// SPDX-License-Identifier: GPL-2.0
/*
* (C) COPYRIGHT 2018 ARM Limited. All rights reserved.
* Author: James.Qian.Wang <[email protected]>
*
*/
#include <drm/drm_blend.h>
#include <drm/drm_print.h>
#include "d71_dev.h"
#include "malidp_io.h"
static u64 get_lpu_event(struct d71_pipeline *d71_pipeline)
{
u32 __iomem *reg = d71_pipeline->lpu_addr;
u32 status, raw_status;
u64 evts = 0ULL;
raw_status = malidp_read32(reg, BLK_IRQ_RAW_STATUS);
if (raw_status & LPU_IRQ_IBSY)
evts |= KOMEDA_EVENT_IBSY;
if (raw_status & LPU_IRQ_EOW)
evts |= KOMEDA_EVENT_EOW;
if (raw_status & LPU_IRQ_OVR)
evts |= KOMEDA_EVENT_OVR;
if (raw_status & (LPU_IRQ_ERR | LPU_IRQ_IBSY | LPU_IRQ_OVR)) {
u32 restore = 0, tbu_status;
/* Check error of LPU status */
status = malidp_read32(reg, BLK_STATUS);
if (status & LPU_STATUS_AXIE) {
restore |= LPU_STATUS_AXIE;
evts |= KOMEDA_ERR_AXIE;
}
if (status & LPU_STATUS_ACE0) {
restore |= LPU_STATUS_ACE0;
evts |= KOMEDA_ERR_ACE0;
}
if (status & LPU_STATUS_ACE1) {
restore |= LPU_STATUS_ACE1;
evts |= KOMEDA_ERR_ACE1;
}
if (status & LPU_STATUS_ACE2) {
restore |= LPU_STATUS_ACE2;
evts |= KOMEDA_ERR_ACE2;
}
if (status & LPU_STATUS_ACE3) {
restore |= LPU_STATUS_ACE3;
evts |= KOMEDA_ERR_ACE3;
}
if (status & LPU_STATUS_FEMPTY) {
restore |= LPU_STATUS_FEMPTY;
evts |= KOMEDA_EVENT_EMPTY;
}
if (status & LPU_STATUS_FFULL) {
restore |= LPU_STATUS_FFULL;
evts |= KOMEDA_EVENT_FULL;
}
if (restore != 0)
malidp_write32_mask(reg, BLK_STATUS, restore, 0);
restore = 0;
/* Check errors of TBU status */
tbu_status = malidp_read32(reg, LPU_TBU_STATUS);
if (tbu_status & LPU_TBU_STATUS_TCF) {
restore |= LPU_TBU_STATUS_TCF;
evts |= KOMEDA_ERR_TCF;
}
if (tbu_status & LPU_TBU_STATUS_TTNG) {
restore |= LPU_TBU_STATUS_TTNG;
evts |= KOMEDA_ERR_TTNG;
}
if (tbu_status & LPU_TBU_STATUS_TITR) {
restore |= LPU_TBU_STATUS_TITR;
evts |= KOMEDA_ERR_TITR;
}
if (tbu_status & LPU_TBU_STATUS_TEMR) {
restore |= LPU_TBU_STATUS_TEMR;
evts |= KOMEDA_ERR_TEMR;
}
if (tbu_status & LPU_TBU_STATUS_TTF) {
restore |= LPU_TBU_STATUS_TTF;
evts |= KOMEDA_ERR_TTF;
}
if (restore != 0)
malidp_write32_mask(reg, LPU_TBU_STATUS, restore, 0);
}
malidp_write32(reg, BLK_IRQ_CLEAR, raw_status);
return evts;
}
static u64 get_cu_event(struct d71_pipeline *d71_pipeline)
{
u32 __iomem *reg = d71_pipeline->cu_addr;
u32 status, raw_status;
u64 evts = 0ULL;
raw_status = malidp_read32(reg, BLK_IRQ_RAW_STATUS);
if (raw_status & CU_IRQ_OVR)
evts |= KOMEDA_EVENT_OVR;
if (raw_status & (CU_IRQ_ERR | CU_IRQ_OVR)) {
status = malidp_read32(reg, BLK_STATUS) & 0x7FFFFFFF;
if (status & CU_STATUS_CPE)
evts |= KOMEDA_ERR_CPE;
if (status & CU_STATUS_ZME)
evts |= KOMEDA_ERR_ZME;
if (status & CU_STATUS_CFGE)
evts |= KOMEDA_ERR_CFGE;
if (status)
malidp_write32_mask(reg, BLK_STATUS, status, 0);
}
malidp_write32(reg, BLK_IRQ_CLEAR, raw_status);
return evts;
}
static u64 get_dou_event(struct d71_pipeline *d71_pipeline)
{
u32 __iomem *reg = d71_pipeline->dou_addr;
u32 status, raw_status;
u64 evts = 0ULL;
raw_status = malidp_read32(reg, BLK_IRQ_RAW_STATUS);
if (raw_status & DOU_IRQ_PL0)
evts |= KOMEDA_EVENT_VSYNC;
if (raw_status & DOU_IRQ_UND)
evts |= KOMEDA_EVENT_URUN;
if (raw_status & (DOU_IRQ_ERR | DOU_IRQ_UND)) {
u32 restore = 0;
status = malidp_read32(reg, BLK_STATUS);
if (status & DOU_STATUS_DRIFTTO) {
restore |= DOU_STATUS_DRIFTTO;
evts |= KOMEDA_ERR_DRIFTTO;
}
if (status & DOU_STATUS_FRAMETO) {
restore |= DOU_STATUS_FRAMETO;
evts |= KOMEDA_ERR_FRAMETO;
}
if (status & DOU_STATUS_TETO) {
restore |= DOU_STATUS_TETO;
evts |= KOMEDA_ERR_TETO;
}
if (status & DOU_STATUS_CSCE) {
restore |= DOU_STATUS_CSCE;
evts |= KOMEDA_ERR_CSCE;
}
if (restore != 0)
malidp_write32_mask(reg, BLK_STATUS, restore, 0);
}
malidp_write32(reg, BLK_IRQ_CLEAR, raw_status);
return evts;
}
static u64 get_pipeline_event(struct d71_pipeline *d71_pipeline, u32 gcu_status)
{
u32 evts = 0ULL;
if (gcu_status & (GLB_IRQ_STATUS_LPU0 | GLB_IRQ_STATUS_LPU1))
evts |= get_lpu_event(d71_pipeline);
if (gcu_status & (GLB_IRQ_STATUS_CU0 | GLB_IRQ_STATUS_CU1))
evts |= get_cu_event(d71_pipeline);
if (gcu_status & (GLB_IRQ_STATUS_DOU0 | GLB_IRQ_STATUS_DOU1))
evts |= get_dou_event(d71_pipeline);
return evts;
}
static irqreturn_t
d71_irq_handler(struct komeda_dev *mdev, struct komeda_events *evts)
{
struct d71_dev *d71 = mdev->chip_data;
u32 status, gcu_status, raw_status;
gcu_status = malidp_read32(d71->gcu_addr, GLB_IRQ_STATUS);
if (gcu_status & GLB_IRQ_STATUS_GCU) {
raw_status = malidp_read32(d71->gcu_addr, BLK_IRQ_RAW_STATUS);
if (raw_status & GCU_IRQ_CVAL0)
evts->pipes[0] |= KOMEDA_EVENT_FLIP;
if (raw_status & GCU_IRQ_CVAL1)
evts->pipes[1] |= KOMEDA_EVENT_FLIP;
if (raw_status & GCU_IRQ_ERR) {
status = malidp_read32(d71->gcu_addr, BLK_STATUS);
if (status & GCU_STATUS_MERR) {
evts->global |= KOMEDA_ERR_MERR;
malidp_write32_mask(d71->gcu_addr, BLK_STATUS,
GCU_STATUS_MERR, 0);
}
}
malidp_write32(d71->gcu_addr, BLK_IRQ_CLEAR, raw_status);
}
if (gcu_status & GLB_IRQ_STATUS_PIPE0)
evts->pipes[0] |= get_pipeline_event(d71->pipes[0], gcu_status);
if (gcu_status & GLB_IRQ_STATUS_PIPE1)
evts->pipes[1] |= get_pipeline_event(d71->pipes[1], gcu_status);
return IRQ_RETVAL(gcu_status);
}
#define ENABLED_GCU_IRQS (GCU_IRQ_CVAL0 | GCU_IRQ_CVAL1 | \
GCU_IRQ_MODE | GCU_IRQ_ERR)
#define ENABLED_LPU_IRQS (LPU_IRQ_IBSY | LPU_IRQ_ERR | LPU_IRQ_EOW)
#define ENABLED_CU_IRQS (CU_IRQ_OVR | CU_IRQ_ERR)
#define ENABLED_DOU_IRQS (DOU_IRQ_UND | DOU_IRQ_ERR)
static int d71_enable_irq(struct komeda_dev *mdev)
{
struct d71_dev *d71 = mdev->chip_data;
struct d71_pipeline *pipe;
u32 i;
malidp_write32_mask(d71->gcu_addr, BLK_IRQ_MASK,
ENABLED_GCU_IRQS, ENABLED_GCU_IRQS);
for (i = 0; i < d71->num_pipelines; i++) {
pipe = d71->pipes[i];
malidp_write32_mask(pipe->cu_addr, BLK_IRQ_MASK,
ENABLED_CU_IRQS, ENABLED_CU_IRQS);
malidp_write32_mask(pipe->lpu_addr, BLK_IRQ_MASK,
ENABLED_LPU_IRQS, ENABLED_LPU_IRQS);
malidp_write32_mask(pipe->dou_addr, BLK_IRQ_MASK,
ENABLED_DOU_IRQS, ENABLED_DOU_IRQS);
}
return 0;
}
static int d71_disable_irq(struct komeda_dev *mdev)
{
struct d71_dev *d71 = mdev->chip_data;
struct d71_pipeline *pipe;
u32 i;
malidp_write32_mask(d71->gcu_addr, BLK_IRQ_MASK, ENABLED_GCU_IRQS, 0);
for (i = 0; i < d71->num_pipelines; i++) {
pipe = d71->pipes[i];
malidp_write32_mask(pipe->cu_addr, BLK_IRQ_MASK,
ENABLED_CU_IRQS, 0);
malidp_write32_mask(pipe->lpu_addr, BLK_IRQ_MASK,
ENABLED_LPU_IRQS, 0);
malidp_write32_mask(pipe->dou_addr, BLK_IRQ_MASK,
ENABLED_DOU_IRQS, 0);
}
return 0;
}
static void d71_on_off_vblank(struct komeda_dev *mdev, int master_pipe, bool on)
{
struct d71_dev *d71 = mdev->chip_data;
struct d71_pipeline *pipe = d71->pipes[master_pipe];
malidp_write32_mask(pipe->dou_addr, BLK_IRQ_MASK,
DOU_IRQ_PL0, on ? DOU_IRQ_PL0 : 0);
}
static int to_d71_opmode(int core_mode)
{
switch (core_mode) {
case KOMEDA_MODE_DISP0:
return DO0_ACTIVE_MODE;
case KOMEDA_MODE_DISP1:
return DO1_ACTIVE_MODE;
case KOMEDA_MODE_DUAL_DISP:
return DO01_ACTIVE_MODE;
case KOMEDA_MODE_INACTIVE:
return INACTIVE_MODE;
default:
WARN(1, "Unknown operation mode");
return INACTIVE_MODE;
}
}
static int d71_change_opmode(struct komeda_dev *mdev, int new_mode)
{
struct d71_dev *d71 = mdev->chip_data;
u32 opmode = to_d71_opmode(new_mode);
int ret;
malidp_write32_mask(d71->gcu_addr, BLK_CONTROL, 0x7, opmode);
ret = dp_wait_cond(((malidp_read32(d71->gcu_addr, BLK_CONTROL) & 0x7) == opmode),
100, 1000, 10000);
return ret;
}
static void d71_flush(struct komeda_dev *mdev,
int master_pipe, u32 active_pipes)
{
struct d71_dev *d71 = mdev->chip_data;
u32 reg_offset = (master_pipe == 0) ?
GCU_CONFIG_VALID0 : GCU_CONFIG_VALID1;
malidp_write32(d71->gcu_addr, reg_offset, GCU_CONFIG_CVAL);
}
static int d71_reset(struct d71_dev *d71)
{
u32 __iomem *gcu = d71->gcu_addr;
int ret;
malidp_write32(gcu, BLK_CONTROL, GCU_CONTROL_SRST);
ret = dp_wait_cond(!(malidp_read32(gcu, BLK_CONTROL) & GCU_CONTROL_SRST),
100, 1000, 10000);
return ret;
}
void d71_read_block_header(u32 __iomem *reg, struct block_header *blk)
{
int i;
blk->block_info = malidp_read32(reg, BLK_BLOCK_INFO);
if (BLOCK_INFO_BLK_TYPE(blk->block_info) == D71_BLK_TYPE_RESERVED)
return;
blk->pipeline_info = malidp_read32(reg, BLK_PIPELINE_INFO);
/* get valid input and output ids */
for (i = 0; i < PIPELINE_INFO_N_VALID_INPUTS(blk->pipeline_info); i++)
blk->input_ids[i] = malidp_read32(reg + i, BLK_VALID_INPUT_ID0);
for (i = 0; i < PIPELINE_INFO_N_OUTPUTS(blk->pipeline_info); i++)
blk->output_ids[i] = malidp_read32(reg + i, BLK_OUTPUT_ID0);
}
static void d71_cleanup(struct komeda_dev *mdev)
{
struct d71_dev *d71 = mdev->chip_data;
if (!d71)
return;
devm_kfree(mdev->dev, d71);
mdev->chip_data = NULL;
}
static int d71_enum_resources(struct komeda_dev *mdev)
{
struct d71_dev *d71;
struct komeda_pipeline *pipe;
struct block_header blk;
u32 __iomem *blk_base;
u32 i, value, offset;
int err;
d71 = devm_kzalloc(mdev->dev, sizeof(*d71), GFP_KERNEL);
if (!d71)
return -ENOMEM;
mdev->chip_data = d71;
d71->mdev = mdev;
d71->gcu_addr = mdev->reg_base;
d71->periph_addr = mdev->reg_base + (D71_BLOCK_OFFSET_PERIPH >> 2);
err = d71_reset(d71);
if (err) {
DRM_ERROR("Fail to reset d71 device.\n");
goto err_cleanup;
}
/* probe GCU */
value = malidp_read32(d71->gcu_addr, GLB_CORE_INFO);
d71->num_blocks = value & 0xFF;
d71->num_pipelines = (value >> 8) & 0x7;
if (d71->num_pipelines > D71_MAX_PIPELINE) {
DRM_ERROR("d71 supports %d pipelines, but got: %d.\n",
D71_MAX_PIPELINE, d71->num_pipelines);
err = -EINVAL;
goto err_cleanup;
}
/* Only the legacy HW has the periph block, the newer merges the periph
* into GCU
*/
value = malidp_read32(d71->periph_addr, BLK_BLOCK_INFO);
if (BLOCK_INFO_BLK_TYPE(value) != D71_BLK_TYPE_PERIPH)
d71->periph_addr = NULL;
if (d71->periph_addr) {
/* probe PERIPHERAL in legacy HW */
value = malidp_read32(d71->periph_addr, PERIPH_CONFIGURATION_ID);
d71->max_line_size = value & PERIPH_MAX_LINE_SIZE ? 4096 : 2048;
d71->max_vsize = 4096;
d71->num_rich_layers = value & PERIPH_NUM_RICH_LAYERS ? 2 : 1;
d71->supports_dual_link = !!(value & PERIPH_SPLIT_EN);
d71->integrates_tbu = !!(value & PERIPH_TBU_EN);
} else {
value = malidp_read32(d71->gcu_addr, GCU_CONFIGURATION_ID0);
d71->max_line_size = GCU_MAX_LINE_SIZE(value);
d71->max_vsize = GCU_MAX_NUM_LINES(value);
value = malidp_read32(d71->gcu_addr, GCU_CONFIGURATION_ID1);
d71->num_rich_layers = GCU_NUM_RICH_LAYERS(value);
d71->supports_dual_link = GCU_DISPLAY_SPLIT_EN(value);
d71->integrates_tbu = GCU_DISPLAY_TBU_EN(value);
}
for (i = 0; i < d71->num_pipelines; i++) {
pipe = komeda_pipeline_add(mdev, sizeof(struct d71_pipeline),
&d71_pipeline_funcs);
if (IS_ERR(pipe)) {
err = PTR_ERR(pipe);
goto err_cleanup;
}
/* D71 HW doesn't update shadow registers when display output
* is turning off, so when we disable all pipeline components
* together with display output disable by one flush or one
* operation, the disable operation updated registers will not
* be flush to or valid in HW, which may leads problem.
* To workaround this problem, introduce a two phase disable.
* Phase1: Disabling components with display is on to make sure
* the disable can be flushed to HW.
* Phase2: Only turn-off display output.
*/
value = KOMEDA_PIPELINE_IMPROCS |
BIT(KOMEDA_COMPONENT_TIMING_CTRLR);
pipe->standalone_disabled_comps = value;
d71->pipes[i] = to_d71_pipeline(pipe);
}
/* loop the register blks and probe.
* NOTE: d71->num_blocks includes reserved blocks.
* d71->num_blocks = GCU + valid blocks + reserved blocks
*/
i = 1; /* exclude GCU */
offset = D71_BLOCK_SIZE; /* skip GCU */
while (i < d71->num_blocks) {
blk_base = mdev->reg_base + (offset >> 2);
d71_read_block_header(blk_base, &blk);
if (BLOCK_INFO_BLK_TYPE(blk.block_info) != D71_BLK_TYPE_RESERVED) {
err = d71_probe_block(d71, &blk, blk_base);
if (err)
goto err_cleanup;
}
i++;
offset += D71_BLOCK_SIZE;
}
DRM_DEBUG("total %d (out of %d) blocks are found.\n",
i, d71->num_blocks);
return 0;
err_cleanup:
d71_cleanup(mdev);
return err;
}
#define __HW_ID(__group, __format) \
((((__group) & 0x7) << 3) | ((__format) & 0x7))
#define RICH KOMEDA_FMT_RICH_LAYER
#define SIMPLE KOMEDA_FMT_SIMPLE_LAYER
#define RICH_SIMPLE (KOMEDA_FMT_RICH_LAYER | KOMEDA_FMT_SIMPLE_LAYER)
#define RICH_WB (KOMEDA_FMT_RICH_LAYER | KOMEDA_FMT_WB_LAYER)
#define RICH_SIMPLE_WB (RICH_SIMPLE | KOMEDA_FMT_WB_LAYER)
#define Rot_0 DRM_MODE_ROTATE_0
#define Flip_H_V (DRM_MODE_REFLECT_X | DRM_MODE_REFLECT_Y | Rot_0)
#define Rot_ALL_H_V (DRM_MODE_ROTATE_MASK | Flip_H_V)
#define LYT_NM BIT(AFBC_FORMAT_MOD_BLOCK_SIZE_16x16)
#define LYT_WB BIT(AFBC_FORMAT_MOD_BLOCK_SIZE_32x8)
#define LYT_NM_WB (LYT_NM | LYT_WB)
#define AFB_TH AFBC(_TILED | _SPARSE)
#define AFB_TH_SC_YTR AFBC(_TILED | _SC | _SPARSE | _YTR)
#define AFB_TH_SC_YTR_BS AFBC(_TILED | _SC | _SPARSE | _YTR | _SPLIT)
static struct komeda_format_caps d71_format_caps_table[] = {
/* HW_ID | fourcc | layer_types | rots | afbc_layouts | afbc_features */
/* ABGR_2101010*/
{__HW_ID(0, 0), DRM_FORMAT_ARGB2101010, RICH_SIMPLE_WB, Flip_H_V, 0, 0},
{__HW_ID(0, 1), DRM_FORMAT_ABGR2101010, RICH_SIMPLE_WB, Flip_H_V, 0, 0},
{__HW_ID(0, 1), DRM_FORMAT_ABGR2101010, RICH_SIMPLE, Rot_ALL_H_V, LYT_NM_WB, AFB_TH_SC_YTR_BS}, /* afbc */
{__HW_ID(0, 2), DRM_FORMAT_RGBA1010102, RICH_SIMPLE_WB, Flip_H_V, 0, 0},
{__HW_ID(0, 3), DRM_FORMAT_BGRA1010102, RICH_SIMPLE_WB, Flip_H_V, 0, 0},
/* ABGR_8888*/
{__HW_ID(1, 0), DRM_FORMAT_ARGB8888, RICH_SIMPLE_WB, Flip_H_V, 0, 0},
{__HW_ID(1, 1), DRM_FORMAT_ABGR8888, RICH_SIMPLE_WB, Flip_H_V, 0, 0},
{__HW_ID(1, 1), DRM_FORMAT_ABGR8888, RICH_SIMPLE, Rot_ALL_H_V, LYT_NM_WB, AFB_TH_SC_YTR_BS}, /* afbc */
{__HW_ID(1, 2), DRM_FORMAT_RGBA8888, RICH_SIMPLE_WB, Flip_H_V, 0, 0},
{__HW_ID(1, 3), DRM_FORMAT_BGRA8888, RICH_SIMPLE_WB, Flip_H_V, 0, 0},
/* XBGB_8888 */
{__HW_ID(2, 0), DRM_FORMAT_XRGB8888, RICH_SIMPLE_WB, Flip_H_V, 0, 0},
{__HW_ID(2, 1), DRM_FORMAT_XBGR8888, RICH_SIMPLE_WB, Flip_H_V, 0, 0},
{__HW_ID(2, 2), DRM_FORMAT_RGBX8888, RICH_SIMPLE_WB, Flip_H_V, 0, 0},
{__HW_ID(2, 3), DRM_FORMAT_BGRX8888, RICH_SIMPLE_WB, Flip_H_V, 0, 0},
/* BGR_888 */ /* none-afbc RGB888 doesn't support rotation and flip */
{__HW_ID(3, 0), DRM_FORMAT_RGB888, RICH_SIMPLE_WB, Rot_0, 0, 0},
{__HW_ID(3, 1), DRM_FORMAT_BGR888, RICH_SIMPLE_WB, Rot_0, 0, 0},
{__HW_ID(3, 1), DRM_FORMAT_BGR888, RICH_SIMPLE, Rot_ALL_H_V, LYT_NM_WB, AFB_TH_SC_YTR_BS}, /* afbc */
/* BGR 16bpp */
{__HW_ID(4, 0), DRM_FORMAT_RGBA5551, RICH_SIMPLE, Flip_H_V, 0, 0},
{__HW_ID(4, 1), DRM_FORMAT_ABGR1555, RICH_SIMPLE, Flip_H_V, 0, 0},
{__HW_ID(4, 1), DRM_FORMAT_ABGR1555, RICH_SIMPLE, Rot_ALL_H_V, LYT_NM_WB, AFB_TH_SC_YTR}, /* afbc */
{__HW_ID(4, 2), DRM_FORMAT_RGB565, RICH_SIMPLE, Flip_H_V, 0, 0},
{__HW_ID(4, 3), DRM_FORMAT_BGR565, RICH_SIMPLE, Flip_H_V, 0, 0},
{__HW_ID(4, 3), DRM_FORMAT_BGR565, RICH_SIMPLE, Rot_ALL_H_V, LYT_NM_WB, AFB_TH_SC_YTR}, /* afbc */
{__HW_ID(4, 4), DRM_FORMAT_R8, SIMPLE, Rot_0, 0, 0},
/* YUV 444/422/420 8bit */
{__HW_ID(5, 1), DRM_FORMAT_YUYV, RICH, Rot_ALL_H_V, LYT_NM, AFB_TH}, /* afbc */
{__HW_ID(5, 2), DRM_FORMAT_YUYV, RICH, Flip_H_V, 0, 0},
{__HW_ID(5, 3), DRM_FORMAT_UYVY, RICH, Flip_H_V, 0, 0},
{__HW_ID(5, 6), DRM_FORMAT_NV12, RICH_WB, Flip_H_V, 0, 0},
{__HW_ID(5, 6), DRM_FORMAT_YUV420_8BIT, RICH, Rot_ALL_H_V, LYT_NM, AFB_TH}, /* afbc */
{__HW_ID(5, 7), DRM_FORMAT_YUV420, RICH, Flip_H_V, 0, 0},
/* YUV 10bit*/
{__HW_ID(6, 6), DRM_FORMAT_X0L2, RICH, Flip_H_V, 0, 0},
{__HW_ID(6, 7), DRM_FORMAT_P010, RICH, Flip_H_V, 0, 0},
{__HW_ID(6, 7), DRM_FORMAT_YUV420_10BIT, RICH, Rot_ALL_H_V, LYT_NM, AFB_TH},
};
static bool d71_format_mod_supported(const struct komeda_format_caps *caps,
u32 layer_type, u64 modifier, u32 rot)
{
uint64_t layout = modifier & AFBC_FORMAT_MOD_BLOCK_SIZE_MASK;
if ((layout == AFBC_FORMAT_MOD_BLOCK_SIZE_32x8) &&
drm_rotation_90_or_270(rot)) {
DRM_DEBUG_ATOMIC("D71 doesn't support ROT90 for WB-AFBC.\n");
return false;
}
return true;
}
static void d71_init_fmt_tbl(struct komeda_dev *mdev)
{
struct komeda_format_caps_table *table = &mdev->fmt_tbl;
table->format_caps = d71_format_caps_table;
table->format_mod_supported = d71_format_mod_supported;
table->n_formats = ARRAY_SIZE(d71_format_caps_table);
}
static int d71_connect_iommu(struct komeda_dev *mdev)
{
struct d71_dev *d71 = mdev->chip_data;
u32 __iomem *reg = d71->gcu_addr;
u32 check_bits = (d71->num_pipelines == 2) ?
GCU_STATUS_TCS0 | GCU_STATUS_TCS1 : GCU_STATUS_TCS0;
int i, ret;
if (!d71->integrates_tbu)
return -1;
malidp_write32_mask(reg, BLK_CONTROL, 0x7, TBU_CONNECT_MODE);
ret = dp_wait_cond(has_bits(check_bits, malidp_read32(reg, BLK_STATUS)),
100, 1000, 1000);
if (ret < 0) {
DRM_ERROR("timed out connecting to TCU!\n");
malidp_write32_mask(reg, BLK_CONTROL, 0x7, INACTIVE_MODE);
return ret;
}
for (i = 0; i < d71->num_pipelines; i++)
malidp_write32_mask(d71->pipes[i]->lpu_addr, LPU_TBU_CONTROL,
LPU_TBU_CTRL_TLBPEN, LPU_TBU_CTRL_TLBPEN);
return 0;
}
static int d71_disconnect_iommu(struct komeda_dev *mdev)
{
struct d71_dev *d71 = mdev->chip_data;
u32 __iomem *reg = d71->gcu_addr;
u32 check_bits = (d71->num_pipelines == 2) ?
GCU_STATUS_TCS0 | GCU_STATUS_TCS1 : GCU_STATUS_TCS0;
int ret;
malidp_write32_mask(reg, BLK_CONTROL, 0x7, TBU_DISCONNECT_MODE);
ret = dp_wait_cond(((malidp_read32(reg, BLK_STATUS) & check_bits) == 0),
100, 1000, 1000);
if (ret < 0) {
DRM_ERROR("timed out disconnecting from TCU!\n");
malidp_write32_mask(reg, BLK_CONTROL, 0x7, INACTIVE_MODE);
}
return ret;
}
static const struct komeda_dev_funcs d71_chip_funcs = {
.init_format_table = d71_init_fmt_tbl,
.enum_resources = d71_enum_resources,
.cleanup = d71_cleanup,
.irq_handler = d71_irq_handler,
.enable_irq = d71_enable_irq,
.disable_irq = d71_disable_irq,
.on_off_vblank = d71_on_off_vblank,
.change_opmode = d71_change_opmode,
.flush = d71_flush,
.connect_iommu = d71_connect_iommu,
.disconnect_iommu = d71_disconnect_iommu,
.dump_register = d71_dump,
};
const struct komeda_dev_funcs *
d71_identify(u32 __iomem *reg_base, struct komeda_chip_info *chip)
{
const struct komeda_dev_funcs *funcs;
u32 product_id;
chip->core_id = malidp_read32(reg_base, GLB_CORE_ID);
product_id = MALIDP_CORE_ID_PRODUCT_ID(chip->core_id);
switch (product_id) {
case MALIDP_D71_PRODUCT_ID:
case MALIDP_D32_PRODUCT_ID:
funcs = &d71_chip_funcs;
break;
default:
DRM_ERROR("Unsupported product: 0x%x\n", product_id);
return NULL;
}
chip->arch_id = malidp_read32(reg_base, GLB_ARCH_ID);
chip->core_info = malidp_read32(reg_base, GLB_CORE_INFO);
chip->bus_width = D71_BUS_WIDTH_16_BYTES;
return funcs;
}