linux/arch/x86/platform/efi/quirks.c

// SPDX-License-Identifier: GPL-2.0-only
#define pr_fmt(fmt)

#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/string.h>
#include <linux/time.h>
#include <linux/types.h>
#include <linux/efi.h>
#include <linux/slab.h>
#include <linux/memblock.h>
#include <linux/acpi.h>
#include <linux/dmi.h>

#include <asm/e820/api.h>
#include <asm/efi.h>
#include <asm/uv/uv.h>
#include <asm/cpu_device_id.h>
#include <asm/realmode.h>
#include <asm/reboot.h>

#define EFI_MIN_RESERVE

#define EFI_DUMMY_GUID

#define QUARK_CSH_SIGNATURE
#define QUARK_SECURITY_HEADER_SIZE

/*
 * Header prepended to the standard EFI capsule on Quark systems the are based
 * on Intel firmware BSP.
 * @csh_signature:	Unique identifier to sanity check signed module
 * 			presence ("_CSH").
 * @version:		Current version of CSH used. Should be one for Quark A0.
 * @modulesize:		Size of the entire module including the module header
 * 			and payload.
 * @security_version_number_index: Index of SVN to use for validation of signed
 * 			module.
 * @security_version_number: Used to prevent against roll back of modules.
 * @rsvd_module_id:	Currently unused for Clanton (Quark).
 * @rsvd_module_vendor:	Vendor Identifier. For Intel products value is
 * 			0x00008086.
 * @rsvd_date:		BCD representation of build date as yyyymmdd, where
 * 			yyyy=4 digit year, mm=1-12, dd=1-31.
 * @headersize:		Total length of the header including including any
 * 			padding optionally added by the signing tool.
 * @hash_algo:		What Hash is used in the module signing.
 * @cryp_algo:		What Crypto is used in the module signing.
 * @keysize:		Total length of the key data including including any
 * 			padding optionally added by the signing tool.
 * @signaturesize:	Total length of the signature including including any
 * 			padding optionally added by the signing tool.
 * @rsvd_next_header:	32-bit pointer to the next Secure Boot Module in the
 * 			chain, if there is a next header.
 * @rsvd:		Reserved, padding structure to required size.
 *
 * See also QuartSecurityHeader_t in
 * Quark_EDKII_v1.2.1.1/QuarkPlatformPkg/Include/QuarkBootRom.h
 * from https://downloadcenter.intel.com/download/23197/Intel-Quark-SoC-X1000-Board-Support-Package-BSP
 */
struct quark_security_header {};

static const efi_char16_t efi_dummy_name[] =;

static bool efi_no_storage_paranoia;

/*
 * Some firmware implementations refuse to boot if there's insufficient
 * space in the variable store. The implementation of garbage collection
 * in some FW versions causes stale (deleted) variables to take up space
 * longer than intended and space is only freed once the store becomes
 * almost completely full.
 *
 * Enabling this option disables the space checks in
 * efi_query_variable_store() and forces garbage collection.
 *
 * Only enable this option if deleting EFI variables does not free up
 * space in your variable store, e.g. if despite deleting variables
 * you're unable to create new ones.
 */
static int __init setup_storage_paranoia(char *arg)
{}
early_param();

/*
 * Deleting the dummy variable which kicks off garbage collection
*/
void efi_delete_dummy_variable(void)
{}

u64 efivar_reserved_space(void)
{}
EXPORT_SYMBOL_GPL();

/*
 * In the nonblocking case we do not attempt to perform garbage
 * collection if we do not have enough free space. Rather, we do the
 * bare minimum check and give up immediately if the available space
 * is below EFI_MIN_RESERVE.
 *
 * This function is intended to be small and simple because it is
 * invoked from crash handler paths.
 */
static efi_status_t
query_variable_store_nonblocking(u32 attributes, unsigned long size)
{}

/*
 * Some firmware implementations refuse to boot if there's insufficient space
 * in the variable store. Ensure that we never use more than a safe limit.
 *
 * Return EFI_SUCCESS if it is safe to write 'size' bytes to the variable
 * store.
 */
efi_status_t efi_query_variable_store(u32 attributes, unsigned long size,
				      bool nonblocking)
{}
EXPORT_SYMBOL_GPL();

/*
 * The UEFI specification makes it clear that the operating system is
 * free to do whatever it wants with boot services code after
 * ExitBootServices() has been called. Ignoring this recommendation a
 * significant bunch of EFI implementations continue calling into boot
 * services code (SetVirtualAddressMap). In order to work around such
 * buggy implementations we reserve boot services region during EFI
 * init and make sure it stays executable. Then, after
 * SetVirtualAddressMap(), it is discarded.
 *
 * However, some boot services regions contain data that is required
 * by drivers, so we need to track which memory ranges can never be
 * freed. This is done by tagging those regions with the
 * EFI_MEMORY_RUNTIME attribute.
 *
 * Any driver that wants to mark a region as reserved must use
 * efi_mem_reserve() which will insert a new EFI memory descriptor
 * into efi.memmap (splitting existing regions if necessary) and tag
 * it with EFI_MEMORY_RUNTIME.
 */
void __init efi_arch_mem_reserve(phys_addr_t addr, u64 size)
{}

/*
 * Helper function for efi_reserve_boot_services() to figure out if we
 * can free regions in efi_free_boot_services().
 *
 * Use this function to ensure we do not free regions owned by somebody
 * else. We must only reserve (and then free) regions:
 *
 * - Not within any part of the kernel
 * - Not the BIOS reserved area (E820_TYPE_RESERVED, E820_TYPE_NVS, etc)
 */
static __init bool can_free_region(u64 start, u64 size)
{}

void __init efi_reserve_boot_services(void)
{}

/*
 * Apart from having VA mappings for EFI boot services code/data regions,
 * (duplicate) 1:1 mappings were also created as a quirk for buggy firmware. So,
 * unmap both 1:1 and VA mappings.
 */
static void __init efi_unmap_pages(efi_memory_desc_t *md)
{}

void __init efi_free_boot_services(void)
{}

/*
 * A number of config table entries get remapped to virtual addresses
 * after entering EFI virtual mode. However, the kexec kernel requires
 * their physical addresses therefore we pass them via setup_data and
 * correct those entries to their respective physical addresses here.
 *
 * Currently only handles smbios which is necessary for some firmware
 * implementation.
 */
int __init efi_reuse_config(u64 tables, int nr_tables)
{}

void __init efi_apply_memmap_quirks(void)
{}

/*
 * For most modern platforms the preferred method of powering off is via
 * ACPI. However, there are some that are known to require the use of
 * EFI runtime services and for which ACPI does not work at all.
 *
 * Using EFI is a last resort, to be used only if no other option
 * exists.
 */
bool efi_reboot_required(void)
{}

bool efi_poweroff_required(void)
{}

#ifdef CONFIG_EFI_CAPSULE_QUIRK_QUARK_CSH

static int qrk_capsule_setup_info(struct capsule_info *cap_info, void **pkbuff,
				  size_t hdr_bytes)
{
	struct quark_security_header *csh = *pkbuff;

	/* Only process data block that is larger than the security header */
	if (hdr_bytes < sizeof(struct quark_security_header))
		return 0;

	if (csh->csh_signature != QUARK_CSH_SIGNATURE ||
	    csh->headersize != QUARK_SECURITY_HEADER_SIZE)
		return 1;

	/* Only process data block if EFI header is included */
	if (hdr_bytes < QUARK_SECURITY_HEADER_SIZE +
			sizeof(efi_capsule_header_t))
		return 0;

	pr_debug("Quark security header detected\n");

	if (csh->rsvd_next_header != 0) {
		pr_err("multiple Quark security headers not supported\n");
		return -EINVAL;
	}

	*pkbuff += csh->headersize;
	cap_info->total_size = csh->headersize;

	/*
	 * Update the first page pointer to skip over the CSH header.
	 */
	cap_info->phys[0] += csh->headersize;

	/*
	 * cap_info->capsule should point at a virtual mapping of the entire
	 * capsule, starting at the capsule header. Our image has the Quark
	 * security header prepended, so we cannot rely on the default vmap()
	 * mapping created by the generic capsule code.
	 * Given that the Quark firmware does not appear to care about the
	 * virtual mapping, let's just point cap_info->capsule at our copy
	 * of the capsule header.
	 */
	cap_info->capsule = &cap_info->header;

	return 1;
}

static const struct x86_cpu_id efi_capsule_quirk_ids[] = {
	X86_MATCH_VENDOR_FAM_MODEL(INTEL, 5, INTEL_FAM5_QUARK_X1000,
				   &qrk_capsule_setup_info),
	{ }
};

int efi_capsule_setup_info(struct capsule_info *cap_info, void *kbuff,
			   size_t hdr_bytes)
{
	int (*quirk_handler)(struct capsule_info *, void **, size_t);
	const struct x86_cpu_id *id;
	int ret;

	if (hdr_bytes < sizeof(efi_capsule_header_t))
		return 0;

	cap_info->total_size = 0;

	id = x86_match_cpu(efi_capsule_quirk_ids);
	if (id) {
		/*
		 * The quirk handler is supposed to return
		 *  - a value > 0 if the setup should continue, after advancing
		 *    kbuff as needed
		 *  - 0 if not enough hdr_bytes are available yet
		 *  - a negative error code otherwise
		 */
		quirk_handler = (typeof(quirk_handler))id->driver_data;
		ret = quirk_handler(cap_info, &kbuff, hdr_bytes);
		if (ret <= 0)
			return ret;
	}

	memcpy(&cap_info->header, kbuff, sizeof(cap_info->header));

	cap_info->total_size += cap_info->header.imagesize;

	return __efi_capsule_setup_info(cap_info);
}

#endif

/*
 * If any access by any efi runtime service causes a page fault, then,
 * 1. If it's efi_reset_system(), reboot through BIOS.
 * 2. If any other efi runtime service, then
 *    a. Return error status to the efi caller process.
 *    b. Disable EFI Runtime Services forever and
 *    c. Freeze efi_rts_wq and schedule new process.
 *
 * @return: Returns, if the page fault is not handled. This function
 * will never return if the page fault is handled successfully.
 */
void efi_crash_gracefully_on_page_fault(unsigned long phys_addr)
{}