/* SPDX-License-Identifier: GPL-2.0-only */
/*
* Copyright © 2006-2015, Intel Corporation.
*
* Authors: Ashok Raj <[email protected]>
* Anil S Keshavamurthy <[email protected]>
* David Woodhouse <[email protected]>
*/
#ifndef _INTEL_IOMMU_H_
#define _INTEL_IOMMU_H_
#include <linux/types.h>
#include <linux/iova.h>
#include <linux/io.h>
#include <linux/idr.h>
#include <linux/mmu_notifier.h>
#include <linux/list.h>
#include <linux/iommu.h>
#include <linux/io-64-nonatomic-lo-hi.h>
#include <linux/dmar.h>
#include <linux/bitfield.h>
#include <linux/xarray.h>
#include <linux/perf_event.h>
#include <asm/cacheflush.h>
#include <asm/iommu.h>
#include <uapi/linux/iommufd.h>
/*
* VT-d hardware uses 4KiB page size regardless of host page size.
*/
#define VTD_PAGE_SHIFT (12)
#define VTD_PAGE_SIZE (1UL << VTD_PAGE_SHIFT)
#define VTD_PAGE_MASK (((u64)-1) << VTD_PAGE_SHIFT)
#define VTD_PAGE_ALIGN(addr) (((addr) + VTD_PAGE_SIZE - 1) & VTD_PAGE_MASK)
#define IOVA_PFN(addr) ((addr) >> PAGE_SHIFT)
#define VTD_STRIDE_SHIFT (9)
#define VTD_STRIDE_MASK (((u64)-1) << VTD_STRIDE_SHIFT)
#define DMA_PTE_READ BIT_ULL(0)
#define DMA_PTE_WRITE BIT_ULL(1)
#define DMA_PTE_LARGE_PAGE BIT_ULL(7)
#define DMA_PTE_SNP BIT_ULL(11)
#define DMA_FL_PTE_PRESENT BIT_ULL(0)
#define DMA_FL_PTE_US BIT_ULL(2)
#define DMA_FL_PTE_ACCESS BIT_ULL(5)
#define DMA_FL_PTE_DIRTY BIT_ULL(6)
#define DMA_SL_PTE_DIRTY_BIT 9
#define DMA_SL_PTE_DIRTY BIT_ULL(DMA_SL_PTE_DIRTY_BIT)
#define ADDR_WIDTH_5LEVEL (57)
#define ADDR_WIDTH_4LEVEL (48)
#define CONTEXT_TT_MULTI_LEVEL 0
#define CONTEXT_TT_DEV_IOTLB 1
#define CONTEXT_TT_PASS_THROUGH 2
#define CONTEXT_PASIDE BIT_ULL(3)
/*
* Intel IOMMU register specification per version 1.0 public spec.
*/
#define DMAR_VER_REG 0x0 /* Arch version supported by this IOMMU */
#define DMAR_CAP_REG 0x8 /* Hardware supported capabilities */
#define DMAR_ECAP_REG 0x10 /* Extended capabilities supported */
#define DMAR_GCMD_REG 0x18 /* Global command register */
#define DMAR_GSTS_REG 0x1c /* Global status register */
#define DMAR_RTADDR_REG 0x20 /* Root entry table */
#define DMAR_CCMD_REG 0x28 /* Context command reg */
#define DMAR_FSTS_REG 0x34 /* Fault Status register */
#define DMAR_FECTL_REG 0x38 /* Fault control register */
#define DMAR_FEDATA_REG 0x3c /* Fault event interrupt data register */
#define DMAR_FEADDR_REG 0x40 /* Fault event interrupt addr register */
#define DMAR_FEUADDR_REG 0x44 /* Upper address register */
#define DMAR_AFLOG_REG 0x58 /* Advanced Fault control */
#define DMAR_PMEN_REG 0x64 /* Enable Protected Memory Region */
#define DMAR_PLMBASE_REG 0x68 /* PMRR Low addr */
#define DMAR_PLMLIMIT_REG 0x6c /* PMRR low limit */
#define DMAR_PHMBASE_REG 0x70 /* pmrr high base addr */
#define DMAR_PHMLIMIT_REG 0x78 /* pmrr high limit */
#define DMAR_IQH_REG 0x80 /* Invalidation queue head register */
#define DMAR_IQT_REG 0x88 /* Invalidation queue tail register */
#define DMAR_IQ_SHIFT 4 /* Invalidation queue head/tail shift */
#define DMAR_IQA_REG 0x90 /* Invalidation queue addr register */
#define DMAR_ICS_REG 0x9c /* Invalidation complete status register */
#define DMAR_IQER_REG 0xb0 /* Invalidation queue error record register */
#define DMAR_IRTA_REG 0xb8 /* Interrupt remapping table addr register */
#define DMAR_PQH_REG 0xc0 /* Page request queue head register */
#define DMAR_PQT_REG 0xc8 /* Page request queue tail register */
#define DMAR_PQA_REG 0xd0 /* Page request queue address register */
#define DMAR_PRS_REG 0xdc /* Page request status register */
#define DMAR_PECTL_REG 0xe0 /* Page request event control register */
#define DMAR_PEDATA_REG 0xe4 /* Page request event interrupt data register */
#define DMAR_PEADDR_REG 0xe8 /* Page request event interrupt addr register */
#define DMAR_PEUADDR_REG 0xec /* Page request event Upper address register */
#define DMAR_MTRRCAP_REG 0x100 /* MTRR capability register */
#define DMAR_MTRRDEF_REG 0x108 /* MTRR default type register */
#define DMAR_MTRR_FIX64K_00000_REG 0x120 /* MTRR Fixed range registers */
#define DMAR_MTRR_FIX16K_80000_REG 0x128
#define DMAR_MTRR_FIX16K_A0000_REG 0x130
#define DMAR_MTRR_FIX4K_C0000_REG 0x138
#define DMAR_MTRR_FIX4K_C8000_REG 0x140
#define DMAR_MTRR_FIX4K_D0000_REG 0x148
#define DMAR_MTRR_FIX4K_D8000_REG 0x150
#define DMAR_MTRR_FIX4K_E0000_REG 0x158
#define DMAR_MTRR_FIX4K_E8000_REG 0x160
#define DMAR_MTRR_FIX4K_F0000_REG 0x168
#define DMAR_MTRR_FIX4K_F8000_REG 0x170
#define DMAR_MTRR_PHYSBASE0_REG 0x180 /* MTRR Variable range registers */
#define DMAR_MTRR_PHYSMASK0_REG 0x188
#define DMAR_MTRR_PHYSBASE1_REG 0x190
#define DMAR_MTRR_PHYSMASK1_REG 0x198
#define DMAR_MTRR_PHYSBASE2_REG 0x1a0
#define DMAR_MTRR_PHYSMASK2_REG 0x1a8
#define DMAR_MTRR_PHYSBASE3_REG 0x1b0
#define DMAR_MTRR_PHYSMASK3_REG 0x1b8
#define DMAR_MTRR_PHYSBASE4_REG 0x1c0
#define DMAR_MTRR_PHYSMASK4_REG 0x1c8
#define DMAR_MTRR_PHYSBASE5_REG 0x1d0
#define DMAR_MTRR_PHYSMASK5_REG 0x1d8
#define DMAR_MTRR_PHYSBASE6_REG 0x1e0
#define DMAR_MTRR_PHYSMASK6_REG 0x1e8
#define DMAR_MTRR_PHYSBASE7_REG 0x1f0
#define DMAR_MTRR_PHYSMASK7_REG 0x1f8
#define DMAR_MTRR_PHYSBASE8_REG 0x200
#define DMAR_MTRR_PHYSMASK8_REG 0x208
#define DMAR_MTRR_PHYSBASE9_REG 0x210
#define DMAR_MTRR_PHYSMASK9_REG 0x218
#define DMAR_PERFCAP_REG 0x300
#define DMAR_PERFCFGOFF_REG 0x310
#define DMAR_PERFOVFOFF_REG 0x318
#define DMAR_PERFCNTROFF_REG 0x31c
#define DMAR_PERFINTRSTS_REG 0x324
#define DMAR_PERFINTRCTL_REG 0x328
#define DMAR_PERFEVNTCAP_REG 0x380
#define DMAR_ECMD_REG 0x400
#define DMAR_ECEO_REG 0x408
#define DMAR_ECRSP_REG 0x410
#define DMAR_ECCAP_REG 0x430
#define DMAR_IQER_REG_IQEI(reg) FIELD_GET(GENMASK_ULL(3, 0), reg)
#define DMAR_IQER_REG_ITESID(reg) FIELD_GET(GENMASK_ULL(47, 32), reg)
#define DMAR_IQER_REG_ICESID(reg) FIELD_GET(GENMASK_ULL(63, 48), reg)
#define OFFSET_STRIDE (9)
#define dmar_readq(a) readq(a)
#define dmar_writeq(a,v) writeq(v,a)
#define dmar_readl(a) readl(a)
#define dmar_writel(a, v) writel(v, a)
#define DMAR_VER_MAJOR(v) (((v) & 0xf0) >> 4)
#define DMAR_VER_MINOR(v) ((v) & 0x0f)
/*
* Decoding Capability Register
*/
#define cap_esrtps(c) (((c) >> 63) & 1)
#define cap_esirtps(c) (((c) >> 62) & 1)
#define cap_ecmds(c) (((c) >> 61) & 1)
#define cap_fl5lp_support(c) (((c) >> 60) & 1)
#define cap_pi_support(c) (((c) >> 59) & 1)
#define cap_fl1gp_support(c) (((c) >> 56) & 1)
#define cap_read_drain(c) (((c) >> 55) & 1)
#define cap_write_drain(c) (((c) >> 54) & 1)
#define cap_max_amask_val(c) (((c) >> 48) & 0x3f)
#define cap_num_fault_regs(c) ((((c) >> 40) & 0xff) + 1)
#define cap_pgsel_inv(c) (((c) >> 39) & 1)
#define cap_super_page_val(c) (((c) >> 34) & 0xf)
#define cap_super_offset(c) (((find_first_bit(&cap_super_page_val(c), 4)) \
* OFFSET_STRIDE) + 21)
#define cap_fault_reg_offset(c) ((((c) >> 24) & 0x3ff) * 16)
#define cap_max_fault_reg_offset(c) \
(cap_fault_reg_offset(c) + cap_num_fault_regs(c) * 16)
#define cap_zlr(c) (((c) >> 22) & 1)
#define cap_isoch(c) (((c) >> 23) & 1)
#define cap_mgaw(c) ((((c) >> 16) & 0x3f) + 1)
#define cap_sagaw(c) (((c) >> 8) & 0x1f)
#define cap_caching_mode(c) (((c) >> 7) & 1)
#define cap_phmr(c) (((c) >> 6) & 1)
#define cap_plmr(c) (((c) >> 5) & 1)
#define cap_rwbf(c) (((c) >> 4) & 1)
#define cap_afl(c) (((c) >> 3) & 1)
#define cap_ndoms(c) (((unsigned long)1) << (4 + 2 * ((c) & 0x7)))
/*
* Extended Capability Register
*/
#define ecap_pms(e) (((e) >> 51) & 0x1)
#define ecap_rps(e) (((e) >> 49) & 0x1)
#define ecap_smpwc(e) (((e) >> 48) & 0x1)
#define ecap_flts(e) (((e) >> 47) & 0x1)
#define ecap_slts(e) (((e) >> 46) & 0x1)
#define ecap_slads(e) (((e) >> 45) & 0x1)
#define ecap_smts(e) (((e) >> 43) & 0x1)
#define ecap_dit(e) (((e) >> 41) & 0x1)
#define ecap_pds(e) (((e) >> 42) & 0x1)
#define ecap_pasid(e) (((e) >> 40) & 0x1)
#define ecap_pss(e) (((e) >> 35) & 0x1f)
#define ecap_eafs(e) (((e) >> 34) & 0x1)
#define ecap_nwfs(e) (((e) >> 33) & 0x1)
#define ecap_srs(e) (((e) >> 31) & 0x1)
#define ecap_ers(e) (((e) >> 30) & 0x1)
#define ecap_prs(e) (((e) >> 29) & 0x1)
#define ecap_broken_pasid(e) (((e) >> 28) & 0x1)
#define ecap_dis(e) (((e) >> 27) & 0x1)
#define ecap_nest(e) (((e) >> 26) & 0x1)
#define ecap_mts(e) (((e) >> 25) & 0x1)
#define ecap_iotlb_offset(e) ((((e) >> 8) & 0x3ff) * 16)
#define ecap_max_iotlb_offset(e) (ecap_iotlb_offset(e) + 16)
#define ecap_coherent(e) ((e) & 0x1)
#define ecap_qis(e) ((e) & 0x2)
#define ecap_pass_through(e) (((e) >> 6) & 0x1)
#define ecap_eim_support(e) (((e) >> 4) & 0x1)
#define ecap_ir_support(e) (((e) >> 3) & 0x1)
#define ecap_dev_iotlb_support(e) (((e) >> 2) & 0x1)
#define ecap_max_handle_mask(e) (((e) >> 20) & 0xf)
#define ecap_sc_support(e) (((e) >> 7) & 0x1) /* Snooping Control */
/*
* Decoding Perf Capability Register
*/
#define pcap_num_cntr(p) ((p) & 0xffff)
#define pcap_cntr_width(p) (((p) >> 16) & 0x7f)
#define pcap_num_event_group(p) (((p) >> 24) & 0x1f)
#define pcap_filters_mask(p) (((p) >> 32) & 0x1f)
#define pcap_interrupt(p) (((p) >> 50) & 0x1)
/* The counter stride is calculated as 2 ^ (x+10) bytes */
#define pcap_cntr_stride(p) (1ULL << ((((p) >> 52) & 0x7) + 10))
/*
* Decoding Perf Event Capability Register
*/
#define pecap_es(p) ((p) & 0xfffffff)
/* Virtual command interface capability */
#define vccap_pasid(v) (((v) & DMA_VCS_PAS)) /* PASID allocation */
/* IOTLB_REG */
#define DMA_TLB_FLUSH_GRANU_OFFSET 60
#define DMA_TLB_GLOBAL_FLUSH (((u64)1) << 60)
#define DMA_TLB_DSI_FLUSH (((u64)2) << 60)
#define DMA_TLB_PSI_FLUSH (((u64)3) << 60)
#define DMA_TLB_IIRG(type) ((type >> 60) & 3)
#define DMA_TLB_IAIG(val) (((val) >> 57) & 3)
#define DMA_TLB_READ_DRAIN (((u64)1) << 49)
#define DMA_TLB_WRITE_DRAIN (((u64)1) << 48)
#define DMA_TLB_DID(id) (((u64)((id) & 0xffff)) << 32)
#define DMA_TLB_IVT (((u64)1) << 63)
#define DMA_TLB_IH_NONLEAF (((u64)1) << 6)
#define DMA_TLB_MAX_SIZE (0x3f)
/* INVALID_DESC */
#define DMA_CCMD_INVL_GRANU_OFFSET 61
#define DMA_ID_TLB_GLOBAL_FLUSH (((u64)1) << 4)
#define DMA_ID_TLB_DSI_FLUSH (((u64)2) << 4)
#define DMA_ID_TLB_PSI_FLUSH (((u64)3) << 4)
#define DMA_ID_TLB_READ_DRAIN (((u64)1) << 7)
#define DMA_ID_TLB_WRITE_DRAIN (((u64)1) << 6)
#define DMA_ID_TLB_DID(id) (((u64)((id & 0xffff) << 16)))
#define DMA_ID_TLB_IH_NONLEAF (((u64)1) << 6)
#define DMA_ID_TLB_ADDR(addr) (addr)
#define DMA_ID_TLB_ADDR_MASK(mask) (mask)
/* PMEN_REG */
#define DMA_PMEN_EPM (((u32)1)<<31)
#define DMA_PMEN_PRS (((u32)1)<<0)
/* GCMD_REG */
#define DMA_GCMD_TE (((u32)1) << 31)
#define DMA_GCMD_SRTP (((u32)1) << 30)
#define DMA_GCMD_SFL (((u32)1) << 29)
#define DMA_GCMD_EAFL (((u32)1) << 28)
#define DMA_GCMD_WBF (((u32)1) << 27)
#define DMA_GCMD_QIE (((u32)1) << 26)
#define DMA_GCMD_SIRTP (((u32)1) << 24)
#define DMA_GCMD_IRE (((u32) 1) << 25)
#define DMA_GCMD_CFI (((u32) 1) << 23)
/* GSTS_REG */
#define DMA_GSTS_TES (((u32)1) << 31)
#define DMA_GSTS_RTPS (((u32)1) << 30)
#define DMA_GSTS_FLS (((u32)1) << 29)
#define DMA_GSTS_AFLS (((u32)1) << 28)
#define DMA_GSTS_WBFS (((u32)1) << 27)
#define DMA_GSTS_QIES (((u32)1) << 26)
#define DMA_GSTS_IRTPS (((u32)1) << 24)
#define DMA_GSTS_IRES (((u32)1) << 25)
#define DMA_GSTS_CFIS (((u32)1) << 23)
/* DMA_RTADDR_REG */
#define DMA_RTADDR_SMT (((u64)1) << 10)
/* CCMD_REG */
#define DMA_CCMD_ICC (((u64)1) << 63)
#define DMA_CCMD_GLOBAL_INVL (((u64)1) << 61)
#define DMA_CCMD_DOMAIN_INVL (((u64)2) << 61)
#define DMA_CCMD_DEVICE_INVL (((u64)3) << 61)
#define DMA_CCMD_FM(m) (((u64)((m) & 0x3)) << 32)
#define DMA_CCMD_MASK_NOBIT 0
#define DMA_CCMD_MASK_1BIT 1
#define DMA_CCMD_MASK_2BIT 2
#define DMA_CCMD_MASK_3BIT 3
#define DMA_CCMD_SID(s) (((u64)((s) & 0xffff)) << 16)
#define DMA_CCMD_DID(d) ((u64)((d) & 0xffff))
/* ECMD_REG */
#define DMA_MAX_NUM_ECMD 256
#define DMA_MAX_NUM_ECMDCAP (DMA_MAX_NUM_ECMD / 64)
#define DMA_ECMD_REG_STEP 8
#define DMA_ECMD_ENABLE 0xf0
#define DMA_ECMD_DISABLE 0xf1
#define DMA_ECMD_FREEZE 0xf4
#define DMA_ECMD_UNFREEZE 0xf5
#define DMA_ECMD_OA_SHIFT 16
#define DMA_ECMD_ECRSP_IP 0x1
#define DMA_ECMD_ECCAP3 3
#define DMA_ECMD_ECCAP3_ECNTS BIT_ULL(48)
#define DMA_ECMD_ECCAP3_DCNTS BIT_ULL(49)
#define DMA_ECMD_ECCAP3_FCNTS BIT_ULL(52)
#define DMA_ECMD_ECCAP3_UFCNTS BIT_ULL(53)
#define DMA_ECMD_ECCAP3_ESSENTIAL (DMA_ECMD_ECCAP3_ECNTS | \
DMA_ECMD_ECCAP3_DCNTS | \
DMA_ECMD_ECCAP3_FCNTS | \
DMA_ECMD_ECCAP3_UFCNTS)
/* FECTL_REG */
#define DMA_FECTL_IM (((u32)1) << 31)
/* FSTS_REG */
#define DMA_FSTS_PFO (1 << 0) /* Primary Fault Overflow */
#define DMA_FSTS_PPF (1 << 1) /* Primary Pending Fault */
#define DMA_FSTS_IQE (1 << 4) /* Invalidation Queue Error */
#define DMA_FSTS_ICE (1 << 5) /* Invalidation Completion Error */
#define DMA_FSTS_ITE (1 << 6) /* Invalidation Time-out Error */
#define DMA_FSTS_PRO (1 << 7) /* Page Request Overflow */
#define dma_fsts_fault_record_index(s) (((s) >> 8) & 0xff)
/* FRCD_REG, 32 bits access */
#define DMA_FRCD_F (((u32)1) << 31)
#define dma_frcd_type(d) ((d >> 30) & 1)
#define dma_frcd_fault_reason(c) (c & 0xff)
#define dma_frcd_source_id(c) (c & 0xffff)
#define dma_frcd_pasid_value(c) (((c) >> 8) & 0xfffff)
#define dma_frcd_pasid_present(c) (((c) >> 31) & 1)
/* low 64 bit */
#define dma_frcd_page_addr(d) (d & (((u64)-1) << PAGE_SHIFT))
/* PRS_REG */
#define DMA_PRS_PPR ((u32)1)
#define DMA_PRS_PRO ((u32)2)
#define DMA_VCS_PAS ((u64)1)
/* PERFINTRSTS_REG */
#define DMA_PERFINTRSTS_PIS ((u32)1)
#define IOMMU_WAIT_OP(iommu, offset, op, cond, sts) \
do { \
cycles_t start_time = get_cycles(); \
while (1) { \
sts = op(iommu->reg + offset); \
if (cond) \
break; \
if (DMAR_OPERATION_TIMEOUT < (get_cycles() - start_time))\
panic("DMAR hardware is malfunctioning\n"); \
cpu_relax(); \
} \
} while (0)
#define QI_LENGTH 256 /* queue length */
enum {
QI_FREE,
QI_IN_USE,
QI_DONE,
QI_ABORT
};
#define QI_CC_TYPE 0x1
#define QI_IOTLB_TYPE 0x2
#define QI_DIOTLB_TYPE 0x3
#define QI_IEC_TYPE 0x4
#define QI_IWD_TYPE 0x5
#define QI_EIOTLB_TYPE 0x6
#define QI_PC_TYPE 0x7
#define QI_DEIOTLB_TYPE 0x8
#define QI_PGRP_RESP_TYPE 0x9
#define QI_PSTRM_RESP_TYPE 0xa
#define QI_IEC_SELECTIVE (((u64)1) << 4)
#define QI_IEC_IIDEX(idx) (((u64)(idx & 0xffff) << 32))
#define QI_IEC_IM(m) (((u64)(m & 0x1f) << 27))
#define QI_IWD_STATUS_DATA(d) (((u64)d) << 32)
#define QI_IWD_STATUS_WRITE (((u64)1) << 5)
#define QI_IWD_FENCE (((u64)1) << 6)
#define QI_IWD_PRQ_DRAIN (((u64)1) << 7)
#define QI_IOTLB_DID(did) (((u64)did) << 16)
#define QI_IOTLB_DR(dr) (((u64)dr) << 7)
#define QI_IOTLB_DW(dw) (((u64)dw) << 6)
#define QI_IOTLB_GRAN(gran) (((u64)gran) >> (DMA_TLB_FLUSH_GRANU_OFFSET-4))
#define QI_IOTLB_ADDR(addr) (((u64)addr) & VTD_PAGE_MASK)
#define QI_IOTLB_IH(ih) (((u64)ih) << 6)
#define QI_IOTLB_AM(am) (((u8)am) & 0x3f)
#define QI_CC_FM(fm) (((u64)fm) << 48)
#define QI_CC_SID(sid) (((u64)sid) << 32)
#define QI_CC_DID(did) (((u64)did) << 16)
#define QI_CC_GRAN(gran) (((u64)gran) >> (DMA_CCMD_INVL_GRANU_OFFSET-4))
#define QI_DEV_IOTLB_SID(sid) ((u64)((sid) & 0xffff) << 32)
#define QI_DEV_IOTLB_QDEP(qdep) (((qdep) & 0x1f) << 16)
#define QI_DEV_IOTLB_ADDR(addr) ((u64)(addr) & VTD_PAGE_MASK)
#define QI_DEV_IOTLB_PFSID(pfsid) (((u64)(pfsid & 0xf) << 12) | \
((u64)((pfsid >> 4) & 0xfff) << 52))
#define QI_DEV_IOTLB_SIZE 1
#define QI_DEV_IOTLB_MAX_INVS 32
#define QI_PC_PASID(pasid) (((u64)pasid) << 32)
#define QI_PC_DID(did) (((u64)did) << 16)
#define QI_PC_GRAN(gran) (((u64)gran) << 4)
/* PASID cache invalidation granu */
#define QI_PC_ALL_PASIDS 0
#define QI_PC_PASID_SEL 1
#define QI_PC_GLOBAL 3
#define QI_EIOTLB_ADDR(addr) ((u64)(addr) & VTD_PAGE_MASK)
#define QI_EIOTLB_IH(ih) (((u64)ih) << 6)
#define QI_EIOTLB_AM(am) (((u64)am) & 0x3f)
#define QI_EIOTLB_PASID(pasid) (((u64)pasid) << 32)
#define QI_EIOTLB_DID(did) (((u64)did) << 16)
#define QI_EIOTLB_GRAN(gran) (((u64)gran) << 4)
/* QI Dev-IOTLB inv granu */
#define QI_DEV_IOTLB_GRAN_ALL 1
#define QI_DEV_IOTLB_GRAN_PASID_SEL 0
#define QI_DEV_EIOTLB_ADDR(a) ((u64)(a) & VTD_PAGE_MASK)
#define QI_DEV_EIOTLB_SIZE (((u64)1) << 11)
#define QI_DEV_EIOTLB_PASID(p) ((u64)((p) & 0xfffff) << 32)
#define QI_DEV_EIOTLB_SID(sid) ((u64)((sid) & 0xffff) << 16)
#define QI_DEV_EIOTLB_QDEP(qd) ((u64)((qd) & 0x1f) << 4)
#define QI_DEV_EIOTLB_PFSID(pfsid) (((u64)(pfsid & 0xf) << 12) | \
((u64)((pfsid >> 4) & 0xfff) << 52))
#define QI_DEV_EIOTLB_MAX_INVS 32
/* Page group response descriptor QW0 */
#define QI_PGRP_PASID_P(p) (((u64)(p)) << 4)
#define QI_PGRP_RESP_CODE(res) (((u64)(res)) << 12)
#define QI_PGRP_DID(rid) (((u64)(rid)) << 16)
#define QI_PGRP_PASID(pasid) (((u64)(pasid)) << 32)
/* Page group response descriptor QW1 */
#define QI_PGRP_LPIG(x) (((u64)(x)) << 2)
#define QI_PGRP_IDX(idx) (((u64)(idx)) << 3)
#define QI_RESP_SUCCESS 0x0
#define QI_RESP_INVALID 0x1
#define QI_RESP_FAILURE 0xf
#define QI_GRAN_NONG_PASID 2
#define QI_GRAN_PSI_PASID 3
#define qi_shift(iommu) (DMAR_IQ_SHIFT + !!ecap_smts((iommu)->ecap))
struct qi_desc {
u64 qw0;
u64 qw1;
u64 qw2;
u64 qw3;
};
struct q_inval {
raw_spinlock_t q_lock;
void *desc; /* invalidation queue */
int *desc_status; /* desc status */
int free_head; /* first free entry */
int free_tail; /* last free entry */
int free_cnt;
};
/* Page Request Queue depth */
#define PRQ_ORDER 4
#define PRQ_RING_MASK ((0x1000 << PRQ_ORDER) - 0x20)
#define PRQ_DEPTH ((0x1000 << PRQ_ORDER) >> 5)
struct dmar_pci_notify_info;
#ifdef CONFIG_IRQ_REMAP
/* 1MB - maximum possible interrupt remapping table size */
#define INTR_REMAP_PAGE_ORDER 8
#define INTR_REMAP_TABLE_REG_SIZE 0xf
#define INTR_REMAP_TABLE_REG_SIZE_MASK 0xf
#define INTR_REMAP_TABLE_ENTRIES 65536
struct irq_domain;
struct ir_table {
struct irte *base;
unsigned long *bitmap;
};
void intel_irq_remap_add_device(struct dmar_pci_notify_info *info);
#else
static inline void
intel_irq_remap_add_device(struct dmar_pci_notify_info *info) { }
#endif
struct iommu_flush {
void (*flush_context)(struct intel_iommu *iommu, u16 did, u16 sid,
u8 fm, u64 type);
void (*flush_iotlb)(struct intel_iommu *iommu, u16 did, u64 addr,
unsigned int size_order, u64 type);
};
enum {
SR_DMAR_FECTL_REG,
SR_DMAR_FEDATA_REG,
SR_DMAR_FEADDR_REG,
SR_DMAR_FEUADDR_REG,
MAX_SR_DMAR_REGS
};
#define VTD_FLAG_TRANS_PRE_ENABLED (1 << 0)
#define VTD_FLAG_IRQ_REMAP_PRE_ENABLED (1 << 1)
#define VTD_FLAG_SVM_CAPABLE (1 << 2)
#define sm_supported(iommu) (intel_iommu_sm && ecap_smts((iommu)->ecap))
#define pasid_supported(iommu) (sm_supported(iommu) && \
ecap_pasid((iommu)->ecap))
#define ssads_supported(iommu) (sm_supported(iommu) && \
ecap_slads((iommu)->ecap))
#define nested_supported(iommu) (sm_supported(iommu) && \
ecap_nest((iommu)->ecap))
struct pasid_entry;
struct pasid_state_entry;
struct page_req_dsc;
/*
* 0: Present
* 1-11: Reserved
* 12-63: Context Ptr (12 - (haw-1))
* 64-127: Reserved
*/
struct root_entry {
u64 lo;
u64 hi;
};
/*
* low 64 bits:
* 0: present
* 1: fault processing disable
* 2-3: translation type
* 12-63: address space root
* high 64 bits:
* 0-2: address width
* 3-6: aval
* 8-23: domain id
*/
struct context_entry {
u64 lo;
u64 hi;
};
struct iommu_domain_info {
struct intel_iommu *iommu;
unsigned int refcnt; /* Refcount of devices per iommu */
u16 did; /* Domain ids per IOMMU. Use u16 since
* domain ids are 16 bit wide according
* to VT-d spec, section 9.3 */
};
/*
* We start simply by using a fixed size for the batched descriptors. This
* size is currently sufficient for our needs. Future improvements could
* involve dynamically allocating the batch buffer based on actual demand,
* allowing us to adjust the batch size for optimal performance in different
* scenarios.
*/
#define QI_MAX_BATCHED_DESC_COUNT 16
struct qi_batch {
struct qi_desc descs[QI_MAX_BATCHED_DESC_COUNT];
unsigned int index;
};
struct dmar_domain {
int nid; /* node id */
struct xarray iommu_array; /* Attached IOMMU array */
u8 iommu_coherency: 1; /* indicate coherency of iommu access */
u8 force_snooping : 1; /* Create IOPTEs with snoop control */
u8 set_pte_snp:1;
u8 use_first_level:1; /* DMA translation for the domain goes
* through the first level page table,
* otherwise, goes through the second
* level.
*/
u8 dirty_tracking:1; /* Dirty tracking is enabled */
u8 nested_parent:1; /* Has other domains nested on it */
u8 has_mappings:1; /* Has mappings configured through
* iommu_map() interface.
*/
spinlock_t lock; /* Protect device tracking lists */
struct list_head devices; /* all devices' list */
struct list_head dev_pasids; /* all attached pasids */
spinlock_t cache_lock; /* Protect the cache tag list */
struct list_head cache_tags; /* Cache tag list */
struct qi_batch *qi_batch; /* Batched QI descriptors */
int iommu_superpage;/* Level of superpages supported:
0 == 4KiB (no superpages), 1 == 2MiB,
2 == 1GiB, 3 == 512GiB, 4 == 1TiB */
union {
/* DMA remapping domain */
struct {
/* virtual address */
struct dma_pte *pgd;
/* max guest address width */
int gaw;
/*
* adjusted guest address width:
* 0: level 2 30-bit
* 1: level 3 39-bit
* 2: level 4 48-bit
* 3: level 5 57-bit
*/
int agaw;
/* maximum mapped address */
u64 max_addr;
/* Protect the s1_domains list */
spinlock_t s1_lock;
/* Track s1_domains nested on this domain */
struct list_head s1_domains;
};
/* Nested user domain */
struct {
/* parent page table which the user domain is nested on */
struct dmar_domain *s2_domain;
/* user page table pointer (in GPA) */
unsigned long s1_pgtbl;
/* page table attributes */
struct iommu_hwpt_vtd_s1 s1_cfg;
/* link to parent domain siblings */
struct list_head s2_link;
};
/* SVA domain */
struct {
struct mmu_notifier notifier;
};
};
struct iommu_domain domain; /* generic domain data structure for
iommu core */
};
/*
* In theory, the VT-d 4.0 spec can support up to 2 ^ 16 counters.
* But in practice, there are only 14 counters for the existing
* platform. Setting the max number of counters to 64 should be good
* enough for a long time. Also, supporting more than 64 counters
* requires more extras, e.g., extra freeze and overflow registers,
* which is not necessary for now.
*/
#define IOMMU_PMU_IDX_MAX 64
struct iommu_pmu {
struct intel_iommu *iommu;
u32 num_cntr; /* Number of counters */
u32 num_eg; /* Number of event group */
u32 cntr_width; /* Counter width */
u32 cntr_stride; /* Counter Stride */
u32 filter; /* Bitmask of filter support */
void __iomem *base; /* the PerfMon base address */
void __iomem *cfg_reg; /* counter configuration base address */
void __iomem *cntr_reg; /* counter 0 address*/
void __iomem *overflow; /* overflow status register */
u64 *evcap; /* Indicates all supported events */
u32 **cntr_evcap; /* Supported events of each counter. */
struct pmu pmu;
DECLARE_BITMAP(used_mask, IOMMU_PMU_IDX_MAX);
struct perf_event *event_list[IOMMU_PMU_IDX_MAX];
unsigned char irq_name[16];
};
#define IOMMU_IRQ_ID_OFFSET_PRQ (DMAR_UNITS_SUPPORTED)
#define IOMMU_IRQ_ID_OFFSET_PERF (2 * DMAR_UNITS_SUPPORTED)
struct intel_iommu {
void __iomem *reg; /* Pointer to hardware regs, virtual addr */
u64 reg_phys; /* physical address of hw register set */
u64 reg_size; /* size of hw register set */
u64 cap;
u64 ecap;
u64 vccap;
u64 ecmdcap[DMA_MAX_NUM_ECMDCAP];
u32 gcmd; /* Holds TE, EAFL. Don't need SRTP, SFL, WBF */
raw_spinlock_t register_lock; /* protect register handling */
int seq_id; /* sequence id of the iommu */
int agaw; /* agaw of this iommu */
int msagaw; /* max sagaw of this iommu */
unsigned int irq, pr_irq, perf_irq;
u16 segment; /* PCI segment# */
unsigned char name[13]; /* Device Name */
#ifdef CONFIG_INTEL_IOMMU
unsigned long *domain_ids; /* bitmap of domains */
unsigned long *copied_tables; /* bitmap of copied tables */
spinlock_t lock; /* protect context, domain ids */
struct root_entry *root_entry; /* virtual address */
struct iommu_flush flush;
#endif
#ifdef CONFIG_INTEL_IOMMU_SVM
struct page_req_dsc *prq;
unsigned char prq_name[16]; /* Name for PRQ interrupt */
unsigned long prq_seq_number;
struct completion prq_complete;
#endif
struct iopf_queue *iopf_queue;
unsigned char iopfq_name[16];
/* Synchronization between fault report and iommu device release. */
struct mutex iopf_lock;
struct q_inval *qi; /* Queued invalidation info */
u32 iommu_state[MAX_SR_DMAR_REGS]; /* Store iommu states between suspend and resume.*/
/* rb tree for all probed devices */
struct rb_root device_rbtree;
/* protect the device_rbtree */
spinlock_t device_rbtree_lock;
#ifdef CONFIG_IRQ_REMAP
struct ir_table *ir_table; /* Interrupt remapping info */
struct irq_domain *ir_domain;
#endif
struct iommu_device iommu; /* IOMMU core code handle */
int node;
u32 flags; /* Software defined flags */
struct dmar_drhd_unit *drhd;
void *perf_statistic;
struct iommu_pmu *pmu;
};
/* PCI domain-device relationship */
struct device_domain_info {
struct list_head link; /* link to domain siblings */
u32 segment; /* PCI segment number */
u8 bus; /* PCI bus number */
u8 devfn; /* PCI devfn number */
u16 pfsid; /* SRIOV physical function source ID */
u8 pasid_supported:3;
u8 pasid_enabled:1;
u8 pri_supported:1;
u8 pri_enabled:1;
u8 ats_supported:1;
u8 ats_enabled:1;
u8 dtlb_extra_inval:1; /* Quirk for devices need extra flush */
u8 ats_qdep;
struct device *dev; /* it's NULL for PCIe-to-PCI bridge */
struct intel_iommu *iommu; /* IOMMU used by this device */
struct dmar_domain *domain; /* pointer to domain */
struct pasid_table *pasid_table; /* pasid table */
/* device tracking node(lookup by PCI RID) */
struct rb_node node;
#ifdef CONFIG_INTEL_IOMMU_DEBUGFS
struct dentry *debugfs_dentry; /* pointer to device directory dentry */
#endif
};
struct dev_pasid_info {
struct list_head link_domain; /* link to domain siblings */
struct device *dev;
ioasid_t pasid;
#ifdef CONFIG_INTEL_IOMMU_DEBUGFS
struct dentry *debugfs_dentry; /* pointer to pasid directory dentry */
#endif
};
static inline void __iommu_flush_cache(
struct intel_iommu *iommu, void *addr, int size)
{
if (!ecap_coherent(iommu->ecap))
clflush_cache_range(addr, size);
}
/* Convert generic struct iommu_domain to private struct dmar_domain */
static inline struct dmar_domain *to_dmar_domain(struct iommu_domain *dom)
{
return container_of(dom, struct dmar_domain, domain);
}
/* Retrieve the domain ID which has allocated to the domain */
static inline u16
domain_id_iommu(struct dmar_domain *domain, struct intel_iommu *iommu)
{
struct iommu_domain_info *info =
xa_load(&domain->iommu_array, iommu->seq_id);
return info->did;
}
/*
* 0: readable
* 1: writable
* 2-6: reserved
* 7: super page
* 8-10: available
* 11: snoop behavior
* 12-63: Host physical address
*/
struct dma_pte {
u64 val;
};
static inline void dma_clear_pte(struct dma_pte *pte)
{
pte->val = 0;
}
static inline u64 dma_pte_addr(struct dma_pte *pte)
{
#ifdef CONFIG_64BIT
return pte->val & VTD_PAGE_MASK;
#else
/* Must have a full atomic 64-bit read */
return __cmpxchg64(&pte->val, 0ULL, 0ULL) & VTD_PAGE_MASK;
#endif
}
static inline bool dma_pte_present(struct dma_pte *pte)
{
return (pte->val & 3) != 0;
}
static inline bool dma_sl_pte_test_and_clear_dirty(struct dma_pte *pte,
unsigned long flags)
{
if (flags & IOMMU_DIRTY_NO_CLEAR)
return (pte->val & DMA_SL_PTE_DIRTY) != 0;
return test_and_clear_bit(DMA_SL_PTE_DIRTY_BIT,
(unsigned long *)&pte->val);
}
static inline bool dma_pte_superpage(struct dma_pte *pte)
{
return (pte->val & DMA_PTE_LARGE_PAGE);
}
static inline bool first_pte_in_page(struct dma_pte *pte)
{
return IS_ALIGNED((unsigned long)pte, VTD_PAGE_SIZE);
}
static inline int nr_pte_to_next_page(struct dma_pte *pte)
{
return first_pte_in_page(pte) ? BIT_ULL(VTD_STRIDE_SHIFT) :
(struct dma_pte *)ALIGN((unsigned long)pte, VTD_PAGE_SIZE) - pte;
}
static inline bool context_present(struct context_entry *context)
{
return (context->lo & 1);
}
#define LEVEL_STRIDE (9)
#define LEVEL_MASK (((u64)1 << LEVEL_STRIDE) - 1)
#define MAX_AGAW_WIDTH (64)
#define MAX_AGAW_PFN_WIDTH (MAX_AGAW_WIDTH - VTD_PAGE_SHIFT)
static inline int agaw_to_level(int agaw)
{
return agaw + 2;
}
static inline int agaw_to_width(int agaw)
{
return min_t(int, 30 + agaw * LEVEL_STRIDE, MAX_AGAW_WIDTH);
}
static inline int width_to_agaw(int width)
{
return DIV_ROUND_UP(width - 30, LEVEL_STRIDE);
}
static inline unsigned int level_to_offset_bits(int level)
{
return (level - 1) * LEVEL_STRIDE;
}
static inline int pfn_level_offset(u64 pfn, int level)
{
return (pfn >> level_to_offset_bits(level)) & LEVEL_MASK;
}
static inline u64 level_mask(int level)
{
return -1ULL << level_to_offset_bits(level);
}
static inline u64 level_size(int level)
{
return 1ULL << level_to_offset_bits(level);
}
static inline u64 align_to_level(u64 pfn, int level)
{
return (pfn + level_size(level) - 1) & level_mask(level);
}
static inline unsigned long lvl_to_nr_pages(unsigned int lvl)
{
return 1UL << min_t(int, (lvl - 1) * LEVEL_STRIDE, MAX_AGAW_PFN_WIDTH);
}
/* VT-d pages must always be _smaller_ than MM pages. Otherwise things
are never going to work. */
static inline unsigned long mm_to_dma_pfn_start(unsigned long mm_pfn)
{
return mm_pfn << (PAGE_SHIFT - VTD_PAGE_SHIFT);
}
static inline unsigned long mm_to_dma_pfn_end(unsigned long mm_pfn)
{
return ((mm_pfn + 1) << (PAGE_SHIFT - VTD_PAGE_SHIFT)) - 1;
}
static inline unsigned long page_to_dma_pfn(struct page *pg)
{
return mm_to_dma_pfn_start(page_to_pfn(pg));
}
static inline unsigned long virt_to_dma_pfn(void *p)
{
return page_to_dma_pfn(virt_to_page(p));
}
static inline void context_set_present(struct context_entry *context)
{
context->lo |= 1;
}
static inline void context_set_fault_enable(struct context_entry *context)
{
context->lo &= (((u64)-1) << 2) | 1;
}
static inline void context_set_translation_type(struct context_entry *context,
unsigned long value)
{
context->lo &= (((u64)-1) << 4) | 3;
context->lo |= (value & 3) << 2;
}
static inline void context_set_address_root(struct context_entry *context,
unsigned long value)
{
context->lo &= ~VTD_PAGE_MASK;
context->lo |= value & VTD_PAGE_MASK;
}
static inline void context_set_address_width(struct context_entry *context,
unsigned long value)
{
context->hi |= value & 7;
}
static inline void context_set_domain_id(struct context_entry *context,
unsigned long value)
{
context->hi |= (value & ((1 << 16) - 1)) << 8;
}
static inline void context_set_pasid(struct context_entry *context)
{
context->lo |= CONTEXT_PASIDE;
}
static inline int context_domain_id(struct context_entry *c)
{
return((c->hi >> 8) & 0xffff);
}
static inline void context_clear_entry(struct context_entry *context)
{
context->lo = 0;
context->hi = 0;
}
#ifdef CONFIG_INTEL_IOMMU
static inline bool context_copied(struct intel_iommu *iommu, u8 bus, u8 devfn)
{
if (!iommu->copied_tables)
return false;
return test_bit(((long)bus << 8) | devfn, iommu->copied_tables);
}
static inline void
set_context_copied(struct intel_iommu *iommu, u8 bus, u8 devfn)
{
set_bit(((long)bus << 8) | devfn, iommu->copied_tables);
}
static inline void
clear_context_copied(struct intel_iommu *iommu, u8 bus, u8 devfn)
{
clear_bit(((long)bus << 8) | devfn, iommu->copied_tables);
}
#endif /* CONFIG_INTEL_IOMMU */
/*
* Set the RID_PASID field of a scalable mode context entry. The
* IOMMU hardware will use the PASID value set in this field for
* DMA translations of DMA requests without PASID.
*/
static inline void
context_set_sm_rid2pasid(struct context_entry *context, unsigned long pasid)
{
context->hi |= pasid & ((1 << 20) - 1);
}
/*
* Set the DTE(Device-TLB Enable) field of a scalable mode context
* entry.
*/
static inline void context_set_sm_dte(struct context_entry *context)
{
context->lo |= BIT_ULL(2);
}
/*
* Set the PRE(Page Request Enable) field of a scalable mode context
* entry.
*/
static inline void context_set_sm_pre(struct context_entry *context)
{
context->lo |= BIT_ULL(4);
}
/*
* Clear the PRE(Page Request Enable) field of a scalable mode context
* entry.
*/
static inline void context_clear_sm_pre(struct context_entry *context)
{
context->lo &= ~BIT_ULL(4);
}
/* Returns a number of VTD pages, but aligned to MM page size */
static inline unsigned long aligned_nrpages(unsigned long host_addr, size_t size)
{
host_addr &= ~PAGE_MASK;
return PAGE_ALIGN(host_addr + size) >> VTD_PAGE_SHIFT;
}
/* Return a size from number of VTD pages. */
static inline unsigned long nrpages_to_size(unsigned long npages)
{
return npages << VTD_PAGE_SHIFT;
}
static inline void qi_desc_iotlb(struct intel_iommu *iommu, u16 did, u64 addr,
unsigned int size_order, u64 type,
struct qi_desc *desc)
{
u8 dw = 0, dr = 0;
int ih = 0;
if (cap_write_drain(iommu->cap))
dw = 1;
if (cap_read_drain(iommu->cap))
dr = 1;
desc->qw0 = QI_IOTLB_DID(did) | QI_IOTLB_DR(dr) | QI_IOTLB_DW(dw)
| QI_IOTLB_GRAN(type) | QI_IOTLB_TYPE;
desc->qw1 = QI_IOTLB_ADDR(addr) | QI_IOTLB_IH(ih)
| QI_IOTLB_AM(size_order);
desc->qw2 = 0;
desc->qw3 = 0;
}
static inline void qi_desc_dev_iotlb(u16 sid, u16 pfsid, u16 qdep, u64 addr,
unsigned int mask, struct qi_desc *desc)
{
if (mask) {
addr |= (1ULL << (VTD_PAGE_SHIFT + mask - 1)) - 1;
desc->qw1 = QI_DEV_IOTLB_ADDR(addr) | QI_DEV_IOTLB_SIZE;
} else {
desc->qw1 = QI_DEV_IOTLB_ADDR(addr);
}
if (qdep >= QI_DEV_IOTLB_MAX_INVS)
qdep = 0;
desc->qw0 = QI_DEV_IOTLB_SID(sid) | QI_DEV_IOTLB_QDEP(qdep) |
QI_DIOTLB_TYPE | QI_DEV_IOTLB_PFSID(pfsid);
desc->qw2 = 0;
desc->qw3 = 0;
}
static inline void qi_desc_piotlb(u16 did, u32 pasid, u64 addr,
unsigned long npages, bool ih,
struct qi_desc *desc)
{
if (npages == -1) {
desc->qw0 = QI_EIOTLB_PASID(pasid) |
QI_EIOTLB_DID(did) |
QI_EIOTLB_GRAN(QI_GRAN_NONG_PASID) |
QI_EIOTLB_TYPE;
desc->qw1 = 0;
} else {
int mask = ilog2(__roundup_pow_of_two(npages));
unsigned long align = (1ULL << (VTD_PAGE_SHIFT + mask));
if (WARN_ON_ONCE(!IS_ALIGNED(addr, align)))
addr = ALIGN_DOWN(addr, align);
desc->qw0 = QI_EIOTLB_PASID(pasid) |
QI_EIOTLB_DID(did) |
QI_EIOTLB_GRAN(QI_GRAN_PSI_PASID) |
QI_EIOTLB_TYPE;
desc->qw1 = QI_EIOTLB_ADDR(addr) |
QI_EIOTLB_IH(ih) |
QI_EIOTLB_AM(mask);
}
}
static inline void qi_desc_dev_iotlb_pasid(u16 sid, u16 pfsid, u32 pasid,
u16 qdep, u64 addr,
unsigned int size_order,
struct qi_desc *desc)
{
unsigned long mask = 1UL << (VTD_PAGE_SHIFT + size_order - 1);
desc->qw0 = QI_DEV_EIOTLB_PASID(pasid) | QI_DEV_EIOTLB_SID(sid) |
QI_DEV_EIOTLB_QDEP(qdep) | QI_DEIOTLB_TYPE |
QI_DEV_IOTLB_PFSID(pfsid);
/*
* If S bit is 0, we only flush a single page. If S bit is set,
* The least significant zero bit indicates the invalidation address
* range. VT-d spec 6.5.2.6.
* e.g. address bit 12[0] indicates 8KB, 13[0] indicates 16KB.
* size order = 0 is PAGE_SIZE 4KB
* Max Invs Pending (MIP) is set to 0 for now until we have DIT in
* ECAP.
*/
if (!IS_ALIGNED(addr, VTD_PAGE_SIZE << size_order))
pr_warn_ratelimited("Invalidate non-aligned address %llx, order %d\n",
addr, size_order);
/* Take page address */
desc->qw1 = QI_DEV_EIOTLB_ADDR(addr);
if (size_order) {
/*
* Existing 0s in address below size_order may be the least
* significant bit, we must set them to 1s to avoid having
* smaller size than desired.
*/
desc->qw1 |= GENMASK_ULL(size_order + VTD_PAGE_SHIFT - 1,
VTD_PAGE_SHIFT);
/* Clear size_order bit to indicate size */
desc->qw1 &= ~mask;
/* Set the S bit to indicate flushing more than 1 page */
desc->qw1 |= QI_DEV_EIOTLB_SIZE;
}
}
/* Convert value to context PASID directory size field coding. */
#define context_pdts(pds) (((pds) & 0x7) << 9)
struct dmar_drhd_unit *dmar_find_matched_drhd_unit(struct pci_dev *dev);
int dmar_enable_qi(struct intel_iommu *iommu);
void dmar_disable_qi(struct intel_iommu *iommu);
int dmar_reenable_qi(struct intel_iommu *iommu);
void qi_global_iec(struct intel_iommu *iommu);
void qi_flush_context(struct intel_iommu *iommu, u16 did,
u16 sid, u8 fm, u64 type);
void qi_flush_iotlb(struct intel_iommu *iommu, u16 did, u64 addr,
unsigned int size_order, u64 type);
void qi_flush_dev_iotlb(struct intel_iommu *iommu, u16 sid, u16 pfsid,
u16 qdep, u64 addr, unsigned mask);
void qi_flush_piotlb(struct intel_iommu *iommu, u16 did, u32 pasid, u64 addr,
unsigned long npages, bool ih);
void qi_flush_dev_iotlb_pasid(struct intel_iommu *iommu, u16 sid, u16 pfsid,
u32 pasid, u16 qdep, u64 addr,
unsigned int size_order);
void quirk_extra_dev_tlb_flush(struct device_domain_info *info,
unsigned long address, unsigned long pages,
u32 pasid, u16 qdep);
void qi_flush_pasid_cache(struct intel_iommu *iommu, u16 did, u64 granu,
u32 pasid);
int qi_submit_sync(struct intel_iommu *iommu, struct qi_desc *desc,
unsigned int count, unsigned long options);
void __iommu_flush_iotlb(struct intel_iommu *iommu, u16 did, u64 addr,
unsigned int size_order, u64 type);
/*
* Options used in qi_submit_sync:
* QI_OPT_WAIT_DRAIN - Wait for PRQ drain completion, spec 6.5.2.8.
*/
#define QI_OPT_WAIT_DRAIN BIT(0)
int domain_attach_iommu(struct dmar_domain *domain, struct intel_iommu *iommu);
void domain_detach_iommu(struct dmar_domain *domain, struct intel_iommu *iommu);
void device_block_translation(struct device *dev);
int prepare_domain_attach_device(struct iommu_domain *domain,
struct device *dev);
void domain_update_iommu_cap(struct dmar_domain *domain);
int dmar_ir_support(void);
void iommu_flush_write_buffer(struct intel_iommu *iommu);
struct iommu_domain *intel_nested_domain_alloc(struct iommu_domain *parent,
const struct iommu_user_data *user_data);
struct device *device_rbtree_find(struct intel_iommu *iommu, u16 rid);
enum cache_tag_type {
CACHE_TAG_IOTLB,
CACHE_TAG_DEVTLB,
CACHE_TAG_NESTING_IOTLB,
CACHE_TAG_NESTING_DEVTLB,
};
struct cache_tag {
struct list_head node;
enum cache_tag_type type;
struct intel_iommu *iommu;
/*
* The @dev field represents the location of the cache. For IOTLB, it
* resides on the IOMMU hardware. @dev stores the device pointer to
* the IOMMU hardware. For DevTLB, it locates in the PCIe endpoint.
* @dev stores the device pointer to that endpoint.
*/
struct device *dev;
u16 domain_id;
ioasid_t pasid;
unsigned int users;
};
int cache_tag_assign_domain(struct dmar_domain *domain,
struct device *dev, ioasid_t pasid);
void cache_tag_unassign_domain(struct dmar_domain *domain,
struct device *dev, ioasid_t pasid);
void cache_tag_flush_range(struct dmar_domain *domain, unsigned long start,
unsigned long end, int ih);
void cache_tag_flush_all(struct dmar_domain *domain);
void cache_tag_flush_range_np(struct dmar_domain *domain, unsigned long start,
unsigned long end);
void intel_context_flush_present(struct device_domain_info *info,
struct context_entry *context,
u16 did, bool affect_domains);
#ifdef CONFIG_INTEL_IOMMU_SVM
void intel_svm_check(struct intel_iommu *iommu);
int intel_svm_enable_prq(struct intel_iommu *iommu);
int intel_svm_finish_prq(struct intel_iommu *iommu);
void intel_svm_page_response(struct device *dev, struct iopf_fault *evt,
struct iommu_page_response *msg);
struct iommu_domain *intel_svm_domain_alloc(struct device *dev,
struct mm_struct *mm);
void intel_drain_pasid_prq(struct device *dev, u32 pasid);
#else
static inline void intel_svm_check(struct intel_iommu *iommu) {}
static inline void intel_drain_pasid_prq(struct device *dev, u32 pasid) {}
static inline struct iommu_domain *intel_svm_domain_alloc(struct device *dev,
struct mm_struct *mm)
{
return ERR_PTR(-ENODEV);
}
#endif
#ifdef CONFIG_INTEL_IOMMU_DEBUGFS
void intel_iommu_debugfs_init(void);
void intel_iommu_debugfs_create_dev(struct device_domain_info *info);
void intel_iommu_debugfs_remove_dev(struct device_domain_info *info);
void intel_iommu_debugfs_create_dev_pasid(struct dev_pasid_info *dev_pasid);
void intel_iommu_debugfs_remove_dev_pasid(struct dev_pasid_info *dev_pasid);
#else
static inline void intel_iommu_debugfs_init(void) {}
static inline void intel_iommu_debugfs_create_dev(struct device_domain_info *info) {}
static inline void intel_iommu_debugfs_remove_dev(struct device_domain_info *info) {}
static inline void intel_iommu_debugfs_create_dev_pasid(struct dev_pasid_info *dev_pasid) {}
static inline void intel_iommu_debugfs_remove_dev_pasid(struct dev_pasid_info *dev_pasid) {}
#endif /* CONFIG_INTEL_IOMMU_DEBUGFS */
extern const struct attribute_group *intel_iommu_groups[];
struct context_entry *iommu_context_addr(struct intel_iommu *iommu, u8 bus,
u8 devfn, int alloc);
extern const struct iommu_ops intel_iommu_ops;
#ifdef CONFIG_INTEL_IOMMU
extern int intel_iommu_sm;
int iommu_calculate_agaw(struct intel_iommu *iommu);
int iommu_calculate_max_sagaw(struct intel_iommu *iommu);
int ecmd_submit_sync(struct intel_iommu *iommu, u8 ecmd, u64 oa, u64 ob);
static inline bool ecmd_has_pmu_essential(struct intel_iommu *iommu)
{
return (iommu->ecmdcap[DMA_ECMD_ECCAP3] & DMA_ECMD_ECCAP3_ESSENTIAL) ==
DMA_ECMD_ECCAP3_ESSENTIAL;
}
extern int dmar_disabled;
extern int intel_iommu_enabled;
#else
static inline int iommu_calculate_agaw(struct intel_iommu *iommu)
{
return 0;
}
static inline int iommu_calculate_max_sagaw(struct intel_iommu *iommu)
{
return 0;
}
#define dmar_disabled (1)
#define intel_iommu_enabled (0)
#define intel_iommu_sm (0)
#endif
static inline const char *decode_prq_descriptor(char *str, size_t size,
u64 dw0, u64 dw1, u64 dw2, u64 dw3)
{
char *buf = str;
int bytes;
bytes = snprintf(buf, size,
"rid=0x%llx addr=0x%llx %c%c%c%c%c pasid=0x%llx index=0x%llx",
FIELD_GET(GENMASK_ULL(31, 16), dw0),
FIELD_GET(GENMASK_ULL(63, 12), dw1),
dw1 & BIT_ULL(0) ? 'r' : '-',
dw1 & BIT_ULL(1) ? 'w' : '-',
dw0 & BIT_ULL(52) ? 'x' : '-',
dw0 & BIT_ULL(53) ? 'p' : '-',
dw1 & BIT_ULL(2) ? 'l' : '-',
FIELD_GET(GENMASK_ULL(51, 32), dw0),
FIELD_GET(GENMASK_ULL(11, 3), dw1));
/* Private Data */
if (dw0 & BIT_ULL(9)) {
size -= bytes;
buf += bytes;
snprintf(buf, size, " private=0x%llx/0x%llx\n", dw2, dw3);
}
return str;
}
#endif