linux/sound/pci/oxygen/xonar_dg.c

// SPDX-License-Identifier: GPL-2.0-only
/*
 * card driver for the Xonar DG/DGX
 *
 * Copyright (c) Clemens Ladisch <[email protected]>
 * Copyright (c) Roman Volkov <[email protected]>
 */

/*
 * Xonar DG/DGX
 * ------------
 *
 * CS4245 and CS4361 both will mute all outputs if any clock ratio
 * is invalid.
 *
 * CMI8788:
 *
 *   SPI 0 -> CS4245
 *
 *   Playback:
 *   I²S 1 -> CS4245
 *   I²S 2 -> CS4361 (center/LFE)
 *   I²S 3 -> CS4361 (surround)
 *   I²S 4 -> CS4361 (front)
 *   Capture:
 *   I²S ADC 1 <- CS4245
 *
 *   GPIO 3 <- ?
 *   GPIO 4 <- headphone detect
 *   GPIO 5 -> enable ADC analog circuit for the left channel
 *   GPIO 6 -> enable ADC analog circuit for the right channel
 *   GPIO 7 -> switch green rear output jack between CS4245 and the first
 *             channel of CS4361 (mechanical relay)
 *   GPIO 8 -> enable output to speakers
 *
 * CS4245:
 *
 *   input 0 <- mic
 *   input 1 <- aux
 *   input 2 <- front mic
 *   input 4 <- line
 *   DAC out -> headphones
 *   aux out -> front panel headphones
 */

#include <linux/pci.h>
#include <linux/delay.h>
#include <sound/control.h>
#include <sound/core.h>
#include <sound/info.h>
#include <sound/pcm.h>
#include <sound/tlv.h>
#include "oxygen.h"
#include "xonar_dg.h"
#include "cs4245.h"

int cs4245_write_spi(struct oxygen *chip, u8 reg)
{
	struct dg *data = chip->model_data;
	unsigned int packet;

	packet = reg << 8;
	packet |= (CS4245_SPI_ADDRESS | CS4245_SPI_WRITE) << 16;
	packet |= data->cs4245_shadow[reg];

	return oxygen_write_spi(chip, OXYGEN_SPI_TRIGGER |
				OXYGEN_SPI_DATA_LENGTH_3 |
				OXYGEN_SPI_CLOCK_1280 |
				(0 << OXYGEN_SPI_CODEC_SHIFT) |
				OXYGEN_SPI_CEN_LATCH_CLOCK_HI,
				packet);
}

int cs4245_read_spi(struct oxygen *chip, u8 addr)
{
	struct dg *data = chip->model_data;
	int ret;

	ret = oxygen_write_spi(chip, OXYGEN_SPI_TRIGGER |
		OXYGEN_SPI_DATA_LENGTH_2 |
		OXYGEN_SPI_CEN_LATCH_CLOCK_HI |
		OXYGEN_SPI_CLOCK_1280 | (0 << OXYGEN_SPI_CODEC_SHIFT),
		((CS4245_SPI_ADDRESS | CS4245_SPI_WRITE) << 8) | addr);
	if (ret < 0)
		return ret;

	ret = oxygen_write_spi(chip, OXYGEN_SPI_TRIGGER |
		OXYGEN_SPI_DATA_LENGTH_2 |
		OXYGEN_SPI_CEN_LATCH_CLOCK_HI |
		OXYGEN_SPI_CLOCK_1280 | (0 << OXYGEN_SPI_CODEC_SHIFT),
		(CS4245_SPI_ADDRESS | CS4245_SPI_READ) << 8);
	if (ret < 0)
		return ret;

	data->cs4245_shadow[addr] = oxygen_read8(chip, OXYGEN_SPI_DATA1);

	return 0;
}

int cs4245_shadow_control(struct oxygen *chip, enum cs4245_shadow_operation op)
{
	struct dg *data = chip->model_data;
	unsigned char addr;
	int ret;

	for (addr = 1; addr < ARRAY_SIZE(data->cs4245_shadow); addr++) {
		ret = (op == CS4245_SAVE_TO_SHADOW ?
			cs4245_read_spi(chip, addr) :
			cs4245_write_spi(chip, addr));
		if (ret < 0)
			return ret;
	}
	return 0;
}

static void cs4245_init(struct oxygen *chip)
{
	struct dg *data = chip->model_data;

	/* save the initial state: codec version, registers */
	cs4245_shadow_control(chip, CS4245_SAVE_TO_SHADOW);

	/*
	 * Power up the CODEC internals, enable soft ramp & zero cross, work in
	 * async. mode, enable aux output from DAC. Invert DAC output as in the
	 * Windows driver.
	 */
	data->cs4245_shadow[CS4245_POWER_CTRL] = 0;
	data->cs4245_shadow[CS4245_SIGNAL_SEL] =
		CS4245_A_OUT_SEL_DAC | CS4245_ASYNCH;
	data->cs4245_shadow[CS4245_DAC_CTRL_1] =
		CS4245_DAC_FM_SINGLE | CS4245_DAC_DIF_LJUST;
	data->cs4245_shadow[CS4245_DAC_CTRL_2] =
		CS4245_DAC_SOFT | CS4245_DAC_ZERO | CS4245_INVERT_DAC;
	data->cs4245_shadow[CS4245_ADC_CTRL] =
		CS4245_ADC_FM_SINGLE | CS4245_ADC_DIF_LJUST;
	data->cs4245_shadow[CS4245_ANALOG_IN] =
		CS4245_PGA_SOFT | CS4245_PGA_ZERO;
	data->cs4245_shadow[CS4245_PGA_B_CTRL] = 0;
	data->cs4245_shadow[CS4245_PGA_A_CTRL] = 0;
	data->cs4245_shadow[CS4245_DAC_A_CTRL] = 8;
	data->cs4245_shadow[CS4245_DAC_B_CTRL] = 8;

	cs4245_shadow_control(chip, CS4245_LOAD_FROM_SHADOW);
	snd_component_add(chip->card, "CS4245");
}

void dg_init(struct oxygen *chip)
{
	struct dg *data = chip->model_data;

	data->output_sel = PLAYBACK_DST_HP_FP;
	data->input_sel = CAPTURE_SRC_MIC;

	cs4245_init(chip);
	oxygen_write16(chip, OXYGEN_GPIO_CONTROL,
		       GPIO_OUTPUT_ENABLE | GPIO_HP_REAR | GPIO_INPUT_ROUTE);
	/* anti-pop delay, wait some time before enabling the output */
	msleep(2500);
	oxygen_write16(chip, OXYGEN_GPIO_DATA,
		       GPIO_OUTPUT_ENABLE | GPIO_INPUT_ROUTE);
}

void dg_cleanup(struct oxygen *chip)
{
	oxygen_clear_bits16(chip, OXYGEN_GPIO_DATA, GPIO_OUTPUT_ENABLE);
}

void dg_suspend(struct oxygen *chip)
{
	dg_cleanup(chip);
}

void dg_resume(struct oxygen *chip)
{
	cs4245_shadow_control(chip, CS4245_LOAD_FROM_SHADOW);
	msleep(2500);
	oxygen_set_bits16(chip, OXYGEN_GPIO_DATA, GPIO_OUTPUT_ENABLE);
}

void set_cs4245_dac_params(struct oxygen *chip,
				  struct snd_pcm_hw_params *params)
{
	struct dg *data = chip->model_data;
	unsigned char dac_ctrl;
	unsigned char mclk_freq;

	dac_ctrl = data->cs4245_shadow[CS4245_DAC_CTRL_1] & ~CS4245_DAC_FM_MASK;
	mclk_freq = data->cs4245_shadow[CS4245_MCLK_FREQ] & ~CS4245_MCLK1_MASK;
	if (params_rate(params) <= 50000) {
		dac_ctrl |= CS4245_DAC_FM_SINGLE;
		mclk_freq |= CS4245_MCLK_1 << CS4245_MCLK1_SHIFT;
	} else if (params_rate(params) <= 100000) {
		dac_ctrl |= CS4245_DAC_FM_DOUBLE;
		mclk_freq |= CS4245_MCLK_1 << CS4245_MCLK1_SHIFT;
	} else {
		dac_ctrl |= CS4245_DAC_FM_QUAD;
		mclk_freq |= CS4245_MCLK_2 << CS4245_MCLK1_SHIFT;
	}
	data->cs4245_shadow[CS4245_DAC_CTRL_1] = dac_ctrl;
	data->cs4245_shadow[CS4245_MCLK_FREQ] = mclk_freq;
	cs4245_write_spi(chip, CS4245_DAC_CTRL_1);
	cs4245_write_spi(chip, CS4245_MCLK_FREQ);
}

void set_cs4245_adc_params(struct oxygen *chip,
				  struct snd_pcm_hw_params *params)
{
	struct dg *data = chip->model_data;
	unsigned char adc_ctrl;
	unsigned char mclk_freq;

	adc_ctrl = data->cs4245_shadow[CS4245_ADC_CTRL] & ~CS4245_ADC_FM_MASK;
	mclk_freq = data->cs4245_shadow[CS4245_MCLK_FREQ] & ~CS4245_MCLK2_MASK;
	if (params_rate(params) <= 50000) {
		adc_ctrl |= CS4245_ADC_FM_SINGLE;
		mclk_freq |= CS4245_MCLK_1 << CS4245_MCLK2_SHIFT;
	} else if (params_rate(params) <= 100000) {
		adc_ctrl |= CS4245_ADC_FM_DOUBLE;
		mclk_freq |= CS4245_MCLK_1 << CS4245_MCLK2_SHIFT;
	} else {
		adc_ctrl |= CS4245_ADC_FM_QUAD;
		mclk_freq |= CS4245_MCLK_2 << CS4245_MCLK2_SHIFT;
	}
	data->cs4245_shadow[CS4245_ADC_CTRL] = adc_ctrl;
	data->cs4245_shadow[CS4245_MCLK_FREQ] = mclk_freq;
	cs4245_write_spi(chip, CS4245_ADC_CTRL);
	cs4245_write_spi(chip, CS4245_MCLK_FREQ);
}

static inline unsigned int shift_bits(unsigned int value,
				      unsigned int shift_from,
				      unsigned int shift_to,
				      unsigned int mask)
{
	if (shift_from < shift_to)
		return (value << (shift_to - shift_from)) & mask;
	else
		return (value >> (shift_from - shift_to)) & mask;
}

unsigned int adjust_dg_dac_routing(struct oxygen *chip,
					  unsigned int play_routing)
{
	struct dg *data = chip->model_data;

	switch (data->output_sel) {
	case PLAYBACK_DST_HP:
	case PLAYBACK_DST_HP_FP:
		oxygen_write8_masked(chip, OXYGEN_PLAY_ROUTING,
			OXYGEN_PLAY_MUTE23 | OXYGEN_PLAY_MUTE45 |
			OXYGEN_PLAY_MUTE67, OXYGEN_PLAY_MUTE_MASK);
		break;
	case PLAYBACK_DST_MULTICH:
		oxygen_write8_masked(chip, OXYGEN_PLAY_ROUTING,
			OXYGEN_PLAY_MUTE01, OXYGEN_PLAY_MUTE_MASK);
		break;
	}
	return (play_routing & OXYGEN_PLAY_DAC0_SOURCE_MASK) |
	       shift_bits(play_routing,
			  OXYGEN_PLAY_DAC2_SOURCE_SHIFT,
			  OXYGEN_PLAY_DAC1_SOURCE_SHIFT,
			  OXYGEN_PLAY_DAC1_SOURCE_MASK) |
	       shift_bits(play_routing,
			  OXYGEN_PLAY_DAC1_SOURCE_SHIFT,
			  OXYGEN_PLAY_DAC2_SOURCE_SHIFT,
			  OXYGEN_PLAY_DAC2_SOURCE_MASK) |
	       shift_bits(play_routing,
			  OXYGEN_PLAY_DAC0_SOURCE_SHIFT,
			  OXYGEN_PLAY_DAC3_SOURCE_SHIFT,
			  OXYGEN_PLAY_DAC3_SOURCE_MASK);
}

void dump_cs4245_registers(struct oxygen *chip,
				  struct snd_info_buffer *buffer)
{
	struct dg *data = chip->model_data;
	unsigned int addr;

	snd_iprintf(buffer, "\nCS4245:");
	cs4245_read_spi(chip, CS4245_INT_STATUS);
	for (addr = 1; addr < ARRAY_SIZE(data->cs4245_shadow); addr++)
		snd_iprintf(buffer, " %02x", data->cs4245_shadow[addr]);
	snd_iprintf(buffer, "\n");
}