// SPDX-License-Identifier: GPL-2.0
/*
* Copyright 2016-2022 HabanaLabs, Ltd.
* All Rights Reserved.
*/
#include <uapi/drm/habanalabs_accel.h>
#include "habanalabs.h"
#include "../include/hw_ip/mmu/mmu_general.h"
#include <linux/uaccess.h>
#include <linux/slab.h>
#include <linux/vmalloc.h>
#include <linux/pci-p2pdma.h>
MODULE_IMPORT_NS(DMA_BUF);
#define HL_MMU_DEBUG 0
/* use small pages for supporting non-pow2 (32M/40M/48M) DRAM phys page sizes */
#define DRAM_POOL_PAGE_SIZE SZ_8M
#define MEM_HANDLE_INVALID ULONG_MAX
static int allocate_timestamps_buffers(struct hl_fpriv *hpriv,
struct hl_mem_in *args, u64 *handle);
static int set_alloc_page_size(struct hl_device *hdev, struct hl_mem_in *args, u32 *page_size)
{
struct asic_fixed_properties *prop = &hdev->asic_prop;
u64 psize;
/*
* for ASIC that supports setting the allocation page size by user we will address
* user's choice only if it is not 0 (as 0 means taking the default page size)
*/
if (prop->supports_user_set_page_size && args->alloc.page_size) {
psize = args->alloc.page_size;
if (!is_power_of_2(psize)) {
dev_err(hdev->dev, "user page size (%#llx) is not power of 2\n", psize);
return -EINVAL;
}
} else {
psize = prop->device_mem_alloc_default_page_size;
}
*page_size = psize;
return 0;
}
/*
* The va ranges in context object contain a list with the available chunks of
* device virtual memory.
* There is one range for host allocations and one for DRAM allocations.
*
* On initialization each range contains one chunk of all of its available
* virtual range which is a half of the total device virtual range.
*
* On each mapping of physical pages, a suitable virtual range chunk (with a
* minimum size) is selected from the list. If the chunk size equals the
* requested size, the chunk is returned. Otherwise, the chunk is split into
* two chunks - one to return as result and a remainder to stay in the list.
*
* On each Unmapping of a virtual address, the relevant virtual chunk is
* returned to the list. The chunk is added to the list and if its edges match
* the edges of the adjacent chunks (means a contiguous chunk can be created),
* the chunks are merged.
*
* On finish, the list is checked to have only one chunk of all the relevant
* virtual range (which is a half of the device total virtual range).
* If not (means not all mappings were unmapped), a warning is printed.
*/
/*
* alloc_device_memory() - allocate device memory.
* @ctx: pointer to the context structure.
* @args: host parameters containing the requested size.
* @ret_handle: result handle.
*
* This function does the following:
* - Allocate the requested size rounded up to 'dram_page_size' pages.
* - Return unique handle for later map/unmap/free.
*/
static int alloc_device_memory(struct hl_ctx *ctx, struct hl_mem_in *args,
u32 *ret_handle)
{
struct hl_device *hdev = ctx->hdev;
struct hl_vm *vm = &hdev->vm;
struct hl_vm_phys_pg_pack *phys_pg_pack;
u64 paddr = 0, total_size, num_pgs, i;
u32 num_curr_pgs, page_size;
bool contiguous;
int handle, rc;
num_curr_pgs = 0;
rc = set_alloc_page_size(hdev, args, &page_size);
if (rc)
return rc;
num_pgs = DIV_ROUND_UP_ULL(args->alloc.mem_size, page_size);
total_size = num_pgs * page_size;
if (!total_size) {
dev_err(hdev->dev, "Cannot allocate 0 bytes\n");
return -EINVAL;
}
contiguous = args->flags & HL_MEM_CONTIGUOUS;
if (contiguous) {
if (is_power_of_2(page_size))
paddr = (uintptr_t) gen_pool_dma_alloc_align(vm->dram_pg_pool,
total_size, NULL, page_size);
else
paddr = gen_pool_alloc(vm->dram_pg_pool, total_size);
if (!paddr) {
dev_err(hdev->dev,
"Cannot allocate %llu contiguous pages with total size of %llu\n",
num_pgs, total_size);
return -ENOMEM;
}
}
phys_pg_pack = kzalloc(sizeof(*phys_pg_pack), GFP_KERNEL);
if (!phys_pg_pack) {
rc = -ENOMEM;
goto pages_pack_err;
}
phys_pg_pack->vm_type = VM_TYPE_PHYS_PACK;
phys_pg_pack->asid = ctx->asid;
phys_pg_pack->npages = num_pgs;
phys_pg_pack->page_size = page_size;
phys_pg_pack->total_size = total_size;
phys_pg_pack->flags = args->flags;
phys_pg_pack->contiguous = contiguous;
phys_pg_pack->pages = kvmalloc_array(num_pgs, sizeof(u64), GFP_KERNEL);
if (ZERO_OR_NULL_PTR(phys_pg_pack->pages)) {
rc = -ENOMEM;
goto pages_arr_err;
}
if (phys_pg_pack->contiguous) {
for (i = 0 ; i < num_pgs ; i++)
phys_pg_pack->pages[i] = paddr + i * page_size;
} else {
for (i = 0 ; i < num_pgs ; i++) {
if (is_power_of_2(page_size))
phys_pg_pack->pages[i] =
(uintptr_t)gen_pool_dma_alloc_align(vm->dram_pg_pool,
page_size, NULL,
page_size);
else
phys_pg_pack->pages[i] = gen_pool_alloc(vm->dram_pg_pool,
page_size);
if (!phys_pg_pack->pages[i]) {
dev_err(hdev->dev,
"Cannot allocate device memory (out of memory)\n");
rc = -ENOMEM;
goto page_err;
}
num_curr_pgs++;
}
}
spin_lock(&vm->idr_lock);
handle = idr_alloc(&vm->phys_pg_pack_handles, phys_pg_pack, 1, 0,
GFP_ATOMIC);
spin_unlock(&vm->idr_lock);
if (handle < 0) {
dev_err(hdev->dev, "Failed to get handle for page\n");
rc = -EFAULT;
goto idr_err;
}
for (i = 0 ; i < num_pgs ; i++)
kref_get(&vm->dram_pg_pool_refcount);
phys_pg_pack->handle = handle;
atomic64_add(phys_pg_pack->total_size, &ctx->dram_phys_mem);
atomic64_add(phys_pg_pack->total_size, &hdev->dram_used_mem);
*ret_handle = handle;
return 0;
idr_err:
page_err:
if (!phys_pg_pack->contiguous)
for (i = 0 ; i < num_curr_pgs ; i++)
gen_pool_free(vm->dram_pg_pool, phys_pg_pack->pages[i],
page_size);
kvfree(phys_pg_pack->pages);
pages_arr_err:
kfree(phys_pg_pack);
pages_pack_err:
if (contiguous)
gen_pool_free(vm->dram_pg_pool, paddr, total_size);
return rc;
}
/**
* dma_map_host_va() - DMA mapping of the given host virtual address.
* @hdev: habanalabs device structure.
* @addr: the host virtual address of the memory area.
* @size: the size of the memory area.
* @p_userptr: pointer to result userptr structure.
*
* This function does the following:
* - Allocate userptr structure.
* - Pin the given host memory using the userptr structure.
* - Perform DMA mapping to have the DMA addresses of the pages.
*/
static int dma_map_host_va(struct hl_device *hdev, u64 addr, u64 size,
struct hl_userptr **p_userptr)
{
struct hl_userptr *userptr;
int rc;
userptr = kzalloc(sizeof(*userptr), GFP_KERNEL);
if (!userptr) {
rc = -ENOMEM;
goto userptr_err;
}
rc = hl_pin_host_memory(hdev, addr, size, userptr);
if (rc)
goto pin_err;
userptr->dma_mapped = true;
userptr->dir = DMA_BIDIRECTIONAL;
userptr->vm_type = VM_TYPE_USERPTR;
*p_userptr = userptr;
rc = hl_dma_map_sgtable(hdev, userptr->sgt, DMA_BIDIRECTIONAL);
if (rc) {
dev_err(hdev->dev, "failed to map sgt with DMA region\n");
goto dma_map_err;
}
return 0;
dma_map_err:
hl_unpin_host_memory(hdev, userptr);
pin_err:
kfree(userptr);
userptr_err:
return rc;
}
/**
* dma_unmap_host_va() - DMA unmapping of the given host virtual address.
* @hdev: habanalabs device structure.
* @userptr: userptr to free.
*
* This function does the following:
* - Unpins the physical pages.
* - Frees the userptr structure.
*/
static void dma_unmap_host_va(struct hl_device *hdev,
struct hl_userptr *userptr)
{
hl_unpin_host_memory(hdev, userptr);
kfree(userptr);
}
/**
* dram_pg_pool_do_release() - free DRAM pages pool
* @ref: pointer to reference object.
*
* This function does the following:
* - Frees the idr structure of physical pages handles.
* - Frees the generic pool of DRAM physical pages.
*/
static void dram_pg_pool_do_release(struct kref *ref)
{
struct hl_vm *vm = container_of(ref, struct hl_vm,
dram_pg_pool_refcount);
/*
* free the idr here as only here we know for sure that there are no
* allocated physical pages and hence there are no handles in use
*/
idr_destroy(&vm->phys_pg_pack_handles);
gen_pool_destroy(vm->dram_pg_pool);
}
/**
* free_phys_pg_pack() - free physical page pack.
* @hdev: habanalabs device structure.
* @phys_pg_pack: physical page pack to free.
*
* This function does the following:
* - For DRAM memory only
* - iterate over the pack, free each physical block structure by
* returning it to the general pool.
* - Free the hl_vm_phys_pg_pack structure.
*/
static void free_phys_pg_pack(struct hl_device *hdev,
struct hl_vm_phys_pg_pack *phys_pg_pack)
{
struct hl_vm *vm = &hdev->vm;
u64 i;
if (phys_pg_pack->created_from_userptr)
goto end;
if (phys_pg_pack->contiguous) {
gen_pool_free(vm->dram_pg_pool, phys_pg_pack->pages[0],
phys_pg_pack->total_size);
for (i = 0; i < phys_pg_pack->npages ; i++)
kref_put(&vm->dram_pg_pool_refcount,
dram_pg_pool_do_release);
} else {
for (i = 0 ; i < phys_pg_pack->npages ; i++) {
gen_pool_free(vm->dram_pg_pool,
phys_pg_pack->pages[i],
phys_pg_pack->page_size);
kref_put(&vm->dram_pg_pool_refcount,
dram_pg_pool_do_release);
}
}
end:
kvfree(phys_pg_pack->pages);
kfree(phys_pg_pack);
return;
}
/**
* free_device_memory() - free device memory.
* @ctx: pointer to the context structure.
* @args: host parameters containing the requested size.
*
* This function does the following:
* - Free the device memory related to the given handle.
*/
static int free_device_memory(struct hl_ctx *ctx, struct hl_mem_in *args)
{
struct hl_device *hdev = ctx->hdev;
struct hl_vm *vm = &hdev->vm;
struct hl_vm_phys_pg_pack *phys_pg_pack;
u32 handle = args->free.handle;
spin_lock(&vm->idr_lock);
phys_pg_pack = idr_find(&vm->phys_pg_pack_handles, handle);
if (!phys_pg_pack) {
spin_unlock(&vm->idr_lock);
dev_err(hdev->dev, "free device memory failed, no match for handle %u\n", handle);
return -EINVAL;
}
if (atomic_read(&phys_pg_pack->mapping_cnt) > 0) {
spin_unlock(&vm->idr_lock);
dev_err(hdev->dev, "handle %u is mapped, cannot free\n", handle);
return -EINVAL;
}
/* must remove from idr before the freeing of the physical pages as the refcount of the pool
* is also the trigger of the idr destroy
*/
idr_remove(&vm->phys_pg_pack_handles, handle);
spin_unlock(&vm->idr_lock);
atomic64_sub(phys_pg_pack->total_size, &ctx->dram_phys_mem);
atomic64_sub(phys_pg_pack->total_size, &hdev->dram_used_mem);
free_phys_pg_pack(hdev, phys_pg_pack);
return 0;
}
/**
* clear_va_list_locked() - free virtual addresses list.
* @hdev: habanalabs device structure.
* @va_list: list of virtual addresses to free.
*
* This function does the following:
* - Iterate over the list and free each virtual addresses block.
*
* This function should be called only when va_list lock is taken.
*/
static void clear_va_list_locked(struct hl_device *hdev,
struct list_head *va_list)
{
struct hl_vm_va_block *va_block, *tmp;
list_for_each_entry_safe(va_block, tmp, va_list, node) {
list_del(&va_block->node);
kfree(va_block);
}
}
/**
* print_va_list_locked() - print virtual addresses list.
* @hdev: habanalabs device structure.
* @va_list: list of virtual addresses to print.
*
* This function does the following:
* - Iterate over the list and print each virtual addresses block.
*
* This function should be called only when va_list lock is taken.
*/
static void print_va_list_locked(struct hl_device *hdev,
struct list_head *va_list)
{
#if HL_MMU_DEBUG
struct hl_vm_va_block *va_block;
dev_dbg(hdev->dev, "print va list:\n");
list_for_each_entry(va_block, va_list, node)
dev_dbg(hdev->dev,
"va block, start: 0x%llx, end: 0x%llx, size: %llu\n",
va_block->start, va_block->end, va_block->size);
#endif
}
/**
* merge_va_blocks_locked() - merge a virtual block if possible.
* @hdev: pointer to the habanalabs device structure.
* @va_list: pointer to the virtual addresses block list.
* @va_block: virtual block to merge with adjacent blocks.
*
* This function does the following:
* - Merge the given blocks with the adjacent blocks if their virtual ranges
* create a contiguous virtual range.
*
* This Function should be called only when va_list lock is taken.
*/
static void merge_va_blocks_locked(struct hl_device *hdev,
struct list_head *va_list, struct hl_vm_va_block *va_block)
{
struct hl_vm_va_block *prev, *next;
prev = list_prev_entry(va_block, node);
if (&prev->node != va_list && prev->end + 1 == va_block->start) {
prev->end = va_block->end;
prev->size = prev->end - prev->start + 1;
list_del(&va_block->node);
kfree(va_block);
va_block = prev;
}
next = list_next_entry(va_block, node);
if (&next->node != va_list && va_block->end + 1 == next->start) {
next->start = va_block->start;
next->size = next->end - next->start + 1;
list_del(&va_block->node);
kfree(va_block);
}
}
/**
* add_va_block_locked() - add a virtual block to the virtual addresses list.
* @hdev: pointer to the habanalabs device structure.
* @va_list: pointer to the virtual addresses block list.
* @start: start virtual address.
* @end: end virtual address.
*
* This function does the following:
* - Add the given block to the virtual blocks list and merge with other blocks
* if a contiguous virtual block can be created.
*
* This Function should be called only when va_list lock is taken.
*/
static int add_va_block_locked(struct hl_device *hdev,
struct list_head *va_list, u64 start, u64 end)
{
struct hl_vm_va_block *va_block, *res = NULL;
u64 size = end - start + 1;
print_va_list_locked(hdev, va_list);
list_for_each_entry(va_block, va_list, node) {
/* TODO: remove upon matureness */
if (hl_mem_area_crosses_range(start, size, va_block->start,
va_block->end)) {
dev_err(hdev->dev,
"block crossing ranges at start 0x%llx, end 0x%llx\n",
va_block->start, va_block->end);
return -EINVAL;
}
if (va_block->end < start)
res = va_block;
}
va_block = kmalloc(sizeof(*va_block), GFP_KERNEL);
if (!va_block)
return -ENOMEM;
va_block->start = start;
va_block->end = end;
va_block->size = size;
if (!res)
list_add(&va_block->node, va_list);
else
list_add(&va_block->node, &res->node);
merge_va_blocks_locked(hdev, va_list, va_block);
print_va_list_locked(hdev, va_list);
return 0;
}
/**
* add_va_block() - wrapper for add_va_block_locked.
* @hdev: pointer to the habanalabs device structure.
* @va_range: pointer to the virtual addresses range object.
* @start: start virtual address.
* @end: end virtual address.
*
* This function does the following:
* - Takes the list lock and calls add_va_block_locked.
*/
static inline int add_va_block(struct hl_device *hdev,
struct hl_va_range *va_range, u64 start, u64 end)
{
int rc;
mutex_lock(&va_range->lock);
rc = add_va_block_locked(hdev, &va_range->list, start, end);
mutex_unlock(&va_range->lock);
return rc;
}
/**
* is_hint_crossing_range() - check if hint address crossing specified reserved.
* @range_type: virtual space range type.
* @start_addr: start virtual address.
* @size: block size.
* @prop: asic properties structure to retrieve reserved ranges from.
*/
static inline bool is_hint_crossing_range(enum hl_va_range_type range_type,
u64 start_addr, u32 size, struct asic_fixed_properties *prop) {
bool range_cross;
if (range_type == HL_VA_RANGE_TYPE_DRAM)
range_cross =
hl_mem_area_crosses_range(start_addr, size,
prop->hints_dram_reserved_va_range.start_addr,
prop->hints_dram_reserved_va_range.end_addr);
else if (range_type == HL_VA_RANGE_TYPE_HOST)
range_cross =
hl_mem_area_crosses_range(start_addr, size,
prop->hints_host_reserved_va_range.start_addr,
prop->hints_host_reserved_va_range.end_addr);
else
range_cross =
hl_mem_area_crosses_range(start_addr, size,
prop->hints_host_hpage_reserved_va_range.start_addr,
prop->hints_host_hpage_reserved_va_range.end_addr);
return range_cross;
}
/**
* get_va_block() - get a virtual block for the given size and alignment.
*
* @hdev: pointer to the habanalabs device structure.
* @va_range: pointer to the virtual addresses range.
* @size: requested block size.
* @hint_addr: hint for requested address by the user.
* @va_block_align: required alignment of the virtual block start address.
* @range_type: va range type (host, dram)
* @flags: additional memory flags, currently only uses HL_MEM_FORCE_HINT
*
* This function does the following:
* - Iterate on the virtual block list to find a suitable virtual block for the
* given size, hint address and alignment.
* - Reserve the requested block and update the list.
* - Return the start address of the virtual block.
*/
static u64 get_va_block(struct hl_device *hdev,
struct hl_va_range *va_range,
u64 size, u64 hint_addr, u32 va_block_align,
enum hl_va_range_type range_type,
u32 flags)
{
struct hl_vm_va_block *va_block, *new_va_block = NULL;
struct asic_fixed_properties *prop = &hdev->asic_prop;
u64 tmp_hint_addr, valid_start, valid_size, prev_start, prev_end,
align_mask, reserved_valid_start = 0, reserved_valid_size = 0,
dram_hint_mask = prop->dram_hints_align_mask;
bool add_prev = false;
bool is_align_pow_2 = is_power_of_2(va_range->page_size);
bool is_hint_dram_addr = hl_is_dram_va(hdev, hint_addr);
bool force_hint = flags & HL_MEM_FORCE_HINT;
int rc;
if (is_align_pow_2)
align_mask = ~((u64)va_block_align - 1);
else
/*
* with non-power-of-2 range we work only with page granularity
* and the start address is page aligned,
* so no need for alignment checking.
*/
size = DIV_ROUND_UP_ULL(size, va_range->page_size) *
va_range->page_size;
tmp_hint_addr = hint_addr & ~dram_hint_mask;
/* Check if we need to ignore hint address */
if ((is_align_pow_2 && (hint_addr & (va_block_align - 1))) ||
(!is_align_pow_2 && is_hint_dram_addr &&
do_div(tmp_hint_addr, va_range->page_size))) {
if (force_hint) {
/* Hint must be respected, so here we just fail */
dev_err(hdev->dev,
"Hint address 0x%llx is not page aligned - cannot be respected\n",
hint_addr);
return 0;
}
dev_dbg(hdev->dev,
"Hint address 0x%llx will be ignored because it is not aligned\n",
hint_addr);
hint_addr = 0;
}
mutex_lock(&va_range->lock);
print_va_list_locked(hdev, &va_range->list);
list_for_each_entry(va_block, &va_range->list, node) {
/* Calc the first possible aligned addr */
valid_start = va_block->start;
if (is_align_pow_2 && (valid_start & (va_block_align - 1))) {
valid_start &= align_mask;
valid_start += va_block_align;
if (valid_start > va_block->end)
continue;
}
valid_size = va_block->end - valid_start + 1;
if (valid_size < size)
continue;
/*
* In case hint address is 0, and hints_range_reservation
* property enabled, then avoid allocating va blocks from the
* range reserved for hint addresses
*/
if (prop->hints_range_reservation && !hint_addr)
if (is_hint_crossing_range(range_type, valid_start,
size, prop))
continue;
/* Pick the minimal length block which has the required size */
if (!new_va_block || (valid_size < reserved_valid_size)) {
new_va_block = va_block;
reserved_valid_start = valid_start;
reserved_valid_size = valid_size;
}
if (hint_addr && hint_addr >= valid_start &&
(hint_addr + size) <= va_block->end) {
new_va_block = va_block;
reserved_valid_start = hint_addr;
reserved_valid_size = valid_size;
break;
}
}
if (!new_va_block) {
dev_err(hdev->dev, "no available va block for size %llu\n",
size);
goto out;
}
if (force_hint && reserved_valid_start != hint_addr) {
/* Hint address must be respected. If we are here - this means
* we could not respect it.
*/
dev_err(hdev->dev,
"Hint address 0x%llx could not be respected\n",
hint_addr);
reserved_valid_start = 0;
goto out;
}
/*
* Check if there is some leftover range due to reserving the new
* va block, then return it to the main virtual addresses list.
*/
if (reserved_valid_start > new_va_block->start) {
prev_start = new_va_block->start;
prev_end = reserved_valid_start - 1;
new_va_block->start = reserved_valid_start;
new_va_block->size = reserved_valid_size;
add_prev = true;
}
if (new_va_block->size > size) {
new_va_block->start += size;
new_va_block->size = new_va_block->end - new_va_block->start + 1;
} else {
list_del(&new_va_block->node);
kfree(new_va_block);
}
if (add_prev) {
rc = add_va_block_locked(hdev, &va_range->list, prev_start, prev_end);
if (rc) {
reserved_valid_start = 0;
goto out;
}
}
print_va_list_locked(hdev, &va_range->list);
out:
mutex_unlock(&va_range->lock);
return reserved_valid_start;
}
/*
* hl_reserve_va_block() - reserve a virtual block of a given size.
* @hdev: pointer to the habanalabs device structure.
* @ctx: current context
* @type: virtual addresses range type.
* @size: requested block size.
* @alignment: required alignment in bytes of the virtual block start address,
* 0 means no alignment.
*
* This function does the following:
* - Iterate on the virtual block list to find a suitable virtual block for the
* given size and alignment.
* - Reserve the requested block and update the list.
* - Return the start address of the virtual block.
*/
u64 hl_reserve_va_block(struct hl_device *hdev, struct hl_ctx *ctx,
enum hl_va_range_type type, u64 size, u32 alignment)
{
return get_va_block(hdev, ctx->va_range[type], size, 0,
max(alignment, ctx->va_range[type]->page_size),
type, 0);
}
/**
* hl_get_va_range_type() - get va_range type for the given address and size.
* @ctx: context to fetch va_range from.
* @address: the start address of the area we want to validate.
* @size: the size in bytes of the area we want to validate.
* @type: returned va_range type.
*
* Return: true if the area is inside a valid range, false otherwise.
*/
static int hl_get_va_range_type(struct hl_ctx *ctx, u64 address, u64 size,
enum hl_va_range_type *type)
{
int i;
for (i = 0 ; i < HL_VA_RANGE_TYPE_MAX; i++) {
if (hl_mem_area_inside_range(address, size,
ctx->va_range[i]->start_addr,
ctx->va_range[i]->end_addr)) {
*type = i;
return 0;
}
}
return -EINVAL;
}
/**
* hl_unreserve_va_block() - wrapper for add_va_block to unreserve a va block.
* @hdev: pointer to the habanalabs device structure
* @ctx: pointer to the context structure.
* @start_addr: start virtual address.
* @size: number of bytes to unreserve.
*
* This function does the following:
* - Takes the list lock and calls add_va_block_locked.
*/
int hl_unreserve_va_block(struct hl_device *hdev, struct hl_ctx *ctx,
u64 start_addr, u64 size)
{
enum hl_va_range_type type;
int rc;
rc = hl_get_va_range_type(ctx, start_addr, size, &type);
if (rc) {
dev_err(hdev->dev,
"cannot find va_range for va %#llx size %llu",
start_addr, size);
return rc;
}
rc = add_va_block(hdev, ctx->va_range[type], start_addr,
start_addr + size - 1);
if (rc)
dev_warn(hdev->dev,
"add va block failed for vaddr: 0x%llx\n", start_addr);
return rc;
}
/**
* init_phys_pg_pack_from_userptr() - initialize physical page pack from host
* memory
* @ctx: pointer to the context structure.
* @userptr: userptr to initialize from.
* @pphys_pg_pack: result pointer.
* @force_regular_page: tell the function to ignore huge page optimization,
* even if possible. Needed for cases where the device VA
* is allocated before we know the composition of the
* physical pages
*
* This function does the following:
* - Create a physical page pack from the physical pages related to the given
* virtual block.
*/
static int init_phys_pg_pack_from_userptr(struct hl_ctx *ctx,
struct hl_userptr *userptr,
struct hl_vm_phys_pg_pack **pphys_pg_pack,
bool force_regular_page)
{
u32 npages, page_size = PAGE_SIZE,
huge_page_size = ctx->hdev->asic_prop.pmmu_huge.page_size;
u32 pgs_in_huge_page = huge_page_size >> __ffs(page_size);
struct hl_vm_phys_pg_pack *phys_pg_pack;
bool first = true, is_huge_page_opt;
u64 page_mask, total_npages;
struct scatterlist *sg;
dma_addr_t dma_addr;
int rc, i, j;
phys_pg_pack = kzalloc(sizeof(*phys_pg_pack), GFP_KERNEL);
if (!phys_pg_pack)
return -ENOMEM;
phys_pg_pack->vm_type = userptr->vm_type;
phys_pg_pack->created_from_userptr = true;
phys_pg_pack->asid = ctx->asid;
atomic_set(&phys_pg_pack->mapping_cnt, 1);
is_huge_page_opt = (force_regular_page ? false : true);
/* Only if all dma_addrs are aligned to 2MB and their
* sizes is at least 2MB, we can use huge page mapping.
* We limit the 2MB optimization to this condition,
* since later on we acquire the related VA range as one
* consecutive block.
*/
total_npages = 0;
for_each_sgtable_dma_sg(userptr->sgt, sg, i) {
npages = hl_get_sg_info(sg, &dma_addr);
total_npages += npages;
if ((npages % pgs_in_huge_page) ||
(dma_addr & (huge_page_size - 1)))
is_huge_page_opt = false;
}
if (is_huge_page_opt) {
page_size = huge_page_size;
do_div(total_npages, pgs_in_huge_page);
}
page_mask = ~(((u64) page_size) - 1);
phys_pg_pack->pages = kvmalloc_array(total_npages, sizeof(u64),
GFP_KERNEL);
if (ZERO_OR_NULL_PTR(phys_pg_pack->pages)) {
rc = -ENOMEM;
goto page_pack_arr_mem_err;
}
phys_pg_pack->npages = total_npages;
phys_pg_pack->page_size = page_size;
phys_pg_pack->total_size = total_npages * page_size;
j = 0;
for_each_sgtable_dma_sg(userptr->sgt, sg, i) {
npages = hl_get_sg_info(sg, &dma_addr);
/* align down to physical page size and save the offset */
if (first) {
first = false;
phys_pg_pack->offset = dma_addr & (page_size - 1);
dma_addr &= page_mask;
}
while (npages) {
phys_pg_pack->pages[j++] = dma_addr;
dma_addr += page_size;
if (is_huge_page_opt)
npages -= pgs_in_huge_page;
else
npages--;
}
}
*pphys_pg_pack = phys_pg_pack;
return 0;
page_pack_arr_mem_err:
kfree(phys_pg_pack);
return rc;
}
/**
* map_phys_pg_pack() - maps the physical page pack..
* @ctx: pointer to the context structure.
* @vaddr: start address of the virtual area to map from.
* @phys_pg_pack: the pack of physical pages to map to.
*
* This function does the following:
* - Maps each chunk of virtual memory to matching physical chunk.
* - Stores number of successful mappings in the given argument.
* - Returns 0 on success, error code otherwise.
*/
static int map_phys_pg_pack(struct hl_ctx *ctx, u64 vaddr,
struct hl_vm_phys_pg_pack *phys_pg_pack)
{
struct hl_device *hdev = ctx->hdev;
u64 next_vaddr = vaddr, paddr, mapped_pg_cnt = 0, i;
u32 page_size = phys_pg_pack->page_size;
int rc = 0;
bool is_host_addr;
for (i = 0 ; i < phys_pg_pack->npages ; i++) {
paddr = phys_pg_pack->pages[i];
rc = hl_mmu_map_page(ctx, next_vaddr, paddr, page_size,
(i + 1) == phys_pg_pack->npages);
if (rc) {
dev_err(hdev->dev,
"map failed (%d) for handle %u, npages: %llu, mapped: %llu\n",
rc, phys_pg_pack->handle, phys_pg_pack->npages,
mapped_pg_cnt);
goto err;
}
mapped_pg_cnt++;
next_vaddr += page_size;
}
return 0;
err:
is_host_addr = !hl_is_dram_va(hdev, vaddr);
next_vaddr = vaddr;
for (i = 0 ; i < mapped_pg_cnt ; i++) {
if (hl_mmu_unmap_page(ctx, next_vaddr, page_size,
(i + 1) == mapped_pg_cnt))
dev_warn_ratelimited(hdev->dev,
"failed to unmap handle %u, va: 0x%llx, pa: 0x%llx, page size: %u\n",
phys_pg_pack->handle, next_vaddr,
phys_pg_pack->pages[i], page_size);
next_vaddr += page_size;
/*
* unmapping on Palladium can be really long, so avoid a CPU
* soft lockup bug by sleeping a little between unmapping pages
*
* In addition, on host num of pages could be huge,
* because page size could be 4KB, so when unmapping host
* pages sleep every 32K pages to avoid soft lockup
*/
if (hdev->pldm || (is_host_addr && (i & 0x7FFF) == 0))
usleep_range(50, 200);
}
return rc;
}
/**
* unmap_phys_pg_pack() - unmaps the physical page pack.
* @ctx: pointer to the context structure.
* @vaddr: start address of the virtual area to unmap.
* @phys_pg_pack: the pack of physical pages to unmap.
*/
static void unmap_phys_pg_pack(struct hl_ctx *ctx, u64 vaddr,
struct hl_vm_phys_pg_pack *phys_pg_pack)
{
struct hl_device *hdev = ctx->hdev;
u64 next_vaddr, i;
bool is_host_addr;
u32 page_size;
is_host_addr = !hl_is_dram_va(hdev, vaddr);
page_size = phys_pg_pack->page_size;
next_vaddr = vaddr;
for (i = 0 ; i < phys_pg_pack->npages ; i++, next_vaddr += page_size) {
if (hl_mmu_unmap_page(ctx, next_vaddr, page_size,
(i + 1) == phys_pg_pack->npages))
dev_warn_ratelimited(hdev->dev,
"unmap failed for vaddr: 0x%llx\n", next_vaddr);
/*
* unmapping on Palladium can be really long, so avoid a CPU
* soft lockup bug by sleeping a little between unmapping pages
*
* In addition, on host num of pages could be huge,
* because page size could be 4KB, so when unmapping host
* pages sleep every 32K pages to avoid soft lockup
*/
if (hdev->pldm || (is_host_addr && (i & 0x7FFF) == 0))
usleep_range(50, 200);
}
}
/**
* map_device_va() - map the given memory.
* @ctx: pointer to the context structure.
* @args: host parameters with handle/host virtual address.
* @device_addr: pointer to result device virtual address.
*
* This function does the following:
* - If given a physical device memory handle, map to a device virtual block
* and return the start address of this block.
* - If given a host virtual address and size, find the related physical pages,
* map a device virtual block to this pages and return the start address of
* this block.
*/
static int map_device_va(struct hl_ctx *ctx, struct hl_mem_in *args, u64 *device_addr)
{
struct hl_vm_phys_pg_pack *phys_pg_pack;
enum hl_va_range_type va_range_type = 0;
struct hl_device *hdev = ctx->hdev;
struct hl_userptr *userptr = NULL;
u32 handle = 0, va_block_align;
struct hl_vm_hash_node *hnode;
struct hl_vm *vm = &hdev->vm;
struct hl_va_range *va_range;
bool is_userptr, do_prefetch;
u64 ret_vaddr, hint_addr;
enum vm_type *vm_type;
int rc;
/* set map flags */
is_userptr = args->flags & HL_MEM_USERPTR;
do_prefetch = hdev->supports_mmu_prefetch && (args->flags & HL_MEM_PREFETCH);
/* Assume failure */
*device_addr = 0;
if (is_userptr) {
u64 addr = args->map_host.host_virt_addr,
size = args->map_host.mem_size;
u32 page_size = hdev->asic_prop.pmmu.page_size,
huge_page_size = hdev->asic_prop.pmmu_huge.page_size;
rc = dma_map_host_va(hdev, addr, size, &userptr);
if (rc)
return rc;
rc = init_phys_pg_pack_from_userptr(ctx, userptr,
&phys_pg_pack, false);
if (rc) {
dev_err(hdev->dev,
"unable to init page pack for vaddr 0x%llx\n",
addr);
goto init_page_pack_err;
}
vm_type = (enum vm_type *) userptr;
hint_addr = args->map_host.hint_addr;
handle = phys_pg_pack->handle;
/* get required alignment */
if (phys_pg_pack->page_size == page_size) {
va_range = ctx->va_range[HL_VA_RANGE_TYPE_HOST];
va_range_type = HL_VA_RANGE_TYPE_HOST;
/*
* huge page alignment may be needed in case of regular
* page mapping, depending on the host VA alignment
*/
if (addr & (huge_page_size - 1))
va_block_align = page_size;
else
va_block_align = huge_page_size;
} else {
/*
* huge page alignment is needed in case of huge page
* mapping
*/
va_range = ctx->va_range[HL_VA_RANGE_TYPE_HOST_HUGE];
va_range_type = HL_VA_RANGE_TYPE_HOST_HUGE;
va_block_align = huge_page_size;
}
} else {
handle = lower_32_bits(args->map_device.handle);
spin_lock(&vm->idr_lock);
phys_pg_pack = idr_find(&vm->phys_pg_pack_handles, handle);
if (!phys_pg_pack) {
spin_unlock(&vm->idr_lock);
dev_err(hdev->dev,
"no match for handle %u\n", handle);
return -EINVAL;
}
/* increment now to avoid freeing device memory while mapping */
atomic_inc(&phys_pg_pack->mapping_cnt);
spin_unlock(&vm->idr_lock);
vm_type = (enum vm_type *) phys_pg_pack;
hint_addr = args->map_device.hint_addr;
/* DRAM VA alignment is the same as the MMU page size */
va_range = ctx->va_range[HL_VA_RANGE_TYPE_DRAM];
va_range_type = HL_VA_RANGE_TYPE_DRAM;
va_block_align = hdev->asic_prop.dmmu.page_size;
}
/*
* relevant for mapping device physical memory only, as host memory is
* implicitly shared
*/
if (!is_userptr && !(phys_pg_pack->flags & HL_MEM_SHARED) &&
phys_pg_pack->asid != ctx->asid) {
dev_err(hdev->dev,
"Failed to map memory, handle %u is not shared\n",
handle);
rc = -EPERM;
goto shared_err;
}
hnode = kzalloc(sizeof(*hnode), GFP_KERNEL);
if (!hnode) {
rc = -ENOMEM;
goto hnode_err;
}
if (hint_addr && phys_pg_pack->offset) {
if (args->flags & HL_MEM_FORCE_HINT) {
/* Fail if hint must be respected but it can't be */
dev_err(hdev->dev,
"Hint address 0x%llx cannot be respected because source memory is not aligned 0x%x\n",
hint_addr, phys_pg_pack->offset);
rc = -EINVAL;
goto va_block_err;
}
dev_dbg(hdev->dev,
"Hint address 0x%llx will be ignored because source memory is not aligned 0x%x\n",
hint_addr, phys_pg_pack->offset);
}
ret_vaddr = get_va_block(hdev, va_range, phys_pg_pack->total_size,
hint_addr, va_block_align,
va_range_type, args->flags);
if (!ret_vaddr) {
dev_err(hdev->dev, "no available va block for handle %u\n",
handle);
rc = -ENOMEM;
goto va_block_err;
}
mutex_lock(&hdev->mmu_lock);
rc = map_phys_pg_pack(ctx, ret_vaddr, phys_pg_pack);
if (rc) {
dev_err(hdev->dev, "mapping page pack failed (%d) for handle %u\n",
rc, handle);
mutex_unlock(&hdev->mmu_lock);
goto map_err;
}
rc = hl_mmu_invalidate_cache_range(hdev, false, *vm_type | MMU_OP_SKIP_LOW_CACHE_INV,
ctx->asid, ret_vaddr, phys_pg_pack->total_size);
mutex_unlock(&hdev->mmu_lock);
if (rc)
goto map_err;
/*
* prefetch is done upon user's request. it is performed in WQ as and so can
* be outside the MMU lock. the operation itself is already protected by the mmu lock
*/
if (do_prefetch) {
rc = hl_mmu_prefetch_cache_range(ctx, *vm_type, ctx->asid, ret_vaddr,
phys_pg_pack->total_size);
if (rc)
goto map_err;
}
ret_vaddr += phys_pg_pack->offset;
hnode->ptr = vm_type;
hnode->vaddr = ret_vaddr;
hnode->handle = is_userptr ? MEM_HANDLE_INVALID : handle;
mutex_lock(&ctx->mem_hash_lock);
hash_add(ctx->mem_hash, &hnode->node, ret_vaddr);
mutex_unlock(&ctx->mem_hash_lock);
*device_addr = ret_vaddr;
if (is_userptr)
free_phys_pg_pack(hdev, phys_pg_pack);
return rc;
map_err:
if (add_va_block(hdev, va_range, ret_vaddr,
ret_vaddr + phys_pg_pack->total_size - 1))
dev_warn(hdev->dev,
"release va block failed for handle 0x%x, vaddr: 0x%llx\n",
handle, ret_vaddr);
va_block_err:
kfree(hnode);
hnode_err:
shared_err:
atomic_dec(&phys_pg_pack->mapping_cnt);
if (is_userptr)
free_phys_pg_pack(hdev, phys_pg_pack);
init_page_pack_err:
if (is_userptr)
dma_unmap_host_va(hdev, userptr);
return rc;
}
/* Should be called while the context's mem_hash_lock is taken */
static struct hl_vm_hash_node *get_vm_hash_node_locked(struct hl_ctx *ctx, u64 vaddr)
{
struct hl_vm_hash_node *hnode;
hash_for_each_possible(ctx->mem_hash, hnode, node, vaddr)
if (vaddr == hnode->vaddr)
return hnode;
return NULL;
}
/**
* unmap_device_va() - unmap the given device virtual address.
* @ctx: pointer to the context structure.
* @args: host parameters with device virtual address to unmap.
* @ctx_free: true if in context free flow, false otherwise.
*
* This function does the following:
* - unmap the physical pages related to the given virtual address.
* - return the device virtual block to the virtual block list.
*/
static int unmap_device_va(struct hl_ctx *ctx, struct hl_mem_in *args,
bool ctx_free)
{
struct hl_vm_phys_pg_pack *phys_pg_pack = NULL;
u64 vaddr = args->unmap.device_virt_addr;
struct asic_fixed_properties *prop;
struct hl_device *hdev = ctx->hdev;
struct hl_userptr *userptr = NULL;
struct hl_vm_hash_node *hnode;
struct hl_va_range *va_range;
enum vm_type *vm_type;
bool is_userptr;
int rc = 0;
prop = &hdev->asic_prop;
/* protect from double entrance */
mutex_lock(&ctx->mem_hash_lock);
hnode = get_vm_hash_node_locked(ctx, vaddr);
if (!hnode) {
mutex_unlock(&ctx->mem_hash_lock);
dev_err(hdev->dev, "unmap failed, no mem hnode for vaddr 0x%llx\n", vaddr);
return -EINVAL;
}
if (hnode->export_cnt) {
mutex_unlock(&ctx->mem_hash_lock);
dev_err(hdev->dev, "failed to unmap %#llx, memory is exported\n", vaddr);
return -EINVAL;
}
hash_del(&hnode->node);
mutex_unlock(&ctx->mem_hash_lock);
vm_type = hnode->ptr;
if (*vm_type == VM_TYPE_USERPTR) {
is_userptr = true;
userptr = hnode->ptr;
rc = init_phys_pg_pack_from_userptr(ctx, userptr, &phys_pg_pack,
false);
if (rc) {
dev_err(hdev->dev,
"unable to init page pack for vaddr 0x%llx\n",
vaddr);
goto vm_type_err;
}
if (phys_pg_pack->page_size ==
hdev->asic_prop.pmmu.page_size)
va_range = ctx->va_range[HL_VA_RANGE_TYPE_HOST];
else
va_range = ctx->va_range[HL_VA_RANGE_TYPE_HOST_HUGE];
} else if (*vm_type == VM_TYPE_PHYS_PACK) {
is_userptr = false;
va_range = ctx->va_range[HL_VA_RANGE_TYPE_DRAM];
phys_pg_pack = hnode->ptr;
} else {
dev_warn(hdev->dev,
"unmap failed, unknown vm desc for vaddr 0x%llx\n",
vaddr);
rc = -EFAULT;
goto vm_type_err;
}
if (atomic_read(&phys_pg_pack->mapping_cnt) == 0) {
dev_err(hdev->dev, "vaddr 0x%llx is not mapped\n", vaddr);
rc = -EINVAL;
goto mapping_cnt_err;
}
if (!is_userptr && !is_power_of_2(phys_pg_pack->page_size))
vaddr = prop->dram_base_address +
DIV_ROUND_DOWN_ULL(vaddr - prop->dram_base_address,
phys_pg_pack->page_size) *
phys_pg_pack->page_size;
else
vaddr &= ~(((u64) phys_pg_pack->page_size) - 1);
mutex_lock(&hdev->mmu_lock);
unmap_phys_pg_pack(ctx, vaddr, phys_pg_pack);
/*
* During context free this function is called in a loop to clean all
* the context mappings. Hence the cache invalidation can be called once
* at the loop end rather than for each iteration
*/
if (!ctx_free)
rc = hl_mmu_invalidate_cache_range(hdev, true, *vm_type, ctx->asid, vaddr,
phys_pg_pack->total_size);
mutex_unlock(&hdev->mmu_lock);
/*
* If the context is closing we don't need to check for the MMU cache
* invalidation return code and update the VA free list as in this flow
* we invalidate the MMU cache outside of this unmap function and the VA
* free list will be freed anyway.
*/
if (!ctx_free) {
int tmp_rc;
tmp_rc = add_va_block(hdev, va_range, vaddr,
vaddr + phys_pg_pack->total_size - 1);
if (tmp_rc) {
dev_warn(hdev->dev,
"add va block failed for vaddr: 0x%llx\n",
vaddr);
if (!rc)
rc = tmp_rc;
}
}
atomic_dec(&phys_pg_pack->mapping_cnt);
kfree(hnode);
if (is_userptr) {
free_phys_pg_pack(hdev, phys_pg_pack);
dma_unmap_host_va(hdev, userptr);
}
return rc;
mapping_cnt_err:
if (is_userptr)
free_phys_pg_pack(hdev, phys_pg_pack);
vm_type_err:
mutex_lock(&ctx->mem_hash_lock);
hash_add(ctx->mem_hash, &hnode->node, vaddr);
mutex_unlock(&ctx->mem_hash_lock);
return rc;
}
static int map_block(struct hl_device *hdev, u64 address, u64 *handle, u32 *size)
{
u32 block_id;
int rc;
*handle = 0;
if (size)
*size = 0;
rc = hdev->asic_funcs->get_hw_block_id(hdev, address, size, &block_id);
if (rc)
return rc;
*handle = block_id | HL_MMAP_TYPE_BLOCK;
*handle <<= PAGE_SHIFT;
return 0;
}
static void hw_block_vm_close(struct vm_area_struct *vma)
{
struct hl_vm_hw_block_list_node *lnode =
(struct hl_vm_hw_block_list_node *) vma->vm_private_data;
struct hl_ctx *ctx = lnode->ctx;
long new_mmap_size;
new_mmap_size = lnode->mapped_size - (vma->vm_end - vma->vm_start);
if (new_mmap_size > 0) {
lnode->mapped_size = new_mmap_size;
return;
}
mutex_lock(&ctx->hw_block_list_lock);
list_del(&lnode->node);
mutex_unlock(&ctx->hw_block_list_lock);
hl_ctx_put(ctx);
kfree(lnode);
vma->vm_private_data = NULL;
}
static const struct vm_operations_struct hw_block_vm_ops = {
.close = hw_block_vm_close
};
/**
* hl_hw_block_mmap() - mmap a hw block to user.
* @hpriv: pointer to the private data of the fd
* @vma: pointer to vm_area_struct of the process
*
* Driver increments context reference for every HW block mapped in order
* to prevent user from closing FD without unmapping first
*/
int hl_hw_block_mmap(struct hl_fpriv *hpriv, struct vm_area_struct *vma)
{
struct hl_vm_hw_block_list_node *lnode;
struct hl_device *hdev = hpriv->hdev;
struct hl_ctx *ctx = hpriv->ctx;
u32 block_id, block_size;
int rc;
/* We use the page offset to hold the block id and thus we need to clear
* it before doing the mmap itself
*/
block_id = vma->vm_pgoff;
vma->vm_pgoff = 0;
/* Driver only allows mapping of a complete HW block */
block_size = vma->vm_end - vma->vm_start;
if (!access_ok((void __user *) (uintptr_t) vma->vm_start, block_size)) {
dev_err(hdev->dev,
"user pointer is invalid - 0x%lx\n",
vma->vm_start);
return -EINVAL;
}
lnode = kzalloc(sizeof(*lnode), GFP_KERNEL);
if (!lnode)
return -ENOMEM;
rc = hdev->asic_funcs->hw_block_mmap(hdev, vma, block_id, block_size);
if (rc) {
kfree(lnode);
return rc;
}
hl_ctx_get(ctx);
lnode->ctx = ctx;
lnode->vaddr = vma->vm_start;
lnode->block_size = block_size;
lnode->mapped_size = lnode->block_size;
lnode->id = block_id;
vma->vm_private_data = lnode;
vma->vm_ops = &hw_block_vm_ops;
mutex_lock(&ctx->hw_block_list_lock);
list_add_tail(&lnode->node, &ctx->hw_block_mem_list);
mutex_unlock(&ctx->hw_block_list_lock);
vma->vm_pgoff = block_id;
return 0;
}
static int set_dma_sg(struct scatterlist *sg, u64 bar_address, u64 chunk_size,
struct device *dev, enum dma_data_direction dir)
{
dma_addr_t addr;
int rc;
addr = dma_map_resource(dev, bar_address, chunk_size, dir,
DMA_ATTR_SKIP_CPU_SYNC);
rc = dma_mapping_error(dev, addr);
if (rc)
return rc;
sg_set_page(sg, NULL, chunk_size, 0);
sg_dma_address(sg) = addr;
sg_dma_len(sg) = chunk_size;
return 0;
}
static struct sg_table *alloc_sgt_from_device_pages(struct hl_device *hdev, u64 *pages, u64 npages,
u64 page_size, u64 exported_size, u64 offset,
struct device *dev, enum dma_data_direction dir)
{
u64 dma_max_seg_size, curr_page, size, chunk_size, left_size_to_export, left_size_in_page,
left_size_in_dma_seg, device_address, bar_address, start_page;
struct asic_fixed_properties *prop = &hdev->asic_prop;
struct scatterlist *sg;
unsigned int nents, i;
struct sg_table *sgt;
bool next_sg_entry;
int rc;
/* Align max segment size to PAGE_SIZE to fit the minimal IOMMU mapping granularity */
dma_max_seg_size = ALIGN_DOWN(dma_get_max_seg_size(dev), PAGE_SIZE);
if (dma_max_seg_size < PAGE_SIZE) {
dev_err_ratelimited(hdev->dev,
"dma_max_seg_size %llu can't be smaller than PAGE_SIZE\n",
dma_max_seg_size);
return ERR_PTR(-EINVAL);
}
sgt = kzalloc(sizeof(*sgt), GFP_KERNEL);
if (!sgt)
return ERR_PTR(-ENOMEM);
/* Use the offset to move to the actual first page that is exported */
for (start_page = 0 ; start_page < npages ; ++start_page) {
if (offset < page_size)
break;
/* The offset value was validated so there can't be an underflow */
offset -= page_size;
}
/* Calculate the required number of entries for the SG table */
curr_page = start_page;
nents = 1;
left_size_to_export = exported_size;
left_size_in_page = page_size - offset;
left_size_in_dma_seg = dma_max_seg_size;
next_sg_entry = false;
while (true) {
size = min3(left_size_to_export, left_size_in_page, left_size_in_dma_seg);
left_size_to_export -= size;
left_size_in_page -= size;
left_size_in_dma_seg -= size;
if (!left_size_to_export)
break;
if (!left_size_in_page) {
/* left_size_to_export is not zero so there must be another page */
if (pages[curr_page] + page_size != pages[curr_page + 1])
next_sg_entry = true;
++curr_page;
left_size_in_page = page_size;
}
if (!left_size_in_dma_seg) {
next_sg_entry = true;
left_size_in_dma_seg = dma_max_seg_size;
}
if (next_sg_entry) {
++nents;
next_sg_entry = false;
}
}
rc = sg_alloc_table(sgt, nents, GFP_KERNEL | __GFP_ZERO);
if (rc)
goto err_free_sgt;
/* Prepare the SG table entries */
curr_page = start_page;
device_address = pages[curr_page] + offset;
left_size_to_export = exported_size;
left_size_in_page = page_size - offset;
left_size_in_dma_seg = dma_max_seg_size;
next_sg_entry = false;
for_each_sgtable_dma_sg(sgt, sg, i) {
bar_address = hdev->dram_pci_bar_start + (device_address - prop->dram_base_address);
chunk_size = 0;
for ( ; curr_page < npages ; ++curr_page) {
size = min3(left_size_to_export, left_size_in_page, left_size_in_dma_seg);
chunk_size += size;
left_size_to_export -= size;
left_size_in_page -= size;
left_size_in_dma_seg -= size;
if (!left_size_to_export)
break;
if (!left_size_in_page) {
/* left_size_to_export is not zero so there must be another page */
if (pages[curr_page] + page_size != pages[curr_page + 1]) {
device_address = pages[curr_page + 1];
next_sg_entry = true;
}
left_size_in_page = page_size;
}
if (!left_size_in_dma_seg) {
/*
* Skip setting a new device address if already moving to a page
* which is not contiguous with the current page.
*/
if (!next_sg_entry) {
device_address += chunk_size;
next_sg_entry = true;
}
left_size_in_dma_seg = dma_max_seg_size;
}
if (next_sg_entry) {
next_sg_entry = false;
break;
}
}
rc = set_dma_sg(sg, bar_address, chunk_size, dev, dir);
if (rc)
goto err_unmap;
}
/* There should be nothing left to export exactly after looping over all SG elements */
if (left_size_to_export) {
dev_err(hdev->dev,
"left size to export %#llx after initializing %u SG elements\n",
left_size_to_export, sgt->nents);
rc = -ENOMEM;
goto err_unmap;
}
/*
* Because we are not going to include a CPU list, we want to have some chance that other
* users will detect this when going over SG table, by setting the orig_nents to 0 and using
* only nents (length of DMA list).
*/
sgt->orig_nents = 0;
dev_dbg(hdev->dev, "prepared SG table with %u entries for importer %s\n",
nents, dev_name(dev));
for_each_sgtable_dma_sg(sgt, sg, i)
dev_dbg(hdev->dev,
"SG entry %d: address %#llx, length %#x\n",
i, sg_dma_address(sg), sg_dma_len(sg));
return sgt;
err_unmap:
for_each_sgtable_dma_sg(sgt, sg, i) {
if (!sg_dma_len(sg))
continue;
dma_unmap_resource(dev, sg_dma_address(sg), sg_dma_len(sg), dir,
DMA_ATTR_SKIP_CPU_SYNC);
}
sg_free_table(sgt);
err_free_sgt:
kfree(sgt);
return ERR_PTR(rc);
}
static int hl_dmabuf_attach(struct dma_buf *dmabuf,
struct dma_buf_attachment *attachment)
{
struct hl_dmabuf_priv *hl_dmabuf;
struct hl_device *hdev;
int rc;
hl_dmabuf = dmabuf->priv;
hdev = hl_dmabuf->ctx->hdev;
rc = pci_p2pdma_distance(hdev->pdev, attachment->dev, true);
if (rc < 0)
attachment->peer2peer = false;
return 0;
}
static struct sg_table *hl_map_dmabuf(struct dma_buf_attachment *attachment,
enum dma_data_direction dir)
{
u64 *pages, npages, page_size, exported_size, offset;
struct dma_buf *dma_buf = attachment->dmabuf;
struct hl_vm_phys_pg_pack *phys_pg_pack;
struct hl_dmabuf_priv *hl_dmabuf;
struct hl_device *hdev;
struct sg_table *sgt;
hl_dmabuf = dma_buf->priv;
hdev = hl_dmabuf->ctx->hdev;
if (!attachment->peer2peer) {
dev_dbg(hdev->dev, "Failed to map dmabuf because p2p is disabled\n");
return ERR_PTR(-EPERM);
}
exported_size = hl_dmabuf->dmabuf->size;
offset = hl_dmabuf->offset;
phys_pg_pack = hl_dmabuf->phys_pg_pack;
if (phys_pg_pack) {
pages = phys_pg_pack->pages;
npages = phys_pg_pack->npages;
page_size = phys_pg_pack->page_size;
} else {
pages = &hl_dmabuf->device_phys_addr;
npages = 1;
page_size = hl_dmabuf->dmabuf->size;
}
sgt = alloc_sgt_from_device_pages(hdev, pages, npages, page_size, exported_size, offset,
attachment->dev, dir);
if (IS_ERR(sgt))
dev_err(hdev->dev, "failed (%ld) to initialize sgt for dmabuf\n", PTR_ERR(sgt));
return sgt;
}
static void hl_unmap_dmabuf(struct dma_buf_attachment *attachment,
struct sg_table *sgt,
enum dma_data_direction dir)
{
struct scatterlist *sg;
int i;
/* The memory behind the dma-buf has *always* resided on the device itself, i.e. it lives
* only in the 'device' domain (after all, it maps a PCI bar address which points to the
* device memory).
*
* Therefore, it was never in the 'CPU' domain and hence, there is no need to perform
* a sync of the memory to the CPU's cache, as it never resided inside that cache.
*/
for_each_sgtable_dma_sg(sgt, sg, i)
dma_unmap_resource(attachment->dev, sg_dma_address(sg),
sg_dma_len(sg), dir,
DMA_ATTR_SKIP_CPU_SYNC);
/* Need to restore orig_nents because sg_free_table use that field */
sgt->orig_nents = sgt->nents;
sg_free_table(sgt);
kfree(sgt);
}
static struct hl_vm_hash_node *memhash_node_export_get(struct hl_ctx *ctx, u64 addr)
{
struct hl_device *hdev = ctx->hdev;
struct hl_vm_hash_node *hnode;
/* get the memory handle */
mutex_lock(&ctx->mem_hash_lock);
hnode = get_vm_hash_node_locked(ctx, addr);
if (!hnode) {
mutex_unlock(&ctx->mem_hash_lock);
dev_dbg(hdev->dev, "map address %#llx not found\n", addr);
return ERR_PTR(-EINVAL);
}
if (upper_32_bits(hnode->handle)) {
mutex_unlock(&ctx->mem_hash_lock);
dev_dbg(hdev->dev, "invalid handle %#llx for map address %#llx\n",
hnode->handle, addr);
return ERR_PTR(-EINVAL);
}
/*
* node found, increase export count so this memory cannot be unmapped
* and the hash node cannot be deleted.
*/
hnode->export_cnt++;
mutex_unlock(&ctx->mem_hash_lock);
return hnode;
}
static void memhash_node_export_put(struct hl_ctx *ctx, struct hl_vm_hash_node *hnode)
{
mutex_lock(&ctx->mem_hash_lock);
hnode->export_cnt--;
mutex_unlock(&ctx->mem_hash_lock);
}
static void hl_release_dmabuf(struct dma_buf *dmabuf)
{
struct hl_dmabuf_priv *hl_dmabuf = dmabuf->priv;
struct hl_ctx *ctx;
if (!hl_dmabuf)
return;
ctx = hl_dmabuf->ctx;
if (hl_dmabuf->memhash_hnode)
memhash_node_export_put(ctx, hl_dmabuf->memhash_hnode);
atomic_dec(&ctx->hdev->dmabuf_export_cnt);
hl_ctx_put(ctx);
/* Paired with get_file() in export_dmabuf() */
fput(ctx->hpriv->file_priv->filp);
kfree(hl_dmabuf);
}
static const struct dma_buf_ops habanalabs_dmabuf_ops = {
.attach = hl_dmabuf_attach,
.map_dma_buf = hl_map_dmabuf,
.unmap_dma_buf = hl_unmap_dmabuf,
.release = hl_release_dmabuf,
};
static int export_dmabuf(struct hl_ctx *ctx,
struct hl_dmabuf_priv *hl_dmabuf,
u64 total_size, int flags, int *dmabuf_fd)
{
DEFINE_DMA_BUF_EXPORT_INFO(exp_info);
struct hl_device *hdev = ctx->hdev;
int rc, fd;
exp_info.ops = &habanalabs_dmabuf_ops;
exp_info.size = total_size;
exp_info.flags = flags;
exp_info.priv = hl_dmabuf;
hl_dmabuf->dmabuf = dma_buf_export(&exp_info);
if (IS_ERR(hl_dmabuf->dmabuf)) {
dev_err(hdev->dev, "failed to export dma-buf\n");
return PTR_ERR(hl_dmabuf->dmabuf);
}
fd = dma_buf_fd(hl_dmabuf->dmabuf, flags);
if (fd < 0) {
dev_err(hdev->dev, "failed to get a file descriptor for a dma-buf, %d\n", fd);
rc = fd;
goto err_dma_buf_put;
}
hl_dmabuf->ctx = ctx;
hl_ctx_get(hl_dmabuf->ctx);
atomic_inc(&ctx->hdev->dmabuf_export_cnt);
/* Get compute device file to enforce release order, such that all exported dma-buf will be
* released first and only then the compute device.
* Paired with fput() in hl_release_dmabuf().
*/
get_file(ctx->hpriv->file_priv->filp);
*dmabuf_fd = fd;
return 0;
err_dma_buf_put:
hl_dmabuf->dmabuf->priv = NULL;
dma_buf_put(hl_dmabuf->dmabuf);
return rc;
}
static int validate_export_params_common(struct hl_device *hdev, u64 addr, u64 size, u64 offset)
{
if (!PAGE_ALIGNED(addr)) {
dev_dbg(hdev->dev,
"exported device memory address 0x%llx should be aligned to PAGE_SIZE 0x%lx\n",
addr, PAGE_SIZE);
return -EINVAL;
}
if (!size || !PAGE_ALIGNED(size)) {
dev_dbg(hdev->dev,
"exported device memory size %llu should be a multiple of PAGE_SIZE %lu\n",
size, PAGE_SIZE);
return -EINVAL;
}
if (!PAGE_ALIGNED(offset)) {
dev_dbg(hdev->dev,
"exported device memory offset %llu should be a multiple of PAGE_SIZE %lu\n",
offset, PAGE_SIZE);
return -EINVAL;
}
return 0;
}
static int validate_export_params_no_mmu(struct hl_device *hdev, u64 device_addr, u64 size)
{
struct asic_fixed_properties *prop = &hdev->asic_prop;
u64 bar_address;
int rc;
rc = validate_export_params_common(hdev, device_addr, size, 0);
if (rc)
return rc;
if (device_addr < prop->dram_user_base_address ||
(device_addr + size) > prop->dram_end_address ||
(device_addr + size) < device_addr) {
dev_dbg(hdev->dev,
"DRAM memory range 0x%llx (+0x%llx) is outside of DRAM boundaries\n",
device_addr, size);
return -EINVAL;
}
bar_address = hdev->dram_pci_bar_start + (device_addr - prop->dram_base_address);
if ((bar_address + size) > (hdev->dram_pci_bar_start + prop->dram_pci_bar_size) ||
(bar_address + size) < bar_address) {
dev_dbg(hdev->dev,
"DRAM memory range 0x%llx (+0x%llx) is outside of PCI BAR boundaries\n",
device_addr, size);
return -EINVAL;
}
return 0;
}
static int validate_export_params(struct hl_device *hdev, u64 device_addr, u64 size, u64 offset,
struct hl_vm_phys_pg_pack *phys_pg_pack)
{
struct asic_fixed_properties *prop = &hdev->asic_prop;
u64 bar_address;
int i, rc;
rc = validate_export_params_common(hdev, device_addr, size, offset);
if (rc)
return rc;
if ((offset + size) > phys_pg_pack->total_size) {
dev_dbg(hdev->dev, "offset %#llx and size %#llx exceed total map size %#llx\n",
offset, size, phys_pg_pack->total_size);
return -EINVAL;
}
for (i = 0 ; i < phys_pg_pack->npages ; i++) {
bar_address = hdev->dram_pci_bar_start +
(phys_pg_pack->pages[i] - prop->dram_base_address);
if ((bar_address + phys_pg_pack->page_size) >
(hdev->dram_pci_bar_start + prop->dram_pci_bar_size) ||
(bar_address + phys_pg_pack->page_size) < bar_address) {
dev_dbg(hdev->dev,
"DRAM memory range 0x%llx (+0x%x) is outside of PCI BAR boundaries\n",
phys_pg_pack->pages[i], phys_pg_pack->page_size);
return -EINVAL;
}
}
return 0;
}
static struct hl_vm_phys_pg_pack *get_phys_pg_pack_from_hash_node(struct hl_device *hdev,
struct hl_vm_hash_node *hnode)
{
struct hl_vm_phys_pg_pack *phys_pg_pack;
struct hl_vm *vm = &hdev->vm;
spin_lock(&vm->idr_lock);
phys_pg_pack = idr_find(&vm->phys_pg_pack_handles, (u32) hnode->handle);
if (!phys_pg_pack) {
spin_unlock(&vm->idr_lock);
dev_dbg(hdev->dev, "no match for handle 0x%x\n", (u32) hnode->handle);
return ERR_PTR(-EINVAL);
}
spin_unlock(&vm->idr_lock);
if (phys_pg_pack->vm_type != VM_TYPE_PHYS_PACK) {
dev_dbg(hdev->dev, "handle 0x%llx does not represent DRAM memory\n", hnode->handle);
return ERR_PTR(-EINVAL);
}
return phys_pg_pack;
}
/**
* export_dmabuf_from_addr() - export a dma-buf object for the given memory
* address and size.
* @ctx: pointer to the context structure.
* @addr: device address.
* @size: size of device memory to export.
* @offset: the offset into the buffer from which to start exporting
* @flags: DMA-BUF file/FD flags.
* @dmabuf_fd: pointer to result FD that represents the dma-buf object.
*
* Create and export a dma-buf object for an existing memory allocation inside
* the device memory, and return a FD which is associated with the dma-buf
* object.
*
* Return: 0 on success, non-zero for failure.
*/
static int export_dmabuf_from_addr(struct hl_ctx *ctx, u64 addr, u64 size, u64 offset,
int flags, int *dmabuf_fd)
{
struct hl_vm_phys_pg_pack *phys_pg_pack = NULL;
struct hl_vm_hash_node *hnode = NULL;
struct asic_fixed_properties *prop;
struct hl_dmabuf_priv *hl_dmabuf;
struct hl_device *hdev;
int rc;
hdev = ctx->hdev;
prop = &hdev->asic_prop;
/* offset must be 0 in devices without virtual memory support */
if (!prop->dram_supports_virtual_memory && offset) {
dev_dbg(hdev->dev, "offset is not allowed in device without virtual memory\n");
return -EINVAL;
}
hl_dmabuf = kzalloc(sizeof(*hl_dmabuf), GFP_KERNEL);
if (!hl_dmabuf)
return -ENOMEM;
if (prop->dram_supports_virtual_memory) {
hnode = memhash_node_export_get(ctx, addr);
if (IS_ERR(hnode)) {
rc = PTR_ERR(hnode);
goto err_free_dmabuf_wrapper;
}
phys_pg_pack = get_phys_pg_pack_from_hash_node(hdev, hnode);
if (IS_ERR(phys_pg_pack)) {
rc = PTR_ERR(phys_pg_pack);
goto dec_memhash_export_cnt;
}
rc = validate_export_params(hdev, addr, size, offset, phys_pg_pack);
if (rc)
goto dec_memhash_export_cnt;
hl_dmabuf->phys_pg_pack = phys_pg_pack;
hl_dmabuf->memhash_hnode = hnode;
hl_dmabuf->offset = offset;
} else {
rc = validate_export_params_no_mmu(hdev, addr, size);
if (rc)
goto err_free_dmabuf_wrapper;
hl_dmabuf->device_phys_addr = addr;
}
rc = export_dmabuf(ctx, hl_dmabuf, size, flags, dmabuf_fd);
if (rc)
goto dec_memhash_export_cnt;
return 0;
dec_memhash_export_cnt:
if (prop->dram_supports_virtual_memory)
memhash_node_export_put(ctx, hnode);
err_free_dmabuf_wrapper:
kfree(hl_dmabuf);
return rc;
}
static void ts_buff_release(struct hl_mmap_mem_buf *buf)
{
struct hl_ts_buff *ts_buff = buf->private;
vfree(ts_buff->kernel_buff_address);
vfree(ts_buff->user_buff_address);
kfree(ts_buff);
}
static int hl_ts_mmap(struct hl_mmap_mem_buf *buf, struct vm_area_struct *vma, void *args)
{
struct hl_ts_buff *ts_buff = buf->private;
vm_flags_set(vma, VM_DONTEXPAND | VM_DONTDUMP | VM_DONTCOPY | VM_NORESERVE);
return remap_vmalloc_range(vma, ts_buff->user_buff_address, 0);
}
static int hl_ts_alloc_buf(struct hl_mmap_mem_buf *buf, gfp_t gfp, void *args)
{
struct hl_ts_buff *ts_buff = NULL;
u32 num_elements;
size_t size;
void *p;
num_elements = *(u32 *)args;
ts_buff = kzalloc(sizeof(*ts_buff), gfp);
if (!ts_buff)
return -ENOMEM;
/* Allocate the user buffer */
size = num_elements * sizeof(u64);
p = vmalloc_user(size);
if (!p)
goto free_mem;
ts_buff->user_buff_address = p;
buf->mappable_size = size;
/* Allocate the internal kernel buffer */
size = num_elements * sizeof(struct hl_user_pending_interrupt);
p = vzalloc(size);
if (!p)
goto free_user_buff;
ts_buff->kernel_buff_address = p;
ts_buff->kernel_buff_size = size;
buf->private = ts_buff;
return 0;
free_user_buff:
vfree(ts_buff->user_buff_address);
free_mem:
kfree(ts_buff);
return -ENOMEM;
}
static struct hl_mmap_mem_buf_behavior hl_ts_behavior = {
.topic = "TS",
.mem_id = HL_MMAP_TYPE_TS_BUFF,
.mmap = hl_ts_mmap,
.alloc = hl_ts_alloc_buf,
.release = ts_buff_release,
};
/**
* allocate_timestamps_buffers() - allocate timestamps buffers
* This function will allocate ts buffer that will later on be mapped to the user
* in order to be able to read the timestamp.
* in addition it'll allocate an extra buffer for registration management.
* since we cannot fail during registration for out-of-memory situation, so
* we'll prepare a pool which will be used as user interrupt nodes and instead
* of dynamically allocating nodes while registration we'll pick the node from
* this pool. in addition it'll add node to the mapping hash which will be used
* to map user ts buffer to the internal kernel ts buffer.
* @hpriv: pointer to the private data of the fd
* @args: ioctl input
* @handle: user timestamp buffer handle as an output
*/
static int allocate_timestamps_buffers(struct hl_fpriv *hpriv, struct hl_mem_in *args, u64 *handle)
{
struct hl_mem_mgr *mmg = &hpriv->mem_mgr;
struct hl_mmap_mem_buf *buf;
if (args->num_of_elements > TS_MAX_ELEMENTS_NUM) {
dev_err(mmg->dev, "Num of elements exceeds Max allowed number (0x%x > 0x%x)\n",
args->num_of_elements, TS_MAX_ELEMENTS_NUM);
return -EINVAL;
}
buf = hl_mmap_mem_buf_alloc(mmg, &hl_ts_behavior, GFP_KERNEL, &args->num_of_elements);
if (!buf)
return -ENOMEM;
*handle = buf->handle;
return 0;
}
int hl_mem_ioctl(struct drm_device *ddev, void *data, struct drm_file *file_priv)
{
struct hl_fpriv *hpriv = file_priv->driver_priv;
enum hl_device_status status;
union hl_mem_args *args = data;
struct hl_device *hdev = hpriv->hdev;
struct hl_ctx *ctx = hpriv->ctx;
u64 block_handle, device_addr = 0;
u32 handle = 0, block_size;
int rc, dmabuf_fd = -EBADF;
if (!hl_device_operational(hdev, &status)) {
dev_dbg_ratelimited(hdev->dev,
"Device is %s. Can't execute MEMORY IOCTL\n",
hdev->status[status]);
return -EBUSY;
}
switch (args->in.op) {
case HL_MEM_OP_ALLOC:
if (args->in.alloc.mem_size == 0) {
dev_err(hdev->dev,
"alloc size must be larger than 0\n");
rc = -EINVAL;
goto out;
}
/* If DRAM does not support virtual memory the driver won't
* handle the allocation/freeing of that memory. However, for
* system administration/monitoring purposes, the driver will
* keep track of the amount of DRAM memory that is allocated
* and freed by the user. Because this code totally relies on
* the user's input, the driver can't ensure the validity
* of this accounting.
*/
if (!hdev->asic_prop.dram_supports_virtual_memory) {
atomic64_add(args->in.alloc.mem_size,
&ctx->dram_phys_mem);
atomic64_add(args->in.alloc.mem_size,
&hdev->dram_used_mem);
dev_dbg(hdev->dev, "DRAM alloc is not supported\n");
rc = 0;
memset(args, 0, sizeof(*args));
args->out.handle = 0;
goto out;
}
rc = alloc_device_memory(ctx, &args->in, &handle);
memset(args, 0, sizeof(*args));
args->out.handle = (__u64) handle;
break;
case HL_MEM_OP_FREE:
/* If DRAM does not support virtual memory the driver won't
* handle the allocation/freeing of that memory. However, for
* system administration/monitoring purposes, the driver will
* keep track of the amount of DRAM memory that is allocated
* and freed by the user. Because this code totally relies on
* the user's input, the driver can't ensure the validity
* of this accounting.
*/
if (!hdev->asic_prop.dram_supports_virtual_memory) {
atomic64_sub(args->in.alloc.mem_size,
&ctx->dram_phys_mem);
atomic64_sub(args->in.alloc.mem_size,
&hdev->dram_used_mem);
dev_dbg(hdev->dev, "DRAM alloc is not supported\n");
rc = 0;
goto out;
}
rc = free_device_memory(ctx, &args->in);
break;
case HL_MEM_OP_MAP:
rc = map_device_va(ctx, &args->in, &device_addr);
memset(args, 0, sizeof(*args));
args->out.device_virt_addr = device_addr;
break;
case HL_MEM_OP_UNMAP:
rc = unmap_device_va(ctx, &args->in, false);
break;
case HL_MEM_OP_MAP_BLOCK:
rc = map_block(hdev, args->in.map_block.block_addr,
&block_handle, &block_size);
args->out.block_handle = block_handle;
args->out.block_size = block_size;
break;
case HL_MEM_OP_EXPORT_DMABUF_FD:
rc = export_dmabuf_from_addr(ctx,
args->in.export_dmabuf_fd.addr,
args->in.export_dmabuf_fd.mem_size,
args->in.export_dmabuf_fd.offset,
args->in.flags,
&dmabuf_fd);
memset(args, 0, sizeof(*args));
args->out.fd = dmabuf_fd;
break;
case HL_MEM_OP_TS_ALLOC:
rc = allocate_timestamps_buffers(hpriv, &args->in, &args->out.handle);
break;
default:
dev_err(hdev->dev, "Unknown opcode for memory IOCTL\n");
rc = -EINVAL;
break;
}
out:
return rc;
}
static int get_user_memory(struct hl_device *hdev, u64 addr, u64 size,
u32 npages, u64 start, u32 offset,
struct hl_userptr *userptr)
{
int rc;
if (!access_ok((void __user *) (uintptr_t) addr, size)) {
dev_err(hdev->dev, "user pointer is invalid - 0x%llx\n", addr);
return -EFAULT;
}
userptr->pages = kvmalloc_array(npages, sizeof(struct page *), GFP_KERNEL);
if (!userptr->pages)
return -ENOMEM;
rc = pin_user_pages_fast(start, npages, FOLL_WRITE | FOLL_LONGTERM,
userptr->pages);
if (rc != npages) {
dev_err(hdev->dev,
"Failed (%d) to pin host memory with user ptr 0x%llx, size 0x%llx, npages %d\n",
rc, addr, size, npages);
if (rc < 0)
goto destroy_pages;
npages = rc;
rc = -EFAULT;
goto put_pages;
}
userptr->npages = npages;
rc = sg_alloc_table_from_pages(userptr->sgt,
userptr->pages,
npages, offset, size, GFP_KERNEL);
if (rc < 0) {
dev_err(hdev->dev, "failed to create SG table from pages\n");
goto put_pages;
}
return 0;
put_pages:
unpin_user_pages(userptr->pages, npages);
destroy_pages:
kvfree(userptr->pages);
return rc;
}
/**
* hl_pin_host_memory() - pins a chunk of host memory.
* @hdev: pointer to the habanalabs device structure.
* @addr: the host virtual address of the memory area.
* @size: the size of the memory area.
* @userptr: pointer to hl_userptr structure.
*
* This function does the following:
* - Pins the physical pages.
* - Create an SG list from those pages.
*/
int hl_pin_host_memory(struct hl_device *hdev, u64 addr, u64 size,
struct hl_userptr *userptr)
{
u64 start, end;
u32 npages, offset;
int rc;
if (!size) {
dev_err(hdev->dev, "size to pin is invalid - %llu\n", size);
return -EINVAL;
}
/*
* If the combination of the address and size requested for this memory
* region causes an integer overflow, return error.
*/
if (((addr + size) < addr) ||
PAGE_ALIGN(addr + size) < (addr + size)) {
dev_err(hdev->dev,
"user pointer 0x%llx + %llu causes integer overflow\n",
addr, size);
return -EINVAL;
}
userptr->pid = current->pid;
userptr->sgt = kzalloc(sizeof(*userptr->sgt), GFP_KERNEL);
if (!userptr->sgt)
return -ENOMEM;
start = addr & PAGE_MASK;
offset = addr & ~PAGE_MASK;
end = PAGE_ALIGN(addr + size);
npages = (end - start) >> PAGE_SHIFT;
userptr->size = size;
userptr->addr = addr;
userptr->dma_mapped = false;
INIT_LIST_HEAD(&userptr->job_node);
rc = get_user_memory(hdev, addr, size, npages, start, offset,
userptr);
if (rc) {
dev_err(hdev->dev,
"failed to get user memory for address 0x%llx\n",
addr);
goto free_sgt;
}
hl_debugfs_add_userptr(hdev, userptr);
return 0;
free_sgt:
kfree(userptr->sgt);
return rc;
}
/*
* hl_unpin_host_memory - unpins a chunk of host memory.
* @hdev: pointer to the habanalabs device structure
* @userptr: pointer to hl_userptr structure
*
* This function does the following:
* - Unpins the physical pages related to the host memory
* - Free the SG list
*/
void hl_unpin_host_memory(struct hl_device *hdev, struct hl_userptr *userptr)
{
hl_debugfs_remove_userptr(hdev, userptr);
if (userptr->dma_mapped)
hl_dma_unmap_sgtable(hdev, userptr->sgt, userptr->dir);
unpin_user_pages_dirty_lock(userptr->pages, userptr->npages, true);
kvfree(userptr->pages);
list_del(&userptr->job_node);
sg_free_table(userptr->sgt);
kfree(userptr->sgt);
}
/**
* hl_userptr_delete_list() - clear userptr list.
* @hdev: pointer to the habanalabs device structure.
* @userptr_list: pointer to the list to clear.
*
* This function does the following:
* - Iterates over the list and unpins the host memory and frees the userptr
* structure.
*/
void hl_userptr_delete_list(struct hl_device *hdev,
struct list_head *userptr_list)
{
struct hl_userptr *userptr, *tmp;
list_for_each_entry_safe(userptr, tmp, userptr_list, job_node) {
hl_unpin_host_memory(hdev, userptr);
kfree(userptr);
}
INIT_LIST_HEAD(userptr_list);
}
/**
* hl_userptr_is_pinned() - returns whether the given userptr is pinned.
* @hdev: pointer to the habanalabs device structure.
* @addr: user address to check.
* @size: user block size to check.
* @userptr_list: pointer to the list to clear.
* @userptr: pointer to userptr to check.
*
* This function does the following:
* - Iterates over the list and checks if the given userptr is in it, means is
* pinned. If so, returns true, otherwise returns false.
*/
bool hl_userptr_is_pinned(struct hl_device *hdev, u64 addr,
u32 size, struct list_head *userptr_list,
struct hl_userptr **userptr)
{
list_for_each_entry((*userptr), userptr_list, job_node) {
if ((addr == (*userptr)->addr) && (size == (*userptr)->size))
return true;
}
return false;
}
/**
* va_range_init() - initialize virtual addresses range.
* @hdev: pointer to the habanalabs device structure.
* @va_ranges: pointer to va_ranges array.
* @range_type: virtual address range type.
* @start: range start address, inclusive.
* @end: range end address, inclusive.
* @page_size: page size for this va_range.
*
* This function does the following:
* - Initializes the virtual addresses list of the given range with the given
* addresses.
*/
static int va_range_init(struct hl_device *hdev, struct hl_va_range **va_ranges,
enum hl_va_range_type range_type, u64 start,
u64 end, u32 page_size)
{
struct hl_va_range *va_range = va_ranges[range_type];
int rc;
INIT_LIST_HEAD(&va_range->list);
/*
* PAGE_SIZE alignment
* it is the caller's responsibility to align the addresses if the
* page size is not a power of 2
*/
if (is_power_of_2(page_size)) {
start = round_up(start, page_size);
/*
* The end of the range is inclusive, hence we need to align it
* to the end of the last full page in the range. For example if
* end = 0x3ff5 with page size 0x1000, we need to align it to
* 0x2fff. The remaining 0xff5 bytes do not form a full page.
*/
end = round_down(end + 1, page_size) - 1;
}
if (start >= end) {
dev_err(hdev->dev, "too small vm range for va list\n");
return -EFAULT;
}
rc = add_va_block(hdev, va_range, start, end);
if (rc) {
dev_err(hdev->dev, "Failed to init host va list\n");
return rc;
}
va_range->start_addr = start;
va_range->end_addr = end;
va_range->page_size = page_size;
return 0;
}
/**
* va_range_fini() - clear a virtual addresses range.
* @hdev: pointer to the habanalabs structure.
* @va_range: pointer to virtual addresses range.
*
* This function does the following:
* - Frees the virtual addresses block list and its lock.
*/
static void va_range_fini(struct hl_device *hdev, struct hl_va_range *va_range)
{
mutex_lock(&va_range->lock);
clear_va_list_locked(hdev, &va_range->list);
mutex_unlock(&va_range->lock);
mutex_destroy(&va_range->lock);
kfree(va_range);
}
/**
* vm_ctx_init_with_ranges() - initialize virtual memory for context.
* @ctx: pointer to the habanalabs context structure.
* @host_range_start: host virtual addresses range start.
* @host_range_end: host virtual addresses range end.
* @host_page_size: host page size.
* @host_huge_range_start: host virtual addresses range start for memory
* allocated with huge pages.
* @host_huge_range_end: host virtual addresses range end for memory allocated
* with huge pages.
* @host_huge_page_size: host huge page size.
* @dram_range_start: dram virtual addresses range start.
* @dram_range_end: dram virtual addresses range end.
* @dram_page_size: dram page size.
*
* This function initializes the following:
* - MMU for context.
* - Virtual address to area descriptor hashtable.
* - Virtual block list of available virtual memory.
*/
static int vm_ctx_init_with_ranges(struct hl_ctx *ctx,
u64 host_range_start,
u64 host_range_end,
u32 host_page_size,
u64 host_huge_range_start,
u64 host_huge_range_end,
u32 host_huge_page_size,
u64 dram_range_start,
u64 dram_range_end,
u32 dram_page_size)
{
struct hl_device *hdev = ctx->hdev;
int i, rc;
for (i = 0 ; i < HL_VA_RANGE_TYPE_MAX ; i++) {
ctx->va_range[i] =
kzalloc(sizeof(struct hl_va_range), GFP_KERNEL);
if (!ctx->va_range[i]) {
rc = -ENOMEM;
goto free_va_range;
}
}
rc = hl_mmu_ctx_init(ctx);
if (rc) {
dev_err(hdev->dev, "failed to init context %d\n", ctx->asid);
goto free_va_range;
}
mutex_init(&ctx->mem_hash_lock);
hash_init(ctx->mem_hash);
mutex_init(&ctx->va_range[HL_VA_RANGE_TYPE_HOST]->lock);
rc = va_range_init(hdev, ctx->va_range, HL_VA_RANGE_TYPE_HOST,
host_range_start, host_range_end, host_page_size);
if (rc) {
dev_err(hdev->dev, "failed to init host vm range\n");
goto mmu_ctx_fini;
}
if (hdev->pmmu_huge_range) {
mutex_init(&ctx->va_range[HL_VA_RANGE_TYPE_HOST_HUGE]->lock);
rc = va_range_init(hdev,
ctx->va_range, HL_VA_RANGE_TYPE_HOST_HUGE,
host_huge_range_start, host_huge_range_end,
host_huge_page_size);
if (rc) {
dev_err(hdev->dev,
"failed to init host huge vm range\n");
goto clear_host_va_range;
}
} else {
kfree(ctx->va_range[HL_VA_RANGE_TYPE_HOST_HUGE]);
ctx->va_range[HL_VA_RANGE_TYPE_HOST_HUGE] =
ctx->va_range[HL_VA_RANGE_TYPE_HOST];
}
mutex_init(&ctx->va_range[HL_VA_RANGE_TYPE_DRAM]->lock);
rc = va_range_init(hdev, ctx->va_range, HL_VA_RANGE_TYPE_DRAM,
dram_range_start, dram_range_end, dram_page_size);
if (rc) {
dev_err(hdev->dev, "failed to init dram vm range\n");
goto clear_host_huge_va_range;
}
hl_debugfs_add_ctx_mem_hash(hdev, ctx);
return 0;
clear_host_huge_va_range:
mutex_destroy(&ctx->va_range[HL_VA_RANGE_TYPE_DRAM]->lock);
if (hdev->pmmu_huge_range) {
mutex_lock(&ctx->va_range[HL_VA_RANGE_TYPE_HOST_HUGE]->lock);
clear_va_list_locked(hdev,
&ctx->va_range[HL_VA_RANGE_TYPE_HOST_HUGE]->list);
mutex_unlock(&ctx->va_range[HL_VA_RANGE_TYPE_HOST_HUGE]->lock);
}
clear_host_va_range:
if (hdev->pmmu_huge_range)
mutex_destroy(&ctx->va_range[HL_VA_RANGE_TYPE_HOST_HUGE]->lock);
mutex_lock(&ctx->va_range[HL_VA_RANGE_TYPE_HOST]->lock);
clear_va_list_locked(hdev, &ctx->va_range[HL_VA_RANGE_TYPE_HOST]->list);
mutex_unlock(&ctx->va_range[HL_VA_RANGE_TYPE_HOST]->lock);
mmu_ctx_fini:
mutex_destroy(&ctx->va_range[HL_VA_RANGE_TYPE_HOST]->lock);
mutex_destroy(&ctx->mem_hash_lock);
hl_mmu_ctx_fini(ctx);
free_va_range:
for (i = 0 ; i < HL_VA_RANGE_TYPE_MAX ; i++)
kfree(ctx->va_range[i]);
return rc;
}
int hl_vm_ctx_init(struct hl_ctx *ctx)
{
struct asic_fixed_properties *prop = &ctx->hdev->asic_prop;
u64 host_range_start, host_range_end, host_huge_range_start,
host_huge_range_end, dram_range_start, dram_range_end;
u32 host_page_size, host_huge_page_size, dram_page_size;
atomic64_set(&ctx->dram_phys_mem, 0);
/*
* In case of DRAM mapping, the returned address is the physical
* address of the memory related to the given handle.
*/
if (ctx->hdev->mmu_disable)
return 0;
dram_range_start = prop->dmmu.start_addr;
dram_range_end = prop->dmmu.end_addr - 1;
dram_page_size = prop->dram_page_size ?
prop->dram_page_size : prop->dmmu.page_size;
host_range_start = prop->pmmu.start_addr;
host_range_end = prop->pmmu.end_addr - 1;
host_page_size = prop->pmmu.page_size;
host_huge_range_start = prop->pmmu_huge.start_addr;
host_huge_range_end = prop->pmmu_huge.end_addr - 1;
host_huge_page_size = prop->pmmu_huge.page_size;
return vm_ctx_init_with_ranges(ctx, host_range_start, host_range_end,
host_page_size, host_huge_range_start,
host_huge_range_end, host_huge_page_size,
dram_range_start, dram_range_end, dram_page_size);
}
/**
* hl_vm_ctx_fini() - virtual memory teardown of context.
* @ctx: pointer to the habanalabs context structure.
*
* This function perform teardown the following:
* - Virtual block list of available virtual memory.
* - Virtual address to area descriptor hashtable.
* - MMU for context.
*
* In addition this function does the following:
* - Unmaps the existing hashtable nodes if the hashtable is not empty. The
* hashtable should be empty as no valid mappings should exist at this
* point.
* - Frees any existing physical page list from the idr which relates to the
* current context asid.
* - This function checks the virtual block list for correctness. At this point
* the list should contain one element which describes the whole virtual
* memory range of the context. Otherwise, a warning is printed.
*/
void hl_vm_ctx_fini(struct hl_ctx *ctx)
{
struct hl_vm_phys_pg_pack *phys_pg_list, *tmp_phys_node;
struct hl_device *hdev = ctx->hdev;
struct hl_vm_hash_node *hnode;
struct hl_vm *vm = &hdev->vm;
struct hlist_node *tmp_node;
struct list_head free_list;
struct hl_mem_in args;
int i;
if (hdev->mmu_disable)
return;
hl_debugfs_remove_ctx_mem_hash(hdev, ctx);
/*
* Clearly something went wrong on hard reset so no point in printing
* another side effect error
*/
if (!hdev->reset_info.hard_reset_pending && !hash_empty(ctx->mem_hash))
dev_dbg(hdev->dev,
"user released device without removing its memory mappings\n");
hash_for_each_safe(ctx->mem_hash, i, tmp_node, hnode, node) {
dev_dbg(hdev->dev,
"hl_mem_hash_node of vaddr 0x%llx of asid %d is still alive\n",
hnode->vaddr, ctx->asid);
args.unmap.device_virt_addr = hnode->vaddr;
unmap_device_va(ctx, &args, true);
}
mutex_lock(&hdev->mmu_lock);
/* invalidate the cache once after the unmapping loop */
hl_mmu_invalidate_cache(hdev, true, MMU_OP_USERPTR);
hl_mmu_invalidate_cache(hdev, true, MMU_OP_PHYS_PACK);
mutex_unlock(&hdev->mmu_lock);
INIT_LIST_HEAD(&free_list);
spin_lock(&vm->idr_lock);
idr_for_each_entry(&vm->phys_pg_pack_handles, phys_pg_list, i)
if (phys_pg_list->asid == ctx->asid) {
dev_dbg(hdev->dev,
"page list 0x%px of asid %d is still alive\n",
phys_pg_list, ctx->asid);
atomic64_sub(phys_pg_list->total_size, &hdev->dram_used_mem);
idr_remove(&vm->phys_pg_pack_handles, i);
list_add(&phys_pg_list->node, &free_list);
}
spin_unlock(&vm->idr_lock);
list_for_each_entry_safe(phys_pg_list, tmp_phys_node, &free_list, node)
free_phys_pg_pack(hdev, phys_pg_list);
va_range_fini(hdev, ctx->va_range[HL_VA_RANGE_TYPE_DRAM]);
va_range_fini(hdev, ctx->va_range[HL_VA_RANGE_TYPE_HOST]);
if (hdev->pmmu_huge_range)
va_range_fini(hdev, ctx->va_range[HL_VA_RANGE_TYPE_HOST_HUGE]);
mutex_destroy(&ctx->mem_hash_lock);
hl_mmu_ctx_fini(ctx);
/* In this case we need to clear the global accounting of DRAM usage
* because the user notifies us on allocations. If the user is no more,
* all DRAM is available
*/
if (ctx->asid != HL_KERNEL_ASID_ID &&
!hdev->asic_prop.dram_supports_virtual_memory)
atomic64_set(&hdev->dram_used_mem, 0);
}
/**
* hl_vm_init() - initialize virtual memory module.
* @hdev: pointer to the habanalabs device structure.
*
* This function initializes the following:
* - MMU module.
* - DRAM physical pages pool of 2MB.
* - Idr for device memory allocation handles.
*/
int hl_vm_init(struct hl_device *hdev)
{
struct asic_fixed_properties *prop = &hdev->asic_prop;
struct hl_vm *vm = &hdev->vm;
int rc;
if (is_power_of_2(prop->dram_page_size))
vm->dram_pg_pool =
gen_pool_create(__ffs(prop->dram_page_size), -1);
else
vm->dram_pg_pool =
gen_pool_create(__ffs(DRAM_POOL_PAGE_SIZE), -1);
if (!vm->dram_pg_pool) {
dev_err(hdev->dev, "Failed to create dram page pool\n");
return -ENOMEM;
}
kref_init(&vm->dram_pg_pool_refcount);
rc = gen_pool_add(vm->dram_pg_pool, prop->dram_user_base_address,
prop->dram_end_address - prop->dram_user_base_address,
-1);
if (rc) {
dev_err(hdev->dev,
"Failed to add memory to dram page pool %d\n", rc);
goto pool_add_err;
}
spin_lock_init(&vm->idr_lock);
idr_init(&vm->phys_pg_pack_handles);
atomic64_set(&hdev->dram_used_mem, 0);
vm->init_done = true;
return 0;
pool_add_err:
gen_pool_destroy(vm->dram_pg_pool);
return rc;
}
/**
* hl_vm_fini() - virtual memory module teardown.
* @hdev: pointer to the habanalabs device structure.
*
* This function perform teardown to the following:
* - Idr for device memory allocation handles.
* - DRAM physical pages pool of 2MB.
* - MMU module.
*/
void hl_vm_fini(struct hl_device *hdev)
{
struct hl_vm *vm = &hdev->vm;
if (!vm->init_done)
return;
/*
* At this point all the contexts should be freed and hence no DRAM
* memory should be in use. Hence the DRAM pool should be freed here.
*/
if (kref_put(&vm->dram_pg_pool_refcount, dram_pg_pool_do_release) != 1)
dev_warn(hdev->dev, "dram_pg_pool was not destroyed on %s\n",
__func__);
vm->init_done = false;
}
/**
* hl_hw_block_mem_init() - HW block memory initialization.
* @ctx: pointer to the habanalabs context structure.
*
* This function initializes the HW block virtual mapped addresses list and
* it's lock.
*/
void hl_hw_block_mem_init(struct hl_ctx *ctx)
{
mutex_init(&ctx->hw_block_list_lock);
INIT_LIST_HEAD(&ctx->hw_block_mem_list);
}
/**
* hl_hw_block_mem_fini() - HW block memory teardown.
* @ctx: pointer to the habanalabs context structure.
*
* This function clears the HW block virtual mapped addresses list and destroys
* it's lock.
*/
void hl_hw_block_mem_fini(struct hl_ctx *ctx)
{
struct hl_vm_hw_block_list_node *lnode, *tmp;
if (!list_empty(&ctx->hw_block_mem_list))
dev_crit(ctx->hdev->dev, "HW block mem list isn't empty\n");
list_for_each_entry_safe(lnode, tmp, &ctx->hw_block_mem_list, node) {
list_del(&lnode->node);
kfree(lnode);
}
mutex_destroy(&ctx->hw_block_list_lock);
}