// SPDX-License-Identifier: GPL-2.0-or-later /* * Intel SMP support routines. * * (c) 1995 Alan Cox, Building #3 <[email protected]> * (c) 1998-99, 2000, 2009 Ingo Molnar <[email protected]> * (c) 2002,2003 Andi Kleen, SuSE Labs. * * i386 and x86_64 integration by Glauber Costa <[email protected]> */ #include <linux/init.h> #include <linux/mm.h> #include <linux/delay.h> #include <linux/spinlock.h> #include <linux/export.h> #include <linux/kernel_stat.h> #include <linux/mc146818rtc.h> #include <linux/cache.h> #include <linux/interrupt.h> #include <linux/cpu.h> #include <linux/gfp.h> #include <linux/kexec.h> #include <asm/mtrr.h> #include <asm/tlbflush.h> #include <asm/mmu_context.h> #include <asm/proto.h> #include <asm/apic.h> #include <asm/cpu.h> #include <asm/idtentry.h> #include <asm/nmi.h> #include <asm/mce.h> #include <asm/trace/irq_vectors.h> #include <asm/kexec.h> #include <asm/reboot.h> /* * Some notes on x86 processor bugs affecting SMP operation: * * Pentium, Pentium Pro, II, III (and all CPUs) have bugs. * The Linux implications for SMP are handled as follows: * * Pentium III / [Xeon] * None of the E1AP-E3AP errata are visible to the user. * * E1AP. see PII A1AP * E2AP. see PII A2AP * E3AP. see PII A3AP * * Pentium II / [Xeon] * None of the A1AP-A3AP errata are visible to the user. * * A1AP. see PPro 1AP * A2AP. see PPro 2AP * A3AP. see PPro 7AP * * Pentium Pro * None of 1AP-9AP errata are visible to the normal user, * except occasional delivery of 'spurious interrupt' as trap #15. * This is very rare and a non-problem. * * 1AP. Linux maps APIC as non-cacheable * 2AP. worked around in hardware * 3AP. fixed in C0 and above steppings microcode update. * Linux does not use excessive STARTUP_IPIs. * 4AP. worked around in hardware * 5AP. symmetric IO mode (normal Linux operation) not affected. * 'noapic' mode has vector 0xf filled out properly. * 6AP. 'noapic' mode might be affected - fixed in later steppings * 7AP. We do not assume writes to the LVT deasserting IRQs * 8AP. We do not enable low power mode (deep sleep) during MP bootup * 9AP. We do not use mixed mode * * Pentium * There is a marginal case where REP MOVS on 100MHz SMP * machines with B stepping processors can fail. XXX should provide * an L1cache=Writethrough or L1cache=off option. * * B stepping CPUs may hang. There are hardware work arounds * for this. We warn about it in case your board doesn't have the work * arounds. Basically that's so I can tell anyone with a B stepping * CPU and SMP problems "tough". * * Specific items [From Pentium Processor Specification Update] * * 1AP. Linux doesn't use remote read * 2AP. Linux doesn't trust APIC errors * 3AP. We work around this * 4AP. Linux never generated 3 interrupts of the same priority * to cause a lost local interrupt. * 5AP. Remote read is never used * 6AP. not affected - worked around in hardware * 7AP. not affected - worked around in hardware * 8AP. worked around in hardware - we get explicit CS errors if not * 9AP. only 'noapic' mode affected. Might generate spurious * interrupts, we log only the first one and count the * rest silently. * 10AP. not affected - worked around in hardware * 11AP. Linux reads the APIC between writes to avoid this, as per * the documentation. Make sure you preserve this as it affects * the C stepping chips too. * 12AP. not affected - worked around in hardware * 13AP. not affected - worked around in hardware * 14AP. we always deassert INIT during bootup * 15AP. not affected - worked around in hardware * 16AP. not affected - worked around in hardware * 17AP. not affected - worked around in hardware * 18AP. not affected - worked around in hardware * 19AP. not affected - worked around in BIOS * * If this sounds worrying believe me these bugs are either ___RARE___, * or are signal timing bugs worked around in hardware and there's * about nothing of note with C stepping upwards. */ static atomic_t stopping_cpu = …; static bool smp_no_nmi_ipi = …; static int smp_stop_nmi_callback(unsigned int val, struct pt_regs *regs) { … } /* * this function calls the 'stop' function on all other CPUs in the system. */ DEFINE_IDTENTRY_SYSVEC(sysvec_reboot) { … } static int register_stop_handler(void) { … } static void native_stop_other_cpus(int wait) { … } /* * Reschedule call back. KVM uses this interrupt to force a cpu out of * guest mode. */ DEFINE_IDTENTRY_SYSVEC_SIMPLE(sysvec_reschedule_ipi) { … } DEFINE_IDTENTRY_SYSVEC(sysvec_call_function) { … } DEFINE_IDTENTRY_SYSVEC(sysvec_call_function_single) { … } static int __init nonmi_ipi_setup(char *str) { … } __setup(…); struct smp_ops smp_ops = …; EXPORT_SYMBOL_GPL(…);