/*
* Copyright 2012-15 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Authors: AMD
*
*/
#ifndef __DAL_FIXED31_32_H__
#define __DAL_FIXED31_32_H__
#ifndef LLONG_MAX
#define LLONG_MAX 9223372036854775807ll
#endif
#ifndef LLONG_MIN
#define LLONG_MIN (-LLONG_MAX - 1ll)
#endif
#define FIXED31_32_BITS_PER_FRACTIONAL_PART 32
#ifndef LLONG_MIN
#define LLONG_MIN (1LL<<63)
#endif
#ifndef LLONG_MAX
#define LLONG_MAX (-1LL>>1)
#endif
/*
* @brief
* Arithmetic operations on real numbers
* represented as fixed-point numbers.
* There are: 1 bit for sign,
* 31 bit for integer part,
* 32 bits for fractional part.
*
* @note
* Currently, overflows and underflows are asserted;
* no special result returned.
*/
struct fixed31_32 {
long long value;
};
/*
* @brief
* Useful constants
*/
static const struct fixed31_32 dc_fixpt_zero = { 0 };
static const struct fixed31_32 dc_fixpt_epsilon = { 1LL };
static const struct fixed31_32 dc_fixpt_half = { 0x80000000LL };
static const struct fixed31_32 dc_fixpt_one = { 0x100000000LL };
/*
* @brief
* Initialization routines
*/
/*
* @brief
* result = numerator / denominator
*/
struct fixed31_32 dc_fixpt_from_fraction(long long numerator, long long denominator);
/*
* @brief
* result = arg
*/
static inline struct fixed31_32 dc_fixpt_from_int(int arg)
{
struct fixed31_32 res;
res.value = (long long) arg << FIXED31_32_BITS_PER_FRACTIONAL_PART;
return res;
}
/*
* @brief
* Unary operators
*/
/*
* @brief
* result = -arg
*/
static inline struct fixed31_32 dc_fixpt_neg(struct fixed31_32 arg)
{
struct fixed31_32 res;
res.value = -arg.value;
return res;
}
/*
* @brief
* result = abs(arg) := (arg >= 0) ? arg : -arg
*/
static inline struct fixed31_32 dc_fixpt_abs(struct fixed31_32 arg)
{
if (arg.value < 0)
return dc_fixpt_neg(arg);
else
return arg;
}
/*
* @brief
* Binary relational operators
*/
/*
* @brief
* result = arg1 < arg2
*/
static inline bool dc_fixpt_lt(struct fixed31_32 arg1, struct fixed31_32 arg2)
{
return arg1.value < arg2.value;
}
/*
* @brief
* result = arg1 <= arg2
*/
static inline bool dc_fixpt_le(struct fixed31_32 arg1, struct fixed31_32 arg2)
{
return arg1.value <= arg2.value;
}
/*
* @brief
* result = arg1 == arg2
*/
static inline bool dc_fixpt_eq(struct fixed31_32 arg1, struct fixed31_32 arg2)
{
return arg1.value == arg2.value;
}
/*
* @brief
* result = min(arg1, arg2) := (arg1 <= arg2) ? arg1 : arg2
*/
static inline struct fixed31_32 dc_fixpt_min(struct fixed31_32 arg1, struct fixed31_32 arg2)
{
if (arg1.value <= arg2.value)
return arg1;
else
return arg2;
}
/*
* @brief
* result = max(arg1, arg2) := (arg1 <= arg2) ? arg2 : arg1
*/
static inline struct fixed31_32 dc_fixpt_max(struct fixed31_32 arg1, struct fixed31_32 arg2)
{
if (arg1.value <= arg2.value)
return arg2;
else
return arg1;
}
/*
* @brief
* | min_value, when arg <= min_value
* result = | arg, when min_value < arg < max_value
* | max_value, when arg >= max_value
*/
static inline struct fixed31_32 dc_fixpt_clamp(
struct fixed31_32 arg,
struct fixed31_32 min_value,
struct fixed31_32 max_value)
{
if (dc_fixpt_le(arg, min_value))
return min_value;
else if (dc_fixpt_le(max_value, arg))
return max_value;
else
return arg;
}
/*
* @brief
* Binary shift operators
*/
/*
* @brief
* result = arg << shift
*/
static inline struct fixed31_32 dc_fixpt_shl(struct fixed31_32 arg, unsigned char shift)
{
ASSERT(((arg.value >= 0) && (arg.value <= LLONG_MAX >> shift)) ||
((arg.value < 0) && (arg.value >= ~(LLONG_MAX >> shift))));
arg.value = arg.value << shift;
return arg;
}
/*
* @brief
* result = arg >> shift
*/
static inline struct fixed31_32 dc_fixpt_shr(struct fixed31_32 arg, unsigned char shift)
{
bool negative = arg.value < 0;
if (negative)
arg.value = -arg.value;
arg.value = arg.value >> shift;
if (negative)
arg.value = -arg.value;
return arg;
}
/*
* @brief
* Binary additive operators
*/
/*
* @brief
* result = arg1 + arg2
*/
static inline struct fixed31_32 dc_fixpt_add(struct fixed31_32 arg1, struct fixed31_32 arg2)
{
struct fixed31_32 res;
ASSERT(((arg1.value >= 0) && (LLONG_MAX - arg1.value >= arg2.value)) ||
((arg1.value < 0) && (LLONG_MIN - arg1.value <= arg2.value)));
res.value = arg1.value + arg2.value;
return res;
}
/*
* @brief
* result = arg1 + arg2
*/
static inline struct fixed31_32 dc_fixpt_add_int(struct fixed31_32 arg1, int arg2)
{
return dc_fixpt_add(arg1, dc_fixpt_from_int(arg2));
}
/*
* @brief
* result = arg1 - arg2
*/
static inline struct fixed31_32 dc_fixpt_sub(struct fixed31_32 arg1, struct fixed31_32 arg2)
{
struct fixed31_32 res;
ASSERT(((arg2.value >= 0) && (LLONG_MIN + arg2.value <= arg1.value)) ||
((arg2.value < 0) && (LLONG_MAX + arg2.value >= arg1.value)));
res.value = arg1.value - arg2.value;
return res;
}
/*
* @brief
* result = arg1 - arg2
*/
static inline struct fixed31_32 dc_fixpt_sub_int(struct fixed31_32 arg1, int arg2)
{
return dc_fixpt_sub(arg1, dc_fixpt_from_int(arg2));
}
/*
* @brief
* Binary multiplicative operators
*/
/*
* @brief
* result = arg1 * arg2
*/
struct fixed31_32 dc_fixpt_mul(struct fixed31_32 arg1, struct fixed31_32 arg2);
/*
* @brief
* result = arg1 * arg2
*/
static inline struct fixed31_32 dc_fixpt_mul_int(struct fixed31_32 arg1, int arg2)
{
return dc_fixpt_mul(arg1, dc_fixpt_from_int(arg2));
}
/*
* @brief
* result = square(arg) := arg * arg
*/
struct fixed31_32 dc_fixpt_sqr(struct fixed31_32 arg);
/*
* @brief
* result = arg1 / arg2
*/
static inline struct fixed31_32 dc_fixpt_div_int(struct fixed31_32 arg1, long long arg2)
{
return dc_fixpt_from_fraction(arg1.value, dc_fixpt_from_int((int)arg2).value);
}
/*
* @brief
* result = arg1 / arg2
*/
static inline struct fixed31_32 dc_fixpt_div(struct fixed31_32 arg1, struct fixed31_32 arg2)
{
return dc_fixpt_from_fraction(arg1.value, arg2.value);
}
/*
* @brief
* Reciprocal function
*/
/*
* @brief
* result = reciprocal(arg) := 1 / arg
*
* @note
* No special actions taken in case argument is zero.
*/
struct fixed31_32 dc_fixpt_recip(struct fixed31_32 arg);
/*
* @brief
* Trigonometric functions
*/
/*
* @brief
* result = sinc(arg) := sin(arg) / arg
*
* @note
* Argument specified in radians,
* internally it's normalized to [-2pi...2pi] range.
*/
struct fixed31_32 dc_fixpt_sinc(struct fixed31_32 arg);
/*
* @brief
* result = sin(arg)
*
* @note
* Argument specified in radians,
* internally it's normalized to [-2pi...2pi] range.
*/
struct fixed31_32 dc_fixpt_sin(struct fixed31_32 arg);
/*
* @brief
* result = cos(arg)
*
* @note
* Argument specified in radians
* and should be in [-2pi...2pi] range -
* passing arguments outside that range
* will cause incorrect result!
*/
struct fixed31_32 dc_fixpt_cos(struct fixed31_32 arg);
/*
* @brief
* Transcendent functions
*/
/*
* @brief
* result = exp(arg)
*
* @note
* Currently, function is verified for abs(arg) <= 1.
*/
struct fixed31_32 dc_fixpt_exp(struct fixed31_32 arg);
/*
* @brief
* result = log(arg)
*
* @note
* Currently, abs(arg) should be less than 1.
* No normalization is done.
* Currently, no special actions taken
* in case of invalid argument(s). Take care!
*/
struct fixed31_32 dc_fixpt_log(struct fixed31_32 arg);
/*
* @brief
* Power function
*/
/*
* @brief
* result = pow(arg1, arg2)
*
* @note
* Currently, abs(arg1) should be less than 1. Take care!
*/
static inline struct fixed31_32 dc_fixpt_pow(struct fixed31_32 arg1, struct fixed31_32 arg2)
{
if (arg1.value == 0)
return arg2.value == 0 ? dc_fixpt_one : dc_fixpt_zero;
return dc_fixpt_exp(
dc_fixpt_mul(
dc_fixpt_log(arg1),
arg2));
}
/*
* @brief
* Rounding functions
*/
/*
* @brief
* result = floor(arg) := greatest integer lower than or equal to arg
*/
static inline int dc_fixpt_floor(struct fixed31_32 arg)
{
unsigned long long arg_value = arg.value > 0 ? arg.value : -arg.value;
if (arg.value >= 0)
return (int)(arg_value >> FIXED31_32_BITS_PER_FRACTIONAL_PART);
else
return -(int)(arg_value >> FIXED31_32_BITS_PER_FRACTIONAL_PART);
}
/*
* @brief
* result = round(arg) := integer nearest to arg
*/
static inline int dc_fixpt_round(struct fixed31_32 arg)
{
unsigned long long arg_value = arg.value > 0 ? arg.value : -arg.value;
const long long summand = dc_fixpt_half.value;
ASSERT(LLONG_MAX - (long long)arg_value >= summand);
arg_value += summand;
if (arg.value >= 0)
return (int)(arg_value >> FIXED31_32_BITS_PER_FRACTIONAL_PART);
else
return -(int)(arg_value >> FIXED31_32_BITS_PER_FRACTIONAL_PART);
}
/*
* @brief
* result = ceil(arg) := lowest integer greater than or equal to arg
*/
static inline int dc_fixpt_ceil(struct fixed31_32 arg)
{
unsigned long long arg_value = arg.value > 0 ? arg.value : -arg.value;
const long long summand = dc_fixpt_one.value -
dc_fixpt_epsilon.value;
ASSERT(LLONG_MAX - (long long)arg_value >= summand);
arg_value += summand;
if (arg.value >= 0)
return (int)(arg_value >> FIXED31_32_BITS_PER_FRACTIONAL_PART);
else
return -(int)(arg_value >> FIXED31_32_BITS_PER_FRACTIONAL_PART);
}
/* the following two function are used in scaler hw programming to convert fixed
* point value to format 2 bits from integer part and 19 bits from fractional
* part. The same applies for u0d19, 0 bits from integer part and 19 bits from
* fractional
*/
unsigned int dc_fixpt_u4d19(struct fixed31_32 arg);
unsigned int dc_fixpt_u3d19(struct fixed31_32 arg);
unsigned int dc_fixpt_u2d19(struct fixed31_32 arg);
unsigned int dc_fixpt_u0d19(struct fixed31_32 arg);
unsigned int dc_fixpt_clamp_u0d14(struct fixed31_32 arg);
unsigned int dc_fixpt_clamp_u0d10(struct fixed31_32 arg);
int dc_fixpt_s4d19(struct fixed31_32 arg);
static inline struct fixed31_32 dc_fixpt_truncate(struct fixed31_32 arg, unsigned int frac_bits)
{
bool negative = arg.value < 0;
if (frac_bits >= FIXED31_32_BITS_PER_FRACTIONAL_PART) {
ASSERT(frac_bits == FIXED31_32_BITS_PER_FRACTIONAL_PART);
return arg;
}
if (negative)
arg.value = -arg.value;
arg.value &= (~0ULL) << (FIXED31_32_BITS_PER_FRACTIONAL_PART - frac_bits);
if (negative)
arg.value = -arg.value;
return arg;
}
struct fixed31_32 dc_fixpt_from_ux_dy(unsigned int value, unsigned int integer_bits, unsigned int fractional_bits);
struct fixed31_32 dc_fixpt_from_int_dy(unsigned int int_value,
unsigned int frac_value,
unsigned int integer_bits,
unsigned int fractional_bits);
#endif