/* * Copyright (C) 1991, 1992 Linus Torvalds * Copyright (C) 2000, 2001, 2002 Andi Kleen, SuSE Labs * * Pentium III FXSR, SSE support * Gareth Hughes <[email protected]>, May 2000 */ /* * Handle hardware traps and faults. */ #define pr_fmt(fmt) … #include <linux/context_tracking.h> #include <linux/interrupt.h> #include <linux/kallsyms.h> #include <linux/kmsan.h> #include <linux/spinlock.h> #include <linux/kprobes.h> #include <linux/uaccess.h> #include <linux/kdebug.h> #include <linux/kgdb.h> #include <linux/kernel.h> #include <linux/export.h> #include <linux/ptrace.h> #include <linux/uprobes.h> #include <linux/string.h> #include <linux/delay.h> #include <linux/errno.h> #include <linux/kexec.h> #include <linux/sched.h> #include <linux/sched/task_stack.h> #include <linux/timer.h> #include <linux/init.h> #include <linux/bug.h> #include <linux/nmi.h> #include <linux/mm.h> #include <linux/smp.h> #include <linux/cpu.h> #include <linux/io.h> #include <linux/hardirq.h> #include <linux/atomic.h> #include <linux/iommu.h> #include <linux/ubsan.h> #include <asm/stacktrace.h> #include <asm/processor.h> #include <asm/debugreg.h> #include <asm/realmode.h> #include <asm/text-patching.h> #include <asm/ftrace.h> #include <asm/traps.h> #include <asm/desc.h> #include <asm/fred.h> #include <asm/fpu/api.h> #include <asm/cpu.h> #include <asm/cpu_entry_area.h> #include <asm/mce.h> #include <asm/fixmap.h> #include <asm/mach_traps.h> #include <asm/alternative.h> #include <asm/fpu/xstate.h> #include <asm/vm86.h> #include <asm/umip.h> #include <asm/insn.h> #include <asm/insn-eval.h> #include <asm/vdso.h> #include <asm/tdx.h> #include <asm/cfi.h> #ifdef CONFIG_X86_64 #include <asm/x86_init.h> #else #include <asm/processor-flags.h> #include <asm/setup.h> #endif #include <asm/proto.h> DECLARE_BITMAP(system_vectors, NR_VECTORS); __always_inline int is_valid_bugaddr(unsigned long addr) { … } /* * Check for UD1 or UD2, accounting for Address Size Override Prefixes. * If it's a UD1, get the ModRM byte to pass along to UBSan. */ __always_inline int decode_bug(unsigned long addr, u32 *imm) { … } static nokprobe_inline int do_trap_no_signal(struct task_struct *tsk, int trapnr, const char *str, struct pt_regs *regs, long error_code) { … } static void show_signal(struct task_struct *tsk, int signr, const char *type, const char *desc, struct pt_regs *regs, long error_code) { … } static void do_trap(int trapnr, int signr, char *str, struct pt_regs *regs, long error_code, int sicode, void __user *addr) { … } NOKPROBE_SYMBOL(do_trap); static void do_error_trap(struct pt_regs *regs, long error_code, char *str, unsigned long trapnr, int signr, int sicode, void __user *addr) { … } /* * Posix requires to provide the address of the faulting instruction for * SIGILL (#UD) and SIGFPE (#DE) in the si_addr member of siginfo_t. * * This address is usually regs->ip, but when an uprobe moved the code out * of line then regs->ip points to the XOL code which would confuse * anything which analyzes the fault address vs. the unmodified binary. If * a trap happened in XOL code then uprobe maps regs->ip back to the * original instruction address. */ static __always_inline void __user *error_get_trap_addr(struct pt_regs *regs) { … } DEFINE_IDTENTRY(exc_divide_error) { … } DEFINE_IDTENTRY(exc_overflow) { … } #ifdef CONFIG_X86_F00F_BUG void handle_invalid_op(struct pt_regs *regs) #else static inline void handle_invalid_op(struct pt_regs *regs) #endif { … } static noinstr bool handle_bug(struct pt_regs *regs) { … } DEFINE_IDTENTRY_RAW(exc_invalid_op) { … } DEFINE_IDTENTRY(exc_coproc_segment_overrun) { … } DEFINE_IDTENTRY_ERRORCODE(exc_invalid_tss) { … } DEFINE_IDTENTRY_ERRORCODE(exc_segment_not_present) { … } DEFINE_IDTENTRY_ERRORCODE(exc_stack_segment) { … } DEFINE_IDTENTRY_ERRORCODE(exc_alignment_check) { … } #ifdef CONFIG_VMAP_STACK __visible void __noreturn handle_stack_overflow(struct pt_regs *regs, unsigned long fault_address, struct stack_info *info) { … } #endif /* * Runs on an IST stack for x86_64 and on a special task stack for x86_32. * * On x86_64, this is more or less a normal kernel entry. Notwithstanding the * SDM's warnings about double faults being unrecoverable, returning works as * expected. Presumably what the SDM actually means is that the CPU may get * the register state wrong on entry, so returning could be a bad idea. * * Various CPU engineers have promised that double faults due to an IRET fault * while the stack is read-only are, in fact, recoverable. * * On x86_32, this is entered through a task gate, and regs are synthesized * from the TSS. Returning is, in principle, okay, but changes to regs will * be lost. If, for some reason, we need to return to a context with modified * regs, the shim code could be adjusted to synchronize the registers. * * The 32bit #DF shim provides CR2 already as an argument. On 64bit it needs * to be read before doing anything else. */ DEFINE_IDTENTRY_DF(exc_double_fault) { … } DEFINE_IDTENTRY(exc_bounds) { … } enum kernel_gp_hint { … }; /* * When an uncaught #GP occurs, try to determine the memory address accessed by * the instruction and return that address to the caller. Also, try to figure * out whether any part of the access to that address was non-canonical. */ static enum kernel_gp_hint get_kernel_gp_address(struct pt_regs *regs, unsigned long *addr) { … } #define GPFSTR … static bool fixup_iopl_exception(struct pt_regs *regs) { … } /* * The unprivileged ENQCMD instruction generates #GPs if the * IA32_PASID MSR has not been populated. If possible, populate * the MSR from a PASID previously allocated to the mm. */ static bool try_fixup_enqcmd_gp(void) { … } static bool gp_try_fixup_and_notify(struct pt_regs *regs, int trapnr, unsigned long error_code, const char *str, unsigned long address) { … } static void gp_user_force_sig_segv(struct pt_regs *regs, int trapnr, unsigned long error_code, const char *str) { … } DEFINE_IDTENTRY_ERRORCODE(exc_general_protection) { … } static bool do_int3(struct pt_regs *regs) { … } NOKPROBE_SYMBOL(do_int3); static void do_int3_user(struct pt_regs *regs) { … } DEFINE_IDTENTRY_RAW(exc_int3) { … } #ifdef CONFIG_X86_64 /* * Help handler running on a per-cpu (IST or entry trampoline) stack * to switch to the normal thread stack if the interrupted code was in * user mode. The actual stack switch is done in entry_64.S */ asmlinkage __visible noinstr struct pt_regs *sync_regs(struct pt_regs *eregs) { … } #ifdef CONFIG_AMD_MEM_ENCRYPT asmlinkage __visible noinstr struct pt_regs *vc_switch_off_ist(struct pt_regs *regs) { … } #endif asmlinkage __visible noinstr struct pt_regs *fixup_bad_iret(struct pt_regs *bad_regs) { … } #endif static bool is_sysenter_singlestep(struct pt_regs *regs) { … } static __always_inline unsigned long debug_read_clear_dr6(void) { … } /* * Our handling of the processor debug registers is non-trivial. * We do not clear them on entry and exit from the kernel. Therefore * it is possible to get a watchpoint trap here from inside the kernel. * However, the code in ./ptrace.c has ensured that the user can * only set watchpoints on userspace addresses. Therefore the in-kernel * watchpoint trap can only occur in code which is reading/writing * from user space. Such code must not hold kernel locks (since it * can equally take a page fault), therefore it is safe to call * force_sig_info even though that claims and releases locks. * * Code in ./signal.c ensures that the debug control register * is restored before we deliver any signal, and therefore that * user code runs with the correct debug control register even though * we clear it here. * * Being careful here means that we don't have to be as careful in a * lot of more complicated places (task switching can be a bit lazy * about restoring all the debug state, and ptrace doesn't have to * find every occurrence of the TF bit that could be saved away even * by user code) * * May run on IST stack. */ static bool notify_debug(struct pt_regs *regs, unsigned long *dr6) { … } static noinstr void exc_debug_kernel(struct pt_regs *regs, unsigned long dr6) { … } static noinstr void exc_debug_user(struct pt_regs *regs, unsigned long dr6) { … } #ifdef CONFIG_X86_64 /* IST stack entry */ DEFINE_IDTENTRY_DEBUG(exc_debug) { … } /* User entry, runs on regular task stack */ DEFINE_IDTENTRY_DEBUG_USER(exc_debug) { … } #ifdef CONFIG_X86_FRED /* * When occurred on different ring level, i.e., from user or kernel * context, #DB needs to be handled on different stack: User #DB on * current task stack, while kernel #DB on a dedicated stack. * * This is exactly how FRED event delivery invokes an exception * handler: ring 3 event on level 0 stack, i.e., current task stack; * ring 0 event on the #DB dedicated stack specified in the * IA32_FRED_STKLVLS MSR. So unlike IDT, the FRED debug exception * entry stub doesn't do stack switch. */ DEFINE_FREDENTRY_DEBUG(exc_debug) { … } #endif /* CONFIG_X86_FRED */ #else /* 32 bit does not have separate entry points. */ DEFINE_IDTENTRY_RAW(exc_debug) { unsigned long dr6 = debug_read_clear_dr6(); if (user_mode(regs)) exc_debug_user(regs, dr6); else exc_debug_kernel(regs, dr6); } #endif /* * Note that we play around with the 'TS' bit in an attempt to get * the correct behaviour even in the presence of the asynchronous * IRQ13 behaviour */ static void math_error(struct pt_regs *regs, int trapnr) { … } DEFINE_IDTENTRY(exc_coprocessor_error) { … } DEFINE_IDTENTRY(exc_simd_coprocessor_error) { … } DEFINE_IDTENTRY(exc_spurious_interrupt_bug) { … } static bool handle_xfd_event(struct pt_regs *regs) { … } DEFINE_IDTENTRY(exc_device_not_available) { … } #ifdef CONFIG_INTEL_TDX_GUEST #define VE_FAULT_STR … static void ve_raise_fault(struct pt_regs *regs, long error_code, unsigned long address) { … } /* * Virtualization Exceptions (#VE) are delivered to TDX guests due to * specific guest actions which may happen in either user space or the * kernel: * * * Specific instructions (WBINVD, for example) * * Specific MSR accesses * * Specific CPUID leaf accesses * * Access to specific guest physical addresses * * In the settings that Linux will run in, virtualization exceptions are * never generated on accesses to normal, TD-private memory that has been * accepted (by BIOS or with tdx_enc_status_changed()). * * Syscall entry code has a critical window where the kernel stack is not * yet set up. Any exception in this window leads to hard to debug issues * and can be exploited for privilege escalation. Exceptions in the NMI * entry code also cause issues. Returning from the exception handler with * IRET will re-enable NMIs and nested NMI will corrupt the NMI stack. * * For these reasons, the kernel avoids #VEs during the syscall gap and * the NMI entry code. Entry code paths do not access TD-shared memory, * MMIO regions, use #VE triggering MSRs, instructions, or CPUID leaves * that might generate #VE. VMM can remove memory from TD at any point, * but access to unaccepted (or missing) private memory leads to VM * termination, not to #VE. * * Similarly to page faults and breakpoints, #VEs are allowed in NMI * handlers once the kernel is ready to deal with nested NMIs. * * During #VE delivery, all interrupts, including NMIs, are blocked until * TDGETVEINFO is called. It prevents #VE nesting until the kernel reads * the VE info. * * If a guest kernel action which would normally cause a #VE occurs in * the interrupt-disabled region before TDGETVEINFO, a #DF (fault * exception) is delivered to the guest which will result in an oops. * * The entry code has been audited carefully for following these expectations. * Changes in the entry code have to be audited for correctness vs. this * aspect. Similarly to #PF, #VE in these places will expose kernel to * privilege escalation or may lead to random crashes. */ DEFINE_IDTENTRY(exc_virtualization_exception) { … } #endif #ifdef CONFIG_X86_32 DEFINE_IDTENTRY_SW(iret_error) { local_irq_enable(); if (notify_die(DIE_TRAP, "iret exception", regs, 0, X86_TRAP_IRET, SIGILL) != NOTIFY_STOP) { do_trap(X86_TRAP_IRET, SIGILL, "iret exception", regs, 0, ILL_BADSTK, (void __user *)NULL); } local_irq_disable(); } #endif void __init trap_init(void) { … }