regmap_range bu27010_volatile_ranges[] = {
	{
		.range_min = BU27010_REG_RESET,			/* RSTB */
		.range_max = BU27008_REG_SYSTEM_CONTROL,	/* RESET */
	}, {
		.range_min = BU27010_REG_MODE_CONTROL5,		/* VALID bits */
		.range_max = BU27010_REG_MODE_CONTROL5,
	}, {
		.range_min = BU27008_REG_DATA0_LO,
		.range_max = BU27010_REG_FIFO_DATA_HI,
	},
};

static const struct regmap_access_table bu27008_volatile_regs = {
	.yes_ranges = &bu27008_volatile_ranges[0],
	.n_yes_ranges = ARRAY_SIZE(bu27008_volatile_ranges),
};

static const struct regmap_access_table bu27010_volatile_regs = {
	.yes_ranges = &bu27010_volatile_ranges[0],
	.n_yes_ranges = ARRAY_SIZE(bu27010_volatile_ranges),
};

static const struct regmap_range bu27008_read_only_ranges[] = {
	{
		.range_min = BU27008_REG_DATA0_LO,
		.range_max = BU27008_REG_DATA3_HI,
	}, {
		.range_min = BU27008_REG_MANUFACTURER_ID,
		.range_max = BU27008_REG_MANUFACTURER_ID,
	},
};

static const struct regmap_range bu27010_read_only_ranges[] = {
	{
		.range_min = BU27008_REG_DATA0_LO,
		.range_max = BU27010_REG_FIFO_DATA_HI,
	}, {
		.range_min = BU27010_REG_MANUFACTURER_ID,
		.range_max = BU27010_REG_MANUFACTURER_ID,
	}
};

static const struct regmap_access_table bu27008_ro_regs = {
	.no_ranges = &bu27008_read_only_ranges[0],
	.n_no_ranges = ARRAY_SIZE(bu27008_read_only_ranges),
};

static const struct regmap_access_table bu27010_ro_regs = {
	.no_ranges = &bu27010_read_only_ranges[0],
	.n_no_ranges = ARRAY_SIZE(bu27010_read_only_ranges),
};

static const struct regmap_config bu27008_regmap = {
	.reg_bits = 8,
	.val_bits = 8,
	.max_register = BU27008_REG_MAX,
	.cache_type = REGCACHE_RBTREE,
	.volatile_table = &bu27008_volatile_regs,
	.wr_table = &bu27008_ro_regs,
	/*
	 * All register writes are serialized by the mutex which protects the
	 * scale setting/getting. This is needed because scale is combined by
	 * gain and integration time settings and we need to ensure those are
	 * not read / written when scale is being computed.
	 *
	 * As a result of this serializing, we don't need regmap locking. Note,
	 * this is not true if we add any configurations which are not
	 * serialized by the mutex and which may need for example a protected
	 * read-modify-write cycle (eg. regmap_update_bits()). Please, revise
	 * this when adding features to the driver.
	 */
	.disable_locking = true,
};

static const struct regmap_config bu27010_regmap = {
	.reg_bits	= 8,
	.val_bits	= 8,

	.max_register	= BU27010_REG_MAX,
	.cache_type	= REGCACHE_RBTREE,
	.volatile_table = &bu27010_volatile_regs,
	.wr_table	= &bu27010_ro_regs,
	.disable_locking = true,
};

static int bu27008_write_gain_sel(struct bu27008_data *data, int sel)
{
	int regval;

	regval = FIELD_PREP(BU27008_MASK_RGBC_GAIN, sel);

	/*
	 * We do always set also the LOW bits of IR-gain because othervice we
	 * would risk resulting an invalid GAIN register value.
	 *
	 * We could allow setting separate gains for RGBC and IR when the
	 * values were such that HW could support both gain settings.
	 * Eg, when the shared bits were same for both gain values.
	 *
	 * This, however, has a negligible benefit compared to the increased
	 * software complexity when we would need to go through the gains
	 * for both channels separately when the integration time changes.
	 * This would end up with nasty logic for computing gain values for
	 * both channels - and rejecting them if shared bits changed.
	 *
	 * We should then build the logic by guessing what a user prefers.
	 * RGBC or IR gains correctly set while other jumps to odd value?
	 * Maybe look-up a value where both gains are somehow optimized
	 * <what this somehow is, is ATM unknown to us>. Or maybe user would
	 * expect us to reject changes when optimal gains can't be set to both
	 * channels w/given integration time. At best that would result
	 * solution that works well for a very specific subset of
	 * configurations but causes unexpected corner-cases.
	 *
	 * So, we keep it simple. Always set same selector to IR and RGBC.
	 * We disallow setting IR (as I expect that most of the users are
	 * interested in RGBC). This way we can show the user that the scales
	 * for RGBC and IR channels are different (1X Vs 2X with sel 0) while
	 * still keeping the operation deterministic.
	 */
	regval |= FIELD_PREP(BU27008_MASK_IR_GAIN_LO, sel);

	return regmap_update_bits(data->regmap, BU27008_REG_MODE_CONTROL2,
				  BU27008_MASK_RGBC_GAIN, regval);
}

static int bu27010_write_gain_sel(struct bu27008_data *data, int sel)
{
	unsigned int regval;
	int ret, chan_selector;

	/*
	 * Gain 'selector' is composed of two registers. Selector is 6bit value,
	 * 4 high bits being the RGBC gain fieild in MODE_CONTROL1 register and
	 * two low bits being the channel specific gain in MODE_CONTROL2.
	 *
	 * Let's take the 4 high bits of whole 6 bit selector, and prepare
	 * the MODE_CONTROL1 value (RGBC gain part).
	 */
	regval = FIELD_PREP(BU27010_MASK_RGBC_GAIN, (sel >> 2));

	ret = regmap_update_bits(data->regmap, BU27008_REG_MODE_CONTROL1,
				  BU27010_MASK_RGBC_GAIN, regval);
	if (ret)
		return ret;

	/*
	 * Two low two bits of the selector must be written for all 4
	 * channels in the MODE_CONTROL2 register. Copy these two bits for
	 * all channels.
	 */
	chan_selector = sel & GENMASK(1, 0);

	regval = FIELD_PREP(BU27010_MASK_DATA0_GAIN, chan_selector);
	regval |= FIELD_PREP(BU27010_MASK_DATA1_GAIN, chan_selector);
	regval |= FIELD_PREP(BU27010_MASK_DATA2_GAIN, chan_selector);
	regval |= FIELD_PREP(BU27010_MASK_DATA3_GAIN, chan_selector);

	return regmap_write(data->regmap, BU27008_REG_MODE_CONTROL2, regval);
}

static int bu27008_get_gain_sel(struct bu27008_data *data, int *sel)
{
	int ret;

	/*
	 * If we always "lock" the gain selectors for all channels to prevent
	 * unsupported configs, then it does not matter which channel is used
	 * we can just return selector from any of them.
	 *
	 * This, however is not true if we decide to support only 4X and 16X
	 * and then individual gains for channels. Currently this is not the
	 * case.
	 *
	 * If we some day decide to support individual gains, then we need to
	 * have channel information here.
	 */

	ret = regmap_read(data->regmap, BU27008_REG_MODE_CONTROL2, sel);
	if (ret)
		return ret;

	*sel = FIELD_GET(BU27008_MASK_RGBC_GAIN, *sel);

	return 0;
}

static int bu27010_get_gain_sel(struct bu27008_data *data, int *sel)
{
	int ret, tmp;

	/*
	 * We always "lock" the gain selectors for all channels to prevent
	 * unsupported configs. It does not matter which channel is used
	 * we can just return selector from any of them.
	 *
	 * Read the channel0 gain.
	 */
	ret = regmap_read(data->regmap, BU27008_REG_MODE_CONTROL2, sel);
	if (ret)
		return ret;

	*sel = FIELD_GET(BU27010_MASK_DATA0_GAIN, *sel);

	/* Read the shared gain */
	ret = regmap_read(data->regmap, BU27008_REG_MODE_CONTROL1, &tmp);
	if (ret)
		return ret;

	/*
	 * The gain selector is made as a combination of common RGBC gain and
	 * the channel specific gain. The channel specific gain forms the low
	 * bits of selector and RGBC gain is appended right after it.
	 *
	 * Compose the selector from channel0 gain and shared RGBC gain.
	 */
	*sel |= FIELD_GET(BU27010_MASK_RGBC_GAIN, tmp) << fls(BU27010_MASK_DATA0_GAIN);

	return ret;
}

static int bu27008_chip_init(struct bu27008_data *data)
{
	int ret;

	ret = regmap_write_bits(data->regmap, BU27008_REG_SYSTEM_CONTROL,
				BU27008_MASK_SW_RESET, BU27008_MASK_SW_RESET);
	if (ret)
		return dev_err_probe(data->dev, ret, "Sensor reset failed\n");

	/*
	 * The data-sheet does not tell how long performing the IC reset takes.
	 * However, the data-sheet says the minimum time it takes the IC to be
	 * able to take inputs after power is applied, is 100 uS. I'd assume
	 * > 1 mS is enough.
	 */
	msleep(1);

	ret = regmap_reinit_cache(data->regmap, data->cd->regmap_cfg);
	if (ret)
		dev_err(data->dev, "Failed to reinit reg cache\n");

	return ret;
}

static int bu27010_chip_init(struct bu27008_data *data)
{
	int ret;

	ret = regmap_write_bits(data->regmap, BU27008_REG_SYSTEM_CONTROL,
				BU27010_MASK_SW_RESET, BU27010_MASK_SW_RESET);
	if (ret)
		return dev_err_probe(data->dev, ret, "Sensor reset failed\n");

	msleep(1);

	/* Power ON*/
	ret = regmap_write_bits(data->regmap, BU27010_REG_POWER,
				BU27010_MASK_POWER, BU27010_MASK_POWER);
	if (ret)
		return dev_err_probe(data->dev, ret, "Sensor power-on failed\n");

	msleep(1);

	/* Release blocks from reset */
	ret = regmap_write_bits(data->regmap, BU27010_REG_RESET,
				BU27010_MASK_RESET, BU27010_RESET_RELEASE);
	if (ret)
		return dev_err_probe(data->dev, ret, "Sensor powering failed\n");

	msleep(1);

	/*
	 * The IRQ enabling on BU27010 is done in a peculiar way. The IRQ
	 * enabling is not a bit mask where individual IRQs could be enabled but
	 * a field which values are:
	 * 00 => IRQs disabled
	 * 01 => Data-ready (RGBC/IR)
	 * 10 => Data-ready (flicker)
	 * 11 => Flicker FIFO
	 *
	 * So, only one IRQ can be enabled at a time and enabling for example
	 * flicker FIFO would automagically disable data-ready IRQ.
	 *
	 * Currently the driver does not support the flicker. Hence, we can
	 * just treat the RGBC data-ready as single bit which can be enabled /
	 * disabled. This works for as long as the second bit in the field
	 * stays zero. Here we ensure it gets zeroed.
	 */
	return regmap_clear_bits(data->regmap, BU27010_REG_MODE_CONTROL4,
				 BU27010_IRQ_DIS_ALL);
}

static const struct bu27_chip_data bu27010_chip = {
	.name = "bu27010",
	.chip_init = bu27010_chip_init,
	.get_gain_sel = bu27010_get_gain_sel,
	.write_gain_sel = bu27010_write_gain_sel,
	.regmap_cfg = &bu27010_regmap,
	.gains = &bu27010_gains[0],
	.gains_ir = &bu27010_gains_ir[0],
	.itimes = &bu27010_itimes[0],
	.num_gains = ARRAY_SIZE(bu27010_gains),
	.num_gains_ir = ARRAY_SIZE(bu27010_gains_ir),
	.num_itimes = ARRAY_SIZE(bu27010_itimes),
	.scale1x = BU27010_SCALE_1X,
	.drdy_en_reg = BU27010_REG_MODE_CONTROL4,
	.drdy_en_mask = BU27010_DRDY_EN,
	.meas_en_reg = BU27010_REG_MODE_CONTROL5,
	.meas_en_mask = BU27010_MASK_MEAS_EN,
	.valid_reg = BU27010_REG_MODE_CONTROL5,
	.chan_sel_reg = BU27008_REG_MODE_CONTROL1,
	.chan_sel_mask = BU27010_MASK_CHAN_SEL,
	.int_time_mask = BU27010_MASK_MEAS_MODE,
	.part_id = BU27010_ID,
};

static const struct bu27_chip_data bu27008_chip = {
	.name = "bu27008",
	.chip_init = bu27008_chip_init,
	.get_gain_sel = bu27008_get_gain_sel,
	.write_gain_sel = bu27008_write_gain_sel,
	.regmap_cfg = &bu27008_regmap,
	.gains = &bu27008_gains[0],
	.gains_ir = &bu27008_gains_ir[0],
	.itimes = &bu27008_itimes[0],
	.num_gains = ARRAY_SIZE(bu27008_gains),
	.num_gains_ir = ARRAY_SIZE(bu27008_gains_ir),
	.num_itimes = ARRAY_SIZE(bu27008_itimes),
	.scale1x = BU27008_SCALE_1X,
	.drdy_en_reg = BU27008_REG_MODE_CONTROL3,
	.drdy_en_mask = BU27008_MASK_INT_EN,
	.valid_reg = BU27008_REG_MODE_CONTROL3,
	.meas_en_reg = BU27008_REG_MODE_CONTROL3,
	.meas_en_mask = BU27008_MASK_MEAS_EN,
	.chan_sel_reg = BU27008_REG_MODE_CONTROL3,
	.chan_sel_mask = BU27008_MASK_CHAN_SEL,
	.int_time_mask = BU27008_MASK_MEAS_MODE,
	.part_id = BU27008_ID,
};

#define BU27008_MAX_VALID_RESULT_WAIT_US	50000
#define BU27008_VALID_RESULT_WAIT_QUANTA_US	1000

static int bu27008_chan_read_data(struct bu27008_data *data, int reg, int *val)
{
	int ret, valid;
	__le16 tmp;

	ret = regmap_read_poll_timeout(data->regmap, data->cd->valid_reg,
				       valid, (valid & BU27008_MASK_VALID),
				       BU27008_VALID_RESULT_WAIT_QUANTA_US,
				       BU27008_MAX_VALID_RESULT_WAIT_US);
	if (ret)
		return ret;

	ret = regmap_bulk_read(data->regmap, reg, &tmp, sizeof(tmp));
	if (ret)
		dev_err(data->dev, "Reading channel data failed\n");

	*val = le16_to_cpu(tmp);

	return ret;
}

static int bu27008_get_gain(struct bu27008_data *data, struct iio_gts *gts, int *gain)
{
	int ret, sel;

	ret = data->cd->get_gain_sel(data, &sel);
	if (ret)
		return ret;

	ret = iio_gts_find_gain_by_sel(gts, sel);
	if (ret < 0) {
		dev_err(data->dev, "unknown gain value 0x%x\n", sel);
		return ret;
	}

	*gain = ret;

	return 0;
}

static int bu27008_set_gain(struct bu27008_data *data, int gain)
{
	int ret;

	ret = iio_gts_find_sel_by_gain(&data->gts, gain);
	if (ret < 0)
		return ret;

	return data->cd->write_gain_sel(data, ret);
}

static int bu27008_get_int_time_sel(struct bu27008_data *data, int *sel)
{
	int ret, val;

	ret = regmap_read(data->regmap, BU27008_REG_MODE_CONTROL1, &val);
	if (ret)
		return ret;

	val &= data->cd->int_time_mask;
	val >>= ffs(data->cd->int_time_mask) - 1;

	*sel = val;

	return 0;
}

static int bu27008_set_int_time_sel(struct bu27008_data *data, int sel)
{
	sel <<= ffs(data->cd->int_time_mask) - 1;

	return regmap_update_bits(data->regmap, BU27008_REG_MODE_CONTROL1,
				  data->cd->int_time_mask, sel);
}

static int bu27008_get_int_time_us(struct bu27008_data *data)
{
	int ret, sel;

	ret = bu27008_get_int_time_sel(data, &sel);
	if (ret)
		return ret;

	return iio_gts_find_int_time_by_sel(&data->gts, sel);
}

static int _bu27008_get_scale(struct bu27008_data *data, bool ir, int *val,
			      int *val2)
{
	struct iio_gts *gts;
	int gain, ret;

	if (ir)
		gts = &data->gts_ir;
	else
		gts = &data->gts;

	ret = bu27008_get_gain(data, gts, &gain);
	if (ret)
		return ret;

	ret = bu27008_get_int_time_us(data);
	if (ret < 0)
		return ret;

	return iio_gts_get_scale(gts, gain, ret, val, val2);
}

static int bu27008_get_scale(struct bu27008_data *data, bool ir, int *val,
			     int *val2)
{
	int ret;

	mutex_lock(&data->mutex);
	ret = _bu27008_get_scale(data, ir, val, val2);
	mutex_unlock(&data->mutex);

	return ret;
}

static int bu27008_set_int_time(struct bu27008_data *data, int time)
{
	int ret;

	ret = iio_gts_find_sel_by_int_time(&data->gts, time);
	if (ret < 0)
		return ret;

	return bu27008_set_int_time_sel(data, ret);
}

/* Try to change the time so that the scale is maintained */
static int bu27008_try_set_int_time(struct bu27008_data *data, int int_time_new)
{
	int ret, old_time_sel, new_time_sel,  old_gain, new_gain;

	mutex_lock(&data->mutex);

	ret = bu27008_get_int_time_sel(data, &old_time_sel);
	if (ret < 0)
		goto unlock_out;

	if (!iio_gts_valid_time(&data->gts, int_time_new)) {
		dev_dbg(data->dev, "Unsupported integration time %u\n",
			int_time_new);

		ret = -EINVAL;
		goto unlock_out;
	}

	/* If we already use requested time, then we're done */
	new_time_sel = iio_gts_find_sel_by_int_time(&data->gts, int_time_new);
	if (new_time_sel == old_time_sel)
		goto unlock_out;

	ret = bu27008_get_gain(data, &data->gts, &old_gain);
	if (ret)
		goto unlock_out;

	ret = iio_gts_find_new_gain_sel_by_old_gain_time(&data->gts, old_gain,
				old_time_sel, new_time_sel, &new_gain);
	if (ret) {
		int scale1, scale2;
		bool ok;

		_bu27008_get_scale(data, false, &scale1, &scale2);
		dev_dbg(data->dev,
			"Can't support time %u with current scale %u %u\n",
			int_time_new, scale1, scale2);

		if (new_gain < 0)
			goto unlock_out;

		/*
		 * If caller requests for integration time change and we
		 * can't support the scale - then the caller should be
		 * prepared to 'pick up the pieces and deal with the
		 * fact that the scale changed'.
		 */
		ret = iio_find_closest_gain_low(&data->gts, new_gain, &ok);
		if (!ok)
			dev_dbg(data->dev, "optimal gain out of range\n");

		if (ret < 0) {
			dev_dbg(data->dev,
				 "Total gain increase. Risk of saturation");
			ret = iio_gts_get_min_gain(&data->gts);
			if (ret < 0)
				goto unlock_out;
		}
		new_gain = ret;
		dev_dbg(data->dev, "scale changed, new gain %u\n", new_gain);
	}

	ret = bu27008_set_gain(data, new_gain);
	if (ret)
		goto unlock_out;

	ret = bu27008_set_int_time(data, int_time_new);

unlock_out:
	mutex_unlock(&data->mutex);

	return ret;
}

static int bu27008_meas_set(struct bu27008_data *data, bool enable)
{
	if (enable)
		return regmap_set_bits(data->regmap, data->cd->meas_en_reg,
				       data->cd->meas_en_mask);
	return regmap_clear_bits(data->regmap, data->cd->meas_en_reg,
				 data->cd->meas_en_mask);
}

static int bu27008_chan_cfg(struct bu27008_data *data,
			    struct iio_chan_spec const *chan)
{
	int chan_sel;

	if (chan->scan_index == BU27008_BLUE)
		chan_sel = BU27008_BLUE2_CLEAR3;
	else
		chan_sel = BU27008_CLEAR2_IR3;

	/*
	 * prepare bitfield for channel sel. The FIELD_PREP works only when
	 * mask is constant. In our case the mask is assigned based on the
	 * chip type. Hence the open-coded FIELD_PREP here. We don't bother
	 * zeroing the irrelevant bits though - update_bits takes care of that.
	 */
	chan_sel <<= ffs(data->cd->chan_sel_mask) - 1;

	return regmap_update_bits(data->regmap, data->cd->chan_sel_reg,
				  BU27008_MASK_CHAN_SEL, chan_sel);
}

static int bu27008_read_one(struct bu27008_data *data, struct iio_dev *idev,
			    struct iio_chan_spec const *chan, int *val, int *val2)
{
	int ret, int_time;

	ret = bu27008_chan_cfg(data, chan);
	if (ret)
		return ret;

	ret = bu27008_meas_set(data, true);
	if (ret)
		return ret;

	ret = bu27008_get_int_time_us(data);
	if (ret < 0)
		int_time = BU27008_MEAS_TIME_MAX_MS;
	else
		int_time = ret / USEC_PER_MSEC;

	msleep(int_time);

	ret = bu27008_chan_read_data(data, chan->address, val);
	if (!ret)
		ret = IIO_VAL_INT;

	if (bu27008_meas_set(data, false))
		dev_warn(data->dev, "measurement disabling failed\n");

	return ret;
}

#define BU27008_LUX_DATA_RED	0
#define BU27008_LUX_DATA_GREEN	1
#define BU27008_LUX_DATA_BLUE	2
#define BU27008_LUX_DATA_IR	3
#define LUX_DATA_SIZE (BU27008_NUM_HW_CHANS * sizeof(__le16))

static int bu27008_read_lux_chans(struct bu27008_data *data, unsigned int time,
				  __le16 *chan_data)
{
	int ret, chan_sel, tmpret, valid;

	chan_sel = BU27008_BLUE2_IR3 << (ffs(data->cd->chan_sel_mask) - 1);

	ret = regmap_update_bits(data->regmap, data->cd->chan_sel_reg,
				 data->cd->chan_sel_mask, chan_sel);
	if (ret)
		return ret;

	ret = bu27008_meas_set(data, true);
	if (ret)
		return ret;

	msleep(time / USEC_PER_MSEC);

	ret = regmap_read_poll_timeout(data->regmap, data->cd->valid_reg,
				       valid, (valid & BU27008_MASK_VALID),
				       BU27008_VALID_RESULT_WAIT_QUANTA_US,
				       BU27008_MAX_VALID_RESULT_WAIT_US);
	if (ret)
		goto out;

	ret = regmap_bulk_read(data->regmap, BU27008_REG_DATA0_LO, chan_data,
			       LUX_DATA_SIZE);
	if (ret)
		goto out;
out:
	tmpret = bu27008_meas_set(data, false);
	if (tmpret)
		dev_warn(data->dev, "Stopping measurement failed\n");

	return ret;
}

/*
 * Following equation for computing lux out of register values was given by
 * ROHM HW colleagues;
 *
 * Red = RedData*1024 / Gain * 20 / meas_mode
 * Green = GreenData* 1024 / Gain * 20 / meas_mode
 * Blue = BlueData* 1024 / Gain * 20 / meas_mode
 * IR = IrData* 1024 / Gain * 20 / meas_mode
 *
 * where meas_mode is the integration time in mS / 10
 *
 * IRratio = (IR > 0.18 * Green) ? 0 : 1
 *
 * Lx = max(c1*Red + c2*Green + c3*Blue,0)
 *
 * for
 * IRratio 0: c1 = -0.00002237, c2 = 0.0003219, c3 = -0.000120371
 * IRratio 1: c1 = -0.00001074, c2 = 0.000305415, c3 = -0.000129367
 */

/*
 * The max chan data is 0xffff. When we multiply it by 1024 * 20, we'll get
 * 0x4FFFB000 which still fits in 32-bit integer. This won't overflow.
 */
#define NORM_CHAN_DATA_FOR_LX_CALC(chan, gain, time) (le16_to_cpu(chan) * \
				   1024 * 20 / (gain) / (time))
static u64 bu27008_calc_nlux(struct bu27008_data *data, __le16 *lux_data,
		unsigned int gain, unsigned int gain_ir, unsigned int time)
{
	unsigned int red, green, blue, ir;
	s64 c1, c2, c3, nlux;

	time /= 10000;
	ir = NORM_CHAN_DATA_FOR_LX_CALC(lux_data[BU27008_LUX_DATA_IR], gain_ir, time);
	red = NORM_CHAN_DATA_FOR_LX_CALC(lux_data[BU27008_LUX_DATA_RED], gain, time);
	green = NORM_CHAN_DATA_FOR_LX_CALC(lux_data[BU27008_LUX_DATA_GREEN], gain, time);
	blue = NORM_CHAN_DATA_FOR_LX_CALC(lux_data[BU27008_LUX_DATA_BLUE], gain, time);

	if ((u64)ir * 100LLU > (u64)green * 18LLU) {
		c1 = -22370;
		c2 = 321900;
		c3 = -120371;
	} else {
		c1 = -10740;
		c2 = 305415;
		c3 = -129367;
	}
	nlux = c1 * red + c2 * green + c3 * blue;

	return max_t(s64, 0, nlux);
}

static int bu27008_get_time_n_gains(struct bu27008_data *data,
		unsigned int *gain, unsigned int *gain_ir, unsigned int *time)
{
	int ret;

	ret = bu27008_get_gain(data, &data->gts, gain);
	if (ret < 0)
		return ret;

	ret = bu27008_get_gain(data, &data->gts_ir, gain_ir);
	if (ret < 0)
		return ret;

	ret = bu27008_get_int_time_us(data);
	if (ret < 0)
		return ret;

	/* Max integration time is 400000. Fits in signed int. */
	*time = ret;

	return 0;
}

struct bu27008_buf {
	__le16 chan[BU27008_NUM_HW_CHANS];
	u64 lux __aligned(8);
	s64 ts __aligned(8);
};

static int bu27008_buffer_fill_lux(struct bu27008_data *data,
				   struct bu27008_buf *raw)
{
	unsigned int gain, gain_ir, time;
	int ret;

	ret = bu27008_get_time_n_gains(data, &gain, &gain_ir, &time);
	if (ret)
		return ret;

	raw->lux = bu27008_calc_nlux(data, raw->chan, gain, gain_ir, time);

	return 0;
}

static int bu27008_read_lux(struct bu27008_data *data, struct iio_dev *idev,
			    struct iio_chan_spec const *chan,
			    int *val, int *val2)
{
	__le16 lux_data[BU27008_NUM_HW_CHANS];
	unsigned int gain, gain_ir, time;
	u64 nlux;
	int ret;

	ret = bu27008_get_time_n_gains(data, &gain, &gain_ir, &time);
	if (ret)
		return ret;

	ret = bu27008_read_lux_chans(data, time, lux_data);
	if (ret)
		return ret;

	nlux = bu27008_calc_nlux(data, lux_data, gain, gain_ir, time);
	*val = (int)nlux;
	*val2 = nlux >> 32LLU;

	return IIO_VAL_INT_64;
}

static int bu27008_read_raw(struct iio_dev *idev,
			   struct iio_chan_spec const *chan,
			   int *val, int *val2, long mask)
{
	struct bu27008_data *data = iio_priv(idev);
	int busy, ret;

	switch (mask) {
	case IIO_CHAN_INFO_RAW:
		busy = iio_device_claim_direct_mode(idev);
		if (busy)
			return -EBUSY;

		mutex_lock(&data->mutex);
		if (chan->type == IIO_LIGHT)
			ret = bu27008_read_lux(data, idev, chan, val, val2);
		else
			ret = bu27008_read_one(data, idev, chan, val, val2);
		mutex_unlock(&data->mutex);

		iio_device_release_direct_mode(idev);

		return ret;

	case IIO_CHAN_INFO_SCALE:
		if (chan->type == IIO_LIGHT) {
			*val = 0;
			*val2 = 1;
			return IIO_VAL_INT_PLUS_NANO;
		}
		ret = bu27008_get_scale(data, chan->scan_index == BU27008_IR,
					val, val2);
		if (ret)
			return ret;

		return IIO_VAL_INT_PLUS_NANO;

	case IIO_CHAN_INFO_INT_TIME:
		ret = bu27008_get_int_time_us(data);
		if (ret < 0)
			return ret;

		*val = 0;
		*val2 = ret;

		return IIO_VAL_INT_PLUS_MICRO;

	default:
		return -EINVAL;
	}
}

/* Called if the new scale could not be supported with existing int-time */
static int bu27008_try_find_new_time_gain(struct bu27008_data *data, int val,
					  int val2, int *gain_sel)
{
	int i, ret, new_time_sel;

	for (i = 0; i < data->gts.num_itime; i++) {
		new_time_sel = data->gts.itime_table[i].sel;
		ret = iio_gts_find_gain_sel_for_scale_using_time(&data->gts,
					new_time_sel, val, val2, gain_sel);
		if (!ret)
			break;
	}
	if (i == data->gts.num_itime) {
		dev_err(data->dev, "Can't support scale %u %u\n", val, val2);

		return -EINVAL;
	}

	return bu27008_set_int_time_sel(data, new_time_sel);
}

static int bu27008_set_scale(struct bu27008_data *data,
			     struct iio_chan_spec const *chan,
			     int val, int val2)
{
	int ret, gain_sel, time_sel;

	if (chan->scan_index == BU27008_IR)
		return -EINVAL;

	mutex_lock(&data->mutex);

	ret = bu27008_get_int_time_sel(data, &time_sel);
	if (ret < 0)
		goto unlock_out;

	ret = iio_gts_find_gain_sel_for_scale_using_time(&data->gts, time_sel,
						val, val2, &gain_sel);
	if (ret) {
		ret = bu27008_try_find_new_time_gain(data, val, val2, &gain_sel);
		if (ret)
			goto unlock_out;

	}
	ret = data->cd->write_gain_sel(data, gain_sel);

unlock_out:
	mutex_unlock(&data->mutex);

	return ret;
}

static int bu27008_write_raw_get_fmt(struct iio_dev *indio_dev,
				     struct iio_chan_spec const *chan,
				     long mask)
{

	switch (mask) {
	case IIO_CHAN_INFO_SCALE:
		return IIO_VAL_INT_PLUS_NANO;
	case IIO_CHAN_INFO_INT_TIME:
		return IIO_VAL_INT_PLUS_MICRO;
	default:
		return -EINVAL;
	}
}

static int bu27008_write_raw(struct iio_dev *idev,
			     struct iio_chan_spec const *chan,
			     int val, int val2, long mask)
{
	struct bu27008_data *data = iio_priv(idev);
	int ret;

	/*
	 * Do not allow changing scale when measurement is ongoing as doing so
	 * could make values in the buffer inconsistent.
	 */
	ret = iio_device_claim_direct_mode(idev);
	if (ret)
		return ret;

	switch (mask) {
	case IIO_CHAN_INFO_SCALE:
		ret = bu27008_set_scale(data, chan, val, val2);
		break;
	case IIO_CHAN_INFO_INT_TIME:
		if (val) {
			ret = -EINVAL;
			break;
		}
		ret = bu27008_try_set_int_time(data, val2);
		break;
	default:
		ret = -EINVAL;
		break;
	}
	iio_device_release_direct_mode(idev);

	return ret;
}

static int bu27008_read_avail(struct iio_dev *idev,
			      struct iio_chan_spec const *chan, const int **vals,
			      int *type, int *length, long mask)
{
	struct bu27008_data *data = iio_priv(idev);

	switch (mask) {
	case IIO_CHAN_INFO_INT_TIME:
		return iio_gts_avail_times(&data->gts, vals, type, length);
	case IIO_CHAN_INFO_SCALE:
		if (chan->channel2 == IIO_MOD_LIGHT_IR)
			return iio_gts_all_avail_scales(&data->gts_ir, vals,
							type, length);
		return iio_gts_all_avail_scales(&data->gts, vals, type, length);
	default:
		return -EINVAL;
	}
}

static int bu27008_update_scan_mode(struct iio_dev *idev,
				    const unsigned long *scan_mask)
{
	struct bu27008_data *data = iio_priv(idev);
	int chan_sel;

	/* Configure channel selection */
	if (test_bit(BU27008_BLUE, idev->active_scan_mask)) {
		if (test_bit(BU27008_CLEAR, idev->active_scan_mask))
			chan_sel = BU27008_BLUE2_CLEAR3;
		else
			chan_sel = BU27008_BLUE2_IR3;
	} else {
		chan_sel = BU27008_CLEAR2_IR3;
	}

	chan_sel <<= ffs(data->cd->chan_sel_mask) - 1;

	return regmap_update_bits(data->regmap, data->cd->chan_sel_reg,
				  data->cd->chan_sel_mask, chan_sel);
}

static const struct iio_info bu27008_info = {
	.read_raw = &bu27008_read_raw,
	.write_raw = &bu27008_write_raw,
	.write_raw_get_fmt = &bu27008_write_raw_get_fmt,
	.read_avail = &bu27008_read_avail,
	.update_scan_mode = bu27008_update_scan_mode,
	.validate_trigger = iio_validate_own_trigger,
};

static int bu27008_trigger_set_state(struct iio_trigger *trig, bool state)
{
	struct bu27008_data *data = iio_trigger_get_drvdata(trig);
	int ret;


	if (state)
		ret = regmap_set_bits(data->regmap, data->cd->drdy_en_reg,
				      data->cd->drdy_en_mask);
	else
		ret = regmap_clear_bits(data->regmap, data->cd->drdy_en_reg,
					data->cd->drdy_en_mask);
	if (ret)
		dev_err(data->dev, "Failed to set trigger state\n");

	return ret;
}

static void bu27008_trigger_reenable(struct iio_trigger *trig)
{
	struct bu27008_data *data = iio_trigger_get_drvdata(trig);

	enable_irq(data->irq);
}

static const struct iio_trigger_ops bu27008_trigger_ops = {
	.set_trigger_state = bu27008_trigger_set_state,
	.reenable = bu27008_trigger_reenable,
};

static irqreturn_t bu27008_trigger_handler(int irq, void *p)
{
	struct iio_poll_func *pf = p;
	struct iio_dev *idev = pf->indio_dev;
	struct bu27008_data *data = iio_priv(idev);
	struct bu27008_buf raw;
	int ret, dummy;

	memset(&raw, 0, sizeof(raw));

	/*
	 * After some measurements, it seems reading the
	 * BU27008_REG_MODE_CONTROL3 debounces the IRQ line
	 */
	ret = regmap_read(data->regmap, data->cd->valid_reg, &dummy);
	if (ret < 0)
		goto err_read;

	ret = regmap_bulk_read(data->regmap, BU27008_REG_DATA0_LO, &raw.chan,
			       sizeof(raw.chan));
	if (ret < 0)
		goto err_read;

	if (test_bit(BU27008_LUX, idev->active_scan_mask)) {
		ret = bu27008_buffer_fill_lux(data, &raw);
		if (ret)
			goto err_read;
	}

	iio_push_to_buffers_with_timestamp(idev, &raw, pf->timestamp);
err_read:
	iio_trigger_notify_done(idev->trig);

	return IRQ_HANDLED;
}

static int bu27008_buffer_preenable(struct iio_dev *idev)
{
	struct bu27008_data *data = iio_priv(idev);

	return bu27008_meas_set(data, true);
}

static int bu27008_buffer_postdisable(struct iio_dev *idev)
{
	struct bu27008_data *data = iio_priv(idev);

	return bu27008_meas_set(data, false);
}

static const struct iio_buffer_setup_ops bu27008_buffer_ops = {
	.preenable = bu27008_buffer_preenable,
	.postdisable = bu27008_buffer_postdisable,
};

static irqreturn_t bu27008_data_rdy_poll(int irq, void *private)
{
	/*
	 * The BU27008 keeps IRQ asserted until we read the VALID bit from
	 * a register. We need to keep the IRQ disabled until then.
	 */
	disable_irq_nosync(irq);
	iio_trigger_poll(private);

	return IRQ_HANDLED;
}

static int bu27008_setup_trigger(struct bu27008_data *data, struct iio_dev *idev)
{
	struct iio_trigger *itrig;
	char *name;
	int ret;

	ret = devm_iio_triggered_buffer_setup(data->dev, idev,
					      &iio_pollfunc_store_time,
					      bu27008_trigger_handler,
					      &bu27008_buffer_ops);
	if (ret)
		return dev_err_probe(data->dev, ret,
			     "iio_triggered_buffer_setup_ext FAIL\n");

	itrig = devm_iio_trigger_alloc(data->dev, "%sdata-rdy-dev%d",
				       idev->name, iio_device_id(idev));
	if (!itrig)
		return -ENOMEM;

	data->trig = itrig;

	itrig->ops = &bu27008_trigger_ops;
	iio_trigger_set_drvdata(itrig, data);

	name = devm_kasprintf(data->dev, GFP_KERNEL, "%s-bu27008",
			      dev_name(data->dev));

	ret = devm_request_irq(data->dev, data->irq,
			       &bu27008_data_rdy_poll,
			       0, name, itrig);
	if (ret)
		return dev_err_probe(data->dev, ret, "Could not request IRQ\n");

	ret = devm_iio_trigger_register(data->dev, itrig);
	if (ret)
		return dev_err_probe(data->dev, ret,
				     "Trigger registration failed\n");

	/* set default trigger */
	idev->trig = iio_trigger_get(itrig);

	return 0;
}

static int bu27008_probe(struct i2c_client *i2c)
{
	struct device *dev = &i2c->dev;
	struct bu27008_data *data;
	struct regmap *regmap;
	unsigned int part_id, reg;
	struct iio_dev *idev;
	int ret;

	idev = devm_iio_device_alloc(dev, sizeof(*data));
	if (!idev)
		return -ENOMEM;

	ret = devm_regulator_get_enable(dev, "vdd");
	if (ret)
		return dev_err_probe(dev, ret, "Failed to get regulator\n");

	data = iio_priv(idev);

	data->cd = device_get_match_data(&i2c->dev);
	if (!data->cd)
		return -ENODEV;

	regmap = devm_regmap_init_i2c(i2c, data->cd->regmap_cfg);
	if (IS_ERR(regmap))
		return dev_err_probe(dev, PTR_ERR(regmap),
				     "Failed to initialize Regmap\n");


	ret = regmap_read(regmap, BU27008_REG_SYSTEM_CONTROL, &reg);
	if (ret)
		return dev_err_probe(dev, ret, "Failed to access sensor\n");

	part_id = FIELD_GET(BU27008_MASK_PART_ID, reg);

	if (part_id != data->cd->part_id)
		dev_warn(dev, "unknown device 0x%x\n", part_id);

	ret = devm_iio_init_iio_gts(dev, data->cd->scale1x, 0, data->cd->gains,
				    data->cd->num_gains, data->cd->itimes,
				    data->cd->num_itimes, &data->gts);
	if (ret)
		return ret;

	ret = devm_iio_init_iio_gts(dev, data->cd->scale1x, 0, data->cd->gains_ir,
				    data->cd->num_gains_ir, data->cd->itimes,
				    data->cd->num_itimes, &data->gts_ir);
	if (ret)
		return ret;

	mutex_init(&data->mutex);
	data->regmap = regmap;
	data->dev = dev;
	data->irq = i2c->irq;

	idev->channels = bu27008_channels;
	idev->num_channels = ARRAY_SIZE(bu27008_channels);
	idev->name = data->cd->name;
	idev->info = &bu27008_info;
	idev->modes = INDIO_DIRECT_MODE;
	idev->available_scan_masks = bu27008_scan_masks;

	ret = data->cd->chip_init(data);
	if (ret)
		return ret;

	if (i2c->irq) {
		ret = bu27008_setup_trigger(data, idev);
		if (ret)
			return ret;
	} else {
		dev_info(dev, "No IRQ, buffered mode disabled\n");
	}

	ret = devm_iio_device_register(dev, idev);
	if (ret)
		return dev_err_probe(dev, ret,
				     "Unable to register iio device\n");

	return 0;
}

static const struct of_device_id bu27008_of_match[] = {
	{ .compatible = "rohm,bu27008", .data = &bu27008_chip },
	{ .compatible = "rohm,bu27010", .data = &bu27010_chip },
	{ }
};
MODULE_DEVICE_TABLE(of, bu27008_of_match);

static struct i2c_driver bu27008_i2c_driver = {
	.driver = {
		.name = "bu27008",
		.of_match_table = bu27008_of_match,
		.probe_type = PROBE_PREFER_ASYNCHRONOUS,
	},
	.probe = bu27008_probe,
};
module_i2c_driver(bu27008_i2c_driver);

MODULE_DESCRIPTION("ROHM BU27008 and BU27010 colour sensor driver");
MODULE_AUTHOR("Matti Vaittinen <[email protected]>");
MODULE_LICENSE("GPL");
MODULE_IMPORT_NS(IIO_GTS_HELPER);