linux/kernel/sched/sched.h

/* SPDX-License-Identifier: GPL-2.0 */
/*
 * Scheduler internal types and methods:
 */
#ifndef _KERNEL_SCHED_SCHED_H
#define _KERNEL_SCHED_SCHED_H

#include <linux/sched/affinity.h>
#include <linux/sched/autogroup.h>
#include <linux/sched/cpufreq.h>
#include <linux/sched/deadline.h>
#include <linux/sched.h>
#include <linux/sched/loadavg.h>
#include <linux/sched/mm.h>
#include <linux/sched/rseq_api.h>
#include <linux/sched/signal.h>
#include <linux/sched/smt.h>
#include <linux/sched/stat.h>
#include <linux/sched/sysctl.h>
#include <linux/sched/task_flags.h>
#include <linux/sched/task.h>
#include <linux/sched/topology.h>

#include <linux/atomic.h>
#include <linux/bitmap.h>
#include <linux/bug.h>
#include <linux/capability.h>
#include <linux/cgroup_api.h>
#include <linux/cgroup.h>
#include <linux/context_tracking.h>
#include <linux/cpufreq.h>
#include <linux/cpumask_api.h>
#include <linux/ctype.h>
#include <linux/file.h>
#include <linux/fs_api.h>
#include <linux/hrtimer_api.h>
#include <linux/interrupt.h>
#include <linux/irq_work.h>
#include <linux/jiffies.h>
#include <linux/kref_api.h>
#include <linux/kthread.h>
#include <linux/ktime_api.h>
#include <linux/lockdep_api.h>
#include <linux/lockdep.h>
#include <linux/minmax.h>
#include <linux/mm.h>
#include <linux/module.h>
#include <linux/mutex_api.h>
#include <linux/plist.h>
#include <linux/poll.h>
#include <linux/proc_fs.h>
#include <linux/profile.h>
#include <linux/psi.h>
#include <linux/rcupdate.h>
#include <linux/seq_file.h>
#include <linux/seqlock.h>
#include <linux/softirq.h>
#include <linux/spinlock_api.h>
#include <linux/static_key.h>
#include <linux/stop_machine.h>
#include <linux/syscalls_api.h>
#include <linux/syscalls.h>
#include <linux/tick.h>
#include <linux/topology.h>
#include <linux/types.h>
#include <linux/u64_stats_sync_api.h>
#include <linux/uaccess.h>
#include <linux/wait_api.h>
#include <linux/wait_bit.h>
#include <linux/workqueue_api.h>
#include <linux/delayacct.h>

#include <trace/events/power.h>
#include <trace/events/sched.h>

#include "../workqueue_internal.h"

struct rq;
struct cfs_rq;
struct rt_rq;
struct sched_group;
struct cpuidle_state;

#ifdef CONFIG_PARAVIRT
# include <asm/paravirt.h>
# include <asm/paravirt_api_clock.h>
#endif

#include <asm/barrier.h>

#include "cpupri.h"
#include "cpudeadline.h"

#ifdef CONFIG_SCHED_DEBUG
#define SCHED_WARN_ON(x)
#else
#define SCHED_WARN_ON
#endif

/* task_struct::on_rq states: */
#define TASK_ON_RQ_QUEUED
#define TASK_ON_RQ_MIGRATING

extern __read_mostly int scheduler_running;

extern unsigned long calc_load_update;
extern atomic_long_t calc_load_tasks;

extern void calc_global_load_tick(struct rq *this_rq);
extern long calc_load_fold_active(struct rq *this_rq, long adjust);

extern void call_trace_sched_update_nr_running(struct rq *rq, int count);

extern int sysctl_sched_rt_period;
extern int sysctl_sched_rt_runtime;
extern int sched_rr_timeslice;

/*
 * Asymmetric CPU capacity bits
 */
struct asym_cap_data {};

extern struct list_head asym_cap_list;

#define cpu_capacity_span(asym_data)

/*
 * Helpers for converting nanosecond timing to jiffy resolution
 */
#define NS_TO_JIFFIES(time)

/*
 * Increase resolution of nice-level calculations for 64-bit architectures.
 * The extra resolution improves shares distribution and load balancing of
 * low-weight task groups (eg. nice +19 on an autogroup), deeper task-group
 * hierarchies, especially on larger systems. This is not a user-visible change
 * and does not change the user-interface for setting shares/weights.
 *
 * We increase resolution only if we have enough bits to allow this increased
 * resolution (i.e. 64-bit). The costs for increasing resolution when 32-bit
 * are pretty high and the returns do not justify the increased costs.
 *
 * Really only required when CONFIG_FAIR_GROUP_SCHED=y is also set, but to
 * increase coverage and consistency always enable it on 64-bit platforms.
 */
#ifdef CONFIG_64BIT
#define NICE_0_LOAD_SHIFT
#define scale_load(w)
#define scale_load_down(w)
#else
#define NICE_0_LOAD_SHIFT
#define scale_load
#define scale_load_down
#endif

/*
 * Task weight (visible to users) and its load (invisible to users) have
 * independent resolution, but they should be well calibrated. We use
 * scale_load() and scale_load_down(w) to convert between them. The
 * following must be true:
 *
 *  scale_load(sched_prio_to_weight[NICE_TO_PRIO(0)-MAX_RT_PRIO]) == NICE_0_LOAD
 *
 */
#define NICE_0_LOAD

/*
 * Single value that decides SCHED_DEADLINE internal math precision.
 * 10 -> just above 1us
 * 9  -> just above 0.5us
 */
#define DL_SCALE

/*
 * Single value that denotes runtime == period, ie unlimited time.
 */
#define RUNTIME_INF

static inline int idle_policy(int policy)
{}

static inline int normal_policy(int policy)
{}

static inline int fair_policy(int policy)
{}

static inline int rt_policy(int policy)
{}

static inline int dl_policy(int policy)
{}

static inline bool valid_policy(int policy)
{}

static inline int task_has_idle_policy(struct task_struct *p)
{}

static inline int task_has_rt_policy(struct task_struct *p)
{}

static inline int task_has_dl_policy(struct task_struct *p)
{}

#define cap_scale(v, s)

static inline void update_avg(u64 *avg, u64 sample)
{}

/*
 * Shifting a value by an exponent greater *or equal* to the size of said value
 * is UB; cap at size-1.
 */
#define shr_bound(val, shift)

/*
 * cgroup weight knobs should use the common MIN, DFL and MAX values which are
 * 1, 100 and 10000 respectively. While it loses a bit of range on both ends, it
 * maps pretty well onto the shares value used by scheduler and the round-trip
 * conversions preserve the original value over the entire range.
 */
static inline unsigned long sched_weight_from_cgroup(unsigned long cgrp_weight)
{}

static inline unsigned long sched_weight_to_cgroup(unsigned long weight)
{}

/*
 * !! For sched_setattr_nocheck() (kernel) only !!
 *
 * This is actually gross. :(
 *
 * It is used to make schedutil kworker(s) higher priority than SCHED_DEADLINE
 * tasks, but still be able to sleep. We need this on platforms that cannot
 * atomically change clock frequency. Remove once fast switching will be
 * available on such platforms.
 *
 * SUGOV stands for SchedUtil GOVernor.
 */
#define SCHED_FLAG_SUGOV

#define SCHED_DL_FLAGS

static inline bool dl_entity_is_special(const struct sched_dl_entity *dl_se)
{}

/*
 * Tells if entity @a should preempt entity @b.
 */
static inline bool dl_entity_preempt(const struct sched_dl_entity *a,
				     const struct sched_dl_entity *b)
{}

/*
 * This is the priority-queue data structure of the RT scheduling class:
 */
struct rt_prio_array {};

struct rt_bandwidth {};

static inline int dl_bandwidth_enabled(void)
{}

/*
 * To keep the bandwidth of -deadline tasks under control
 * we need some place where:
 *  - store the maximum -deadline bandwidth of each cpu;
 *  - cache the fraction of bandwidth that is currently allocated in
 *    each root domain;
 *
 * This is all done in the data structure below. It is similar to the
 * one used for RT-throttling (rt_bandwidth), with the main difference
 * that, since here we are only interested in admission control, we
 * do not decrease any runtime while the group "executes", neither we
 * need a timer to replenish it.
 *
 * With respect to SMP, bandwidth is given on a per root domain basis,
 * meaning that:
 *  - bw (< 100%) is the deadline bandwidth of each CPU;
 *  - total_bw is the currently allocated bandwidth in each root domain;
 */
struct dl_bw {};

extern void init_dl_bw(struct dl_bw *dl_b);
extern int  sched_dl_global_validate(void);
extern void sched_dl_do_global(void);
extern int  sched_dl_overflow(struct task_struct *p, int policy, const struct sched_attr *attr);
extern void __setparam_dl(struct task_struct *p, const struct sched_attr *attr);
extern void __getparam_dl(struct task_struct *p, struct sched_attr *attr);
extern bool __checkparam_dl(const struct sched_attr *attr);
extern bool dl_param_changed(struct task_struct *p, const struct sched_attr *attr);
extern int  dl_cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial);
extern int  dl_bw_check_overflow(int cpu);
extern s64 dl_scaled_delta_exec(struct rq *rq, struct sched_dl_entity *dl_se, s64 delta_exec);
/*
 * SCHED_DEADLINE supports servers (nested scheduling) with the following
 * interface:
 *
 *   dl_se::rq -- runqueue we belong to.
 *
 *   dl_se::server_has_tasks() -- used on bandwidth enforcement; we 'stop' the
 *                                server when it runs out of tasks to run.
 *
 *   dl_se::server_pick() -- nested pick_next_task(); we yield the period if this
 *                           returns NULL.
 *
 *   dl_server_update() -- called from update_curr_common(), propagates runtime
 *                         to the server.
 *
 *   dl_server_start()
 *   dl_server_stop()  -- start/stop the server when it has (no) tasks.
 *
 *   dl_server_init() -- initializes the server.
 */
extern void dl_server_update(struct sched_dl_entity *dl_se, s64 delta_exec);
extern void dl_server_start(struct sched_dl_entity *dl_se);
extern void dl_server_stop(struct sched_dl_entity *dl_se);
extern void dl_server_init(struct sched_dl_entity *dl_se, struct rq *rq,
		    dl_server_has_tasks_f has_tasks,
		    dl_server_pick_f pick_task);

extern void dl_server_update_idle_time(struct rq *rq,
		    struct task_struct *p);
extern void fair_server_init(struct rq *rq);
extern void __dl_server_attach_root(struct sched_dl_entity *dl_se, struct rq *rq);
extern int dl_server_apply_params(struct sched_dl_entity *dl_se,
		    u64 runtime, u64 period, bool init);

#ifdef CONFIG_CGROUP_SCHED

extern struct list_head task_groups;

struct cfs_bandwidth {};

/* Task group related information */
struct task_group {};

#ifdef CONFIG_GROUP_SCHED_WEIGHT
#define ROOT_TASK_GROUP_LOAD

/*
 * A weight of 0 or 1 can cause arithmetics problems.
 * A weight of a cfs_rq is the sum of weights of which entities
 * are queued on this cfs_rq, so a weight of a entity should not be
 * too large, so as the shares value of a task group.
 * (The default weight is 1024 - so there's no practical
 *  limitation from this.)
 */
#define MIN_SHARES
#define MAX_SHARES
#endif

tg_visitor;

extern int walk_tg_tree_from(struct task_group *from,
			     tg_visitor down, tg_visitor up, void *data);

/*
 * Iterate the full tree, calling @down when first entering a node and @up when
 * leaving it for the final time.
 *
 * Caller must hold rcu_lock or sufficient equivalent.
 */
static inline int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
{}

static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
{}

extern int tg_nop(struct task_group *tg, void *data);

#ifdef CONFIG_FAIR_GROUP_SCHED
extern void free_fair_sched_group(struct task_group *tg);
extern int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent);
extern void online_fair_sched_group(struct task_group *tg);
extern void unregister_fair_sched_group(struct task_group *tg);
#else
static inline void free_fair_sched_group(struct task_group *tg) { }
static inline int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
{
       return 1;
}
static inline void online_fair_sched_group(struct task_group *tg) { }
static inline void unregister_fair_sched_group(struct task_group *tg) { }
#endif

extern void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
			struct sched_entity *se, int cpu,
			struct sched_entity *parent);
extern void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b, struct cfs_bandwidth *parent);

extern void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b);
extern void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
extern void unthrottle_cfs_rq(struct cfs_rq *cfs_rq);
extern bool cfs_task_bw_constrained(struct task_struct *p);

extern void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
		struct sched_rt_entity *rt_se, int cpu,
		struct sched_rt_entity *parent);
extern int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us);
extern int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us);
extern long sched_group_rt_runtime(struct task_group *tg);
extern long sched_group_rt_period(struct task_group *tg);
extern int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk);

extern struct task_group *sched_create_group(struct task_group *parent);
extern void sched_online_group(struct task_group *tg,
			       struct task_group *parent);
extern void sched_destroy_group(struct task_group *tg);
extern void sched_release_group(struct task_group *tg);

extern void sched_move_task(struct task_struct *tsk);

#ifdef CONFIG_FAIR_GROUP_SCHED
extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);

extern int sched_group_set_idle(struct task_group *tg, long idle);

#ifdef CONFIG_SMP
extern void set_task_rq_fair(struct sched_entity *se,
			     struct cfs_rq *prev, struct cfs_rq *next);
#else /* !CONFIG_SMP */
static inline void set_task_rq_fair(struct sched_entity *se,
			     struct cfs_rq *prev, struct cfs_rq *next) { }
#endif /* CONFIG_SMP */
#else /* !CONFIG_FAIR_GROUP_SCHED */
static inline int sched_group_set_shares(struct task_group *tg, unsigned long shares) { return 0; }
static inline int sched_group_set_idle(struct task_group *tg, long idle) { return 0; }
#endif /* CONFIG_FAIR_GROUP_SCHED */

#else /* CONFIG_CGROUP_SCHED */

struct cfs_bandwidth { };

static inline bool cfs_task_bw_constrained(struct task_struct *p) { return false; }

#endif	/* CONFIG_CGROUP_SCHED */

extern void unregister_rt_sched_group(struct task_group *tg);
extern void free_rt_sched_group(struct task_group *tg);
extern int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent);

/*
 * u64_u32_load/u64_u32_store
 *
 * Use a copy of a u64 value to protect against data race. This is only
 * applicable for 32-bits architectures.
 */
#ifdef CONFIG_64BIT
#define u64_u32_load_copy(var, copy)
#define u64_u32_store_copy(var, copy, val)
#else
#define u64_u32_load_copy
#define u64_u32_store_copy
#endif
#define u64_u32_load(var)
#define u64_u32_store(var, val)

struct balance_callback {};

/* CFS-related fields in a runqueue */
struct cfs_rq {};

#ifdef CONFIG_SCHED_CLASS_EXT
/* scx_rq->flags, protected by the rq lock */
enum scx_rq_flags {
	/*
	 * A hotplugged CPU starts scheduling before rq_online_scx(). Track
	 * ops.cpu_on/offline() state so that ops.enqueue/dispatch() are called
	 * only while the BPF scheduler considers the CPU to be online.
	 */
	SCX_RQ_ONLINE		= 1 << 0,
	SCX_RQ_CAN_STOP_TICK	= 1 << 1,
	SCX_RQ_BAL_KEEP		= 1 << 2, /* balance decided to keep current */
	SCX_RQ_BYPASSING	= 1 << 3,

	SCX_RQ_IN_WAKEUP	= 1 << 16,
	SCX_RQ_IN_BALANCE	= 1 << 17,
};

struct scx_rq {
	struct scx_dispatch_q	local_dsq;
	struct list_head	runnable_list;		/* runnable tasks on this rq */
	struct list_head	ddsp_deferred_locals;	/* deferred ddsps from enq */
	unsigned long		ops_qseq;
	u64			extra_enq_flags;	/* see move_task_to_local_dsq() */
	u32			nr_running;
	u32			flags;
	u32			cpuperf_target;		/* [0, SCHED_CAPACITY_SCALE] */
	bool			cpu_released;
	cpumask_var_t		cpus_to_kick;
	cpumask_var_t		cpus_to_kick_if_idle;
	cpumask_var_t		cpus_to_preempt;
	cpumask_var_t		cpus_to_wait;
	unsigned long		pnt_seq;
	struct balance_callback	deferred_bal_cb;
	struct irq_work		deferred_irq_work;
	struct irq_work		kick_cpus_irq_work;
};
#endif /* CONFIG_SCHED_CLASS_EXT */

static inline int rt_bandwidth_enabled(void)
{}

/* RT IPI pull logic requires IRQ_WORK */
#if defined(CONFIG_IRQ_WORK) && defined(CONFIG_SMP)
#define HAVE_RT_PUSH_IPI
#endif

/* Real-Time classes' related field in a runqueue: */
struct rt_rq {};

static inline bool rt_rq_is_runnable(struct rt_rq *rt_rq)
{}

/* Deadline class' related fields in a runqueue */
struct dl_rq {};

#ifdef CONFIG_FAIR_GROUP_SCHED

/* An entity is a task if it doesn't "own" a runqueue */
#define entity_is_task(se)

static inline void se_update_runnable(struct sched_entity *se)
{}

static inline long se_runnable(struct sched_entity *se)
{}

#else /* !CONFIG_FAIR_GROUP_SCHED: */

#define entity_is_task

static inline void se_update_runnable(struct sched_entity *se) { }

static inline long se_runnable(struct sched_entity *se)
{
	if (se->sched_delayed)
		return false;

	return !!se->on_rq;
}

#endif /* !CONFIG_FAIR_GROUP_SCHED */

#ifdef CONFIG_SMP
/*
 * XXX we want to get rid of these helpers and use the full load resolution.
 */
static inline long se_weight(struct sched_entity *se)
{}


static inline bool sched_asym_prefer(int a, int b)
{}

struct perf_domain {};

/*
 * We add the notion of a root-domain which will be used to define per-domain
 * variables. Each exclusive cpuset essentially defines an island domain by
 * fully partitioning the member CPUs from any other cpuset. Whenever a new
 * exclusive cpuset is created, we also create and attach a new root-domain
 * object.
 *
 */
struct root_domain {};

extern void init_defrootdomain(void);
extern int sched_init_domains(const struct cpumask *cpu_map);
extern void rq_attach_root(struct rq *rq, struct root_domain *rd);
extern void sched_get_rd(struct root_domain *rd);
extern void sched_put_rd(struct root_domain *rd);

static inline int get_rd_overloaded(struct root_domain *rd)
{}

static inline void set_rd_overloaded(struct root_domain *rd, int status)
{}

#ifdef HAVE_RT_PUSH_IPI
extern void rto_push_irq_work_func(struct irq_work *work);
#endif
#endif /* CONFIG_SMP */

#ifdef CONFIG_UCLAMP_TASK
/*
 * struct uclamp_bucket - Utilization clamp bucket
 * @value: utilization clamp value for tasks on this clamp bucket
 * @tasks: number of RUNNABLE tasks on this clamp bucket
 *
 * Keep track of how many tasks are RUNNABLE for a given utilization
 * clamp value.
 */
struct uclamp_bucket {};

/*
 * struct uclamp_rq - rq's utilization clamp
 * @value: currently active clamp values for a rq
 * @bucket: utilization clamp buckets affecting a rq
 *
 * Keep track of RUNNABLE tasks on a rq to aggregate their clamp values.
 * A clamp value is affecting a rq when there is at least one task RUNNABLE
 * (or actually running) with that value.
 *
 * There are up to UCLAMP_CNT possible different clamp values, currently there
 * are only two: minimum utilization and maximum utilization.
 *
 * All utilization clamping values are MAX aggregated, since:
 * - for util_min: we want to run the CPU at least at the max of the minimum
 *   utilization required by its currently RUNNABLE tasks.
 * - for util_max: we want to allow the CPU to run up to the max of the
 *   maximum utilization allowed by its currently RUNNABLE tasks.
 *
 * Since on each system we expect only a limited number of different
 * utilization clamp values (UCLAMP_BUCKETS), use a simple array to track
 * the metrics required to compute all the per-rq utilization clamp values.
 */
struct uclamp_rq {};

DECLARE_STATIC_KEY_FALSE(sched_uclamp_used);
#endif /* CONFIG_UCLAMP_TASK */

/*
 * This is the main, per-CPU runqueue data structure.
 *
 * Locking rule: those places that want to lock multiple runqueues
 * (such as the load balancing or the thread migration code), lock
 * acquire operations must be ordered by ascending &runqueue.
 */
struct rq {};

#ifdef CONFIG_FAIR_GROUP_SCHED

/* CPU runqueue to which this cfs_rq is attached */
static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
{}

#else

static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
{
	return container_of(cfs_rq, struct rq, cfs);
}
#endif

static inline int cpu_of(struct rq *rq)
{}

#define MDF_PUSH

static inline bool is_migration_disabled(struct task_struct *p)
{}

DECLARE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);

#define cpu_rq(cpu)
#define this_rq()
#define task_rq(p)
#define cpu_curr(cpu)
#define raw_rq()

#ifdef CONFIG_SCHED_CORE
static inline struct cpumask *sched_group_span(struct sched_group *sg);

DECLARE_STATIC_KEY_FALSE(__sched_core_enabled);

static inline bool sched_core_enabled(struct rq *rq)
{}

static inline bool sched_core_disabled(void)
{}

/*
 * Be careful with this function; not for general use. The return value isn't
 * stable unless you actually hold a relevant rq->__lock.
 */
static inline raw_spinlock_t *rq_lockp(struct rq *rq)
{}

static inline raw_spinlock_t *__rq_lockp(struct rq *rq)
{}

extern bool
cfs_prio_less(const struct task_struct *a, const struct task_struct *b, bool fi);

extern void task_vruntime_update(struct rq *rq, struct task_struct *p, bool in_fi);

/*
 * Helpers to check if the CPU's core cookie matches with the task's cookie
 * when core scheduling is enabled.
 * A special case is that the task's cookie always matches with CPU's core
 * cookie if the CPU is in an idle core.
 */
static inline bool sched_cpu_cookie_match(struct rq *rq, struct task_struct *p)
{}

static inline bool sched_core_cookie_match(struct rq *rq, struct task_struct *p)
{}

static inline bool sched_group_cookie_match(struct rq *rq,
					    struct task_struct *p,
					    struct sched_group *group)
{}

static inline bool sched_core_enqueued(struct task_struct *p)
{}

extern void sched_core_enqueue(struct rq *rq, struct task_struct *p);
extern void sched_core_dequeue(struct rq *rq, struct task_struct *p, int flags);

extern void sched_core_get(void);
extern void sched_core_put(void);

#else /* !CONFIG_SCHED_CORE: */

static inline bool sched_core_enabled(struct rq *rq)
{
	return false;
}

static inline bool sched_core_disabled(void)
{
	return true;
}

static inline raw_spinlock_t *rq_lockp(struct rq *rq)
{
	return &rq->__lock;
}

static inline raw_spinlock_t *__rq_lockp(struct rq *rq)
{
	return &rq->__lock;
}

static inline bool sched_cpu_cookie_match(struct rq *rq, struct task_struct *p)
{
	return true;
}

static inline bool sched_core_cookie_match(struct rq *rq, struct task_struct *p)
{
	return true;
}

static inline bool sched_group_cookie_match(struct rq *rq,
					    struct task_struct *p,
					    struct sched_group *group)
{
	return true;
}

#endif /* !CONFIG_SCHED_CORE */

static inline void lockdep_assert_rq_held(struct rq *rq)
{}

extern void raw_spin_rq_lock_nested(struct rq *rq, int subclass);
extern bool raw_spin_rq_trylock(struct rq *rq);
extern void raw_spin_rq_unlock(struct rq *rq);

static inline void raw_spin_rq_lock(struct rq *rq)
{}

static inline void raw_spin_rq_lock_irq(struct rq *rq)
{}

static inline void raw_spin_rq_unlock_irq(struct rq *rq)
{}

static inline unsigned long _raw_spin_rq_lock_irqsave(struct rq *rq)
{}

static inline void raw_spin_rq_unlock_irqrestore(struct rq *rq, unsigned long flags)
{}

#define raw_spin_rq_lock_irqsave(rq, flags)

#ifdef CONFIG_SCHED_SMT
extern void __update_idle_core(struct rq *rq);

static inline void update_idle_core(struct rq *rq)
{}

#else
static inline void update_idle_core(struct rq *rq) { }
#endif

#ifdef CONFIG_FAIR_GROUP_SCHED

static inline struct task_struct *task_of(struct sched_entity *se)
{}

static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
{}

/* runqueue on which this entity is (to be) queued */
static inline struct cfs_rq *cfs_rq_of(const struct sched_entity *se)
{}

/* runqueue "owned" by this group */
static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
{}

#else /* !CONFIG_FAIR_GROUP_SCHED: */

#define task_of

static inline struct cfs_rq *task_cfs_rq(const struct task_struct *p)
{
	return &task_rq(p)->cfs;
}

static inline struct cfs_rq *cfs_rq_of(const struct sched_entity *se)
{
	const struct task_struct *p = task_of(se);
	struct rq *rq = task_rq(p);

	return &rq->cfs;
}

/* runqueue "owned" by this group */
static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
{
	return NULL;
}

#endif /* !CONFIG_FAIR_GROUP_SCHED */

extern void update_rq_clock(struct rq *rq);

/*
 * rq::clock_update_flags bits
 *
 * %RQCF_REQ_SKIP - will request skipping of clock update on the next
 *  call to __schedule(). This is an optimisation to avoid
 *  neighbouring rq clock updates.
 *
 * %RQCF_ACT_SKIP - is set from inside of __schedule() when skipping is
 *  in effect and calls to update_rq_clock() are being ignored.
 *
 * %RQCF_UPDATED - is a debug flag that indicates whether a call has been
 *  made to update_rq_clock() since the last time rq::lock was pinned.
 *
 * If inside of __schedule(), clock_update_flags will have been
 * shifted left (a left shift is a cheap operation for the fast path
 * to promote %RQCF_REQ_SKIP to %RQCF_ACT_SKIP), so you must use,
 *
 *	if (rq-clock_update_flags >= RQCF_UPDATED)
 *
 * to check if %RQCF_UPDATED is set. It'll never be shifted more than
 * one position though, because the next rq_unpin_lock() will shift it
 * back.
 */
#define RQCF_REQ_SKIP
#define RQCF_ACT_SKIP
#define RQCF_UPDATED

static inline void assert_clock_updated(struct rq *rq)
{}

static inline u64 rq_clock(struct rq *rq)
{}

static inline u64 rq_clock_task(struct rq *rq)
{}

static inline void rq_clock_skip_update(struct rq *rq)
{}

/*
 * See rt task throttling, which is the only time a skip
 * request is canceled.
 */
static inline void rq_clock_cancel_skipupdate(struct rq *rq)
{}

/*
 * During cpu offlining and rq wide unthrottling, we can trigger
 * an update_rq_clock() for several cfs and rt runqueues (Typically
 * when using list_for_each_entry_*)
 * rq_clock_start_loop_update() can be called after updating the clock
 * once and before iterating over the list to prevent multiple update.
 * After the iterative traversal, we need to call rq_clock_stop_loop_update()
 * to clear RQCF_ACT_SKIP of rq->clock_update_flags.
 */
static inline void rq_clock_start_loop_update(struct rq *rq)
{}

static inline void rq_clock_stop_loop_update(struct rq *rq)
{}

struct rq_flags {};

extern struct balance_callback balance_push_callback;

/*
 * Lockdep annotation that avoids accidental unlocks; it's like a
 * sticky/continuous lockdep_assert_held().
 *
 * This avoids code that has access to 'struct rq *rq' (basically everything in
 * the scheduler) from accidentally unlocking the rq if they do not also have a
 * copy of the (on-stack) 'struct rq_flags rf'.
 *
 * Also see Documentation/locking/lockdep-design.rst.
 */
static inline void rq_pin_lock(struct rq *rq, struct rq_flags *rf)
{}

static inline void rq_unpin_lock(struct rq *rq, struct rq_flags *rf)
{}

static inline void rq_repin_lock(struct rq *rq, struct rq_flags *rf)
{}

extern
struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
	__acquires();

extern
struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
	__acquires()
	__acquires();

static inline void __task_rq_unlock(struct rq *rq, struct rq_flags *rf)
	__releases(rq->lock)
{}

static inline void
task_rq_unlock(struct rq *rq, struct task_struct *p, struct rq_flags *rf)
	__releases(rq->lock)
	__releases(p->pi_lock)
{}

DEFINE_LOCK_GUARD_1(task_rq_lock, struct task_struct,
		    _T->rq =

static inline void rq_lock_irqsave(struct rq *rq, struct rq_flags *rf)
	__acquires(rq->lock)
{}

static inline void rq_lock_irq(struct rq *rq, struct rq_flags *rf)
	__acquires(rq->lock)
{}

static inline void rq_lock(struct rq *rq, struct rq_flags *rf)
	__acquires(rq->lock)
{}

static inline void rq_unlock_irqrestore(struct rq *rq, struct rq_flags *rf)
	__releases(rq->lock)
{}

static inline void rq_unlock_irq(struct rq *rq, struct rq_flags *rf)
	__releases(rq->lock)
{}

static inline void rq_unlock(struct rq *rq, struct rq_flags *rf)
	__releases(rq->lock)
{}

DEFINE_LOCK_GUARD_1(rq_lock, struct rq,
		    rq_lock(_T->lock, &_T->rf),
		    rq_unlock(_T->lock, &_T->rf),
		    } 

DEFINE_LOCK_GUARD_1(rq_lock_irq, struct rq,
		    rq_lock_irq(_T->lock, &_T->rf),
		    rq_unlock_irq(_T->lock, &_T->rf),
		    } 

DEFINE_LOCK_GUARD_1(rq_lock_irqsave, struct rq,
		    rq_lock_irqsave(_T->lock, &_T->rf),
		    rq_unlock_irqrestore(_T->lock, &_T->rf),
		    } 

static inline struct rq *this_rq_lock_irq(struct rq_flags *rf)
	__acquires(rq->lock)
{}

#ifdef CONFIG_NUMA

enum numa_topology_type {};

extern enum numa_topology_type sched_numa_topology_type;
extern int sched_max_numa_distance;
extern bool find_numa_distance(int distance);
extern void sched_init_numa(int offline_node);
extern void sched_update_numa(int cpu, bool online);
extern void sched_domains_numa_masks_set(unsigned int cpu);
extern void sched_domains_numa_masks_clear(unsigned int cpu);
extern int sched_numa_find_closest(const struct cpumask *cpus, int cpu);

#else /* !CONFIG_NUMA: */

static inline void sched_init_numa(int offline_node) { }
static inline void sched_update_numa(int cpu, bool online) { }
static inline void sched_domains_numa_masks_set(unsigned int cpu) { }
static inline void sched_domains_numa_masks_clear(unsigned int cpu) { }

static inline int sched_numa_find_closest(const struct cpumask *cpus, int cpu)
{
	return nr_cpu_ids;
}

#endif /* !CONFIG_NUMA */

#ifdef CONFIG_NUMA_BALANCING

/* The regions in numa_faults array from task_struct */
enum numa_faults_stats {};

extern void sched_setnuma(struct task_struct *p, int node);
extern int migrate_task_to(struct task_struct *p, int cpu);
extern int migrate_swap(struct task_struct *p, struct task_struct *t,
			int cpu, int scpu);
extern void init_numa_balancing(unsigned long clone_flags, struct task_struct *p);

#else /* !CONFIG_NUMA_BALANCING: */

static inline void
init_numa_balancing(unsigned long clone_flags, struct task_struct *p)
{
}

#endif /* !CONFIG_NUMA_BALANCING */

#ifdef CONFIG_SMP

static inline void
queue_balance_callback(struct rq *rq,
		       struct balance_callback *head,
		       void (*func)(struct rq *rq))
{}

#define rcu_dereference_check_sched_domain(p)

/*
 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
 * See destroy_sched_domains: call_rcu for details.
 *
 * The domain tree of any CPU may only be accessed from within
 * preempt-disabled sections.
 */
#define for_each_domain(cpu, __sd)

/* A mask of all the SD flags that have the SDF_SHARED_CHILD metaflag */
#define SD_FLAG
static const unsigned int SD_SHARED_CHILD_MASK =;
#undef SD_FLAG

/**
 * highest_flag_domain - Return highest sched_domain containing flag.
 * @cpu:	The CPU whose highest level of sched domain is to
 *		be returned.
 * @flag:	The flag to check for the highest sched_domain
 *		for the given CPU.
 *
 * Returns the highest sched_domain of a CPU which contains @flag. If @flag has
 * the SDF_SHARED_CHILD metaflag, all the children domains also have @flag.
 */
static inline struct sched_domain *highest_flag_domain(int cpu, int flag)
{}

static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
{}

DECLARE_PER_CPU(struct sched_domain __rcu *, sd_llc);
DECLARE_PER_CPU(int, sd_llc_size);
DECLARE_PER_CPU(int, sd_llc_id);
DECLARE_PER_CPU(int, sd_share_id);
DECLARE_PER_CPU(struct sched_domain_shared __rcu *, sd_llc_shared);
DECLARE_PER_CPU(struct sched_domain __rcu *, sd_numa);
DECLARE_PER_CPU(struct sched_domain __rcu *, sd_asym_packing);
DECLARE_PER_CPU(struct sched_domain __rcu *, sd_asym_cpucapacity);

extern struct static_key_false sched_asym_cpucapacity;
extern struct static_key_false sched_cluster_active;

static __always_inline bool sched_asym_cpucap_active(void)
{}

struct sched_group_capacity {};

struct sched_group {};

static inline struct cpumask *sched_group_span(struct sched_group *sg)
{}

/*
 * See build_balance_mask().
 */
static inline struct cpumask *group_balance_mask(struct sched_group *sg)
{}

extern int group_balance_cpu(struct sched_group *sg);

#ifdef CONFIG_SCHED_DEBUG
extern void update_sched_domain_debugfs(void);
extern void dirty_sched_domain_sysctl(int cpu);
#else
static inline void update_sched_domain_debugfs(void) { }
static inline void dirty_sched_domain_sysctl(int cpu) { }
#endif

extern int sched_update_scaling(void);

static inline const struct cpumask *task_user_cpus(struct task_struct *p)
{}

#endif /* CONFIG_SMP */

#include "stats.h"

#if defined(CONFIG_SCHED_CORE) && defined(CONFIG_SCHEDSTATS)

extern void __sched_core_account_forceidle(struct rq *rq);

static inline void sched_core_account_forceidle(struct rq *rq)
{}

extern void __sched_core_tick(struct rq *rq);

static inline void sched_core_tick(struct rq *rq)
{}

#else /* !(CONFIG_SCHED_CORE && CONFIG_SCHEDSTATS): */

static inline void sched_core_account_forceidle(struct rq *rq) { }

static inline void sched_core_tick(struct rq *rq) { }

#endif /* !(CONFIG_SCHED_CORE && CONFIG_SCHEDSTATS) */

#ifdef CONFIG_CGROUP_SCHED

/*
 * Return the group to which this tasks belongs.
 *
 * We cannot use task_css() and friends because the cgroup subsystem
 * changes that value before the cgroup_subsys::attach() method is called,
 * therefore we cannot pin it and might observe the wrong value.
 *
 * The same is true for autogroup's p->signal->autogroup->tg, the autogroup
 * core changes this before calling sched_move_task().
 *
 * Instead we use a 'copy' which is updated from sched_move_task() while
 * holding both task_struct::pi_lock and rq::lock.
 */
static inline struct task_group *task_group(struct task_struct *p)
{}

/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
{}

#else /* !CONFIG_CGROUP_SCHED: */

static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }

static inline struct task_group *task_group(struct task_struct *p)
{
	return NULL;
}

#endif /* !CONFIG_CGROUP_SCHED */

static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
{}

/*
 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
 */
#ifdef CONFIG_SCHED_DEBUG
#define const_debug
#else
#define const_debug
#endif

#define SCHED_FEAT

enum {};

#undef SCHED_FEAT

#ifdef CONFIG_SCHED_DEBUG

/*
 * To support run-time toggling of sched features, all the translation units
 * (but core.c) reference the sysctl_sched_features defined in core.c.
 */
extern const_debug unsigned int sysctl_sched_features;

#ifdef CONFIG_JUMP_LABEL

#define SCHED_FEAT

#include "features.h"
#undef SCHED_FEAT

extern struct static_key sched_feat_keys[__SCHED_FEAT_NR];
#define sched_feat(x)

#else /* !CONFIG_JUMP_LABEL: */

#define sched_feat

#endif /* !CONFIG_JUMP_LABEL */

#else /* !SCHED_DEBUG: */

/*
 * Each translation unit has its own copy of sysctl_sched_features to allow
 * constants propagation at compile time and compiler optimization based on
 * features default.
 */
#define SCHED_FEAT
static const_debug __maybe_unused unsigned int sysctl_sched_features =
#include "features.h"
	0;
#undef SCHED_FEAT

#define sched_feat

#endif /* !SCHED_DEBUG */

extern struct static_key_false sched_numa_balancing;
extern struct static_key_false sched_schedstats;

static inline u64 global_rt_period(void)
{}

static inline u64 global_rt_runtime(void)
{}

static inline int task_current(struct rq *rq, struct task_struct *p)
{}

static inline int task_on_cpu(struct rq *rq, struct task_struct *p)
{}

static inline int task_on_rq_queued(struct task_struct *p)
{}

static inline int task_on_rq_migrating(struct task_struct *p)
{}

/* Wake flags. The first three directly map to some SD flag value */
#define WF_EXEC
#define WF_FORK
#define WF_TTWU

#define WF_SYNC
#define WF_MIGRATED
#define WF_CURRENT_CPU
#define WF_RQ_SELECTED

#ifdef CONFIG_SMP
static_assert();
static_assert();
static_assert();
#endif

/*
 * To aid in avoiding the subversion of "niceness" due to uneven distribution
 * of tasks with abnormal "nice" values across CPUs the contribution that
 * each task makes to its run queue's load is weighted according to its
 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
 * scaled version of the new time slice allocation that they receive on time
 * slice expiry etc.
 */

#define WEIGHT_IDLEPRIO
#define WMULT_IDLEPRIO

extern const int		sched_prio_to_weight[40];
extern const u32		sched_prio_to_wmult[40];

/*
 * {de,en}queue flags:
 *
 * DEQUEUE_SLEEP  - task is no longer runnable
 * ENQUEUE_WAKEUP - task just became runnable
 *
 * SAVE/RESTORE - an otherwise spurious dequeue/enqueue, done to ensure tasks
 *                are in a known state which allows modification. Such pairs
 *                should preserve as much state as possible.
 *
 * MOVE - paired with SAVE/RESTORE, explicitly does not preserve the location
 *        in the runqueue.
 *
 * NOCLOCK - skip the update_rq_clock() (avoids double updates)
 *
 * MIGRATION - p->on_rq == TASK_ON_RQ_MIGRATING (used for DEADLINE)
 *
 * ENQUEUE_HEAD      - place at front of runqueue (tail if not specified)
 * ENQUEUE_REPLENISH - CBS (replenish runtime and postpone deadline)
 * ENQUEUE_MIGRATED  - the task was migrated during wakeup
 * ENQUEUE_RQ_SELECTED - ->select_task_rq() was called
 *
 */

#define DEQUEUE_SLEEP
#define DEQUEUE_SAVE
#define DEQUEUE_MOVE
#define DEQUEUE_NOCLOCK
#define DEQUEUE_SPECIAL
#define DEQUEUE_MIGRATING
#define DEQUEUE_DELAYED

#define ENQUEUE_WAKEUP
#define ENQUEUE_RESTORE
#define ENQUEUE_MOVE
#define ENQUEUE_NOCLOCK

#define ENQUEUE_HEAD
#define ENQUEUE_REPLENISH
#ifdef CONFIG_SMP
#define ENQUEUE_MIGRATED
#else
#define ENQUEUE_MIGRATED
#endif
#define ENQUEUE_INITIAL
#define ENQUEUE_MIGRATING
#define ENQUEUE_DELAYED
#define ENQUEUE_RQ_SELECTED

#define RETRY_TASK

struct affinity_context {};

extern s64 update_curr_common(struct rq *rq);

struct sched_class {};

static inline void put_prev_task(struct rq *rq, struct task_struct *prev)
{}

static inline void set_next_task(struct rq *rq, struct task_struct *next)
{}

static inline void
__put_prev_set_next_dl_server(struct rq *rq,
			      struct task_struct *prev,
			      struct task_struct *next)
{}

static inline void put_prev_set_next_task(struct rq *rq,
					  struct task_struct *prev,
					  struct task_struct *next)
{}

/*
 * Helper to define a sched_class instance; each one is placed in a separate
 * section which is ordered by the linker script:
 *
 *   include/asm-generic/vmlinux.lds.h
 *
 * *CAREFUL* they are laid out in *REVERSE* order!!!
 *
 * Also enforce alignment on the instance, not the type, to guarantee layout.
 */
#define DEFINE_SCHED_CLASS(name)

/* Defined in include/asm-generic/vmlinux.lds.h */
extern struct sched_class __sched_class_highest[];
extern struct sched_class __sched_class_lowest[];

extern const struct sched_class stop_sched_class;
extern const struct sched_class dl_sched_class;
extern const struct sched_class rt_sched_class;
extern const struct sched_class fair_sched_class;
extern const struct sched_class idle_sched_class;

#ifdef CONFIG_SCHED_CLASS_EXT
extern const struct sched_class ext_sched_class;

DECLARE_STATIC_KEY_FALSE(__scx_ops_enabled);	/* SCX BPF scheduler loaded */
DECLARE_STATIC_KEY_FALSE(__scx_switched_all);	/* all fair class tasks on SCX */

#define scx_enabled
#define scx_switched_all
#else /* !CONFIG_SCHED_CLASS_EXT */
#define scx_enabled()
#define scx_switched_all()
#endif /* !CONFIG_SCHED_CLASS_EXT */

/*
 * Iterate only active classes. SCX can take over all fair tasks or be
 * completely disabled. If the former, skip fair. If the latter, skip SCX.
 */
static inline const struct sched_class *next_active_class(const struct sched_class *class)
{}

#define for_class_range(class, _from, _to)

#define for_each_class(class)

#define for_active_class_range(class, _from, _to)

#define for_each_active_class(class)

#define sched_class_above(_a, _b)

static inline bool sched_stop_runnable(struct rq *rq)
{}

static inline bool sched_dl_runnable(struct rq *rq)
{}

static inline bool sched_rt_runnable(struct rq *rq)
{}

static inline bool sched_fair_runnable(struct rq *rq)
{}

extern struct task_struct *pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf);
extern struct task_struct *pick_task_idle(struct rq *rq);

#define SCA_CHECK
#define SCA_MIGRATE_DISABLE
#define SCA_MIGRATE_ENABLE
#define SCA_USER

#ifdef CONFIG_SMP

extern void update_group_capacity(struct sched_domain *sd, int cpu);

extern void sched_balance_trigger(struct rq *rq);

extern int __set_cpus_allowed_ptr(struct task_struct *p, struct affinity_context *ctx);
extern void set_cpus_allowed_common(struct task_struct *p, struct affinity_context *ctx);

static inline bool task_allowed_on_cpu(struct task_struct *p, int cpu)
{}

static inline cpumask_t *alloc_user_cpus_ptr(int node)
{}

static inline struct task_struct *get_push_task(struct rq *rq)
{}

extern int push_cpu_stop(void *arg);

#else /* !CONFIG_SMP: */

static inline bool task_allowed_on_cpu(struct task_struct *p, int cpu)
{
	return true;
}

static inline int __set_cpus_allowed_ptr(struct task_struct *p,
					 struct affinity_context *ctx)
{
	return set_cpus_allowed_ptr(p, ctx->new_mask);
}

static inline cpumask_t *alloc_user_cpus_ptr(int node)
{
	return NULL;
}

#endif /* !CONFIG_SMP */

#ifdef CONFIG_CPU_IDLE

static inline void idle_set_state(struct rq *rq,
				  struct cpuidle_state *idle_state)
{}

static inline struct cpuidle_state *idle_get_state(struct rq *rq)
{}

#else /* !CONFIG_CPU_IDLE: */

static inline void idle_set_state(struct rq *rq,
				  struct cpuidle_state *idle_state)
{
}

static inline struct cpuidle_state *idle_get_state(struct rq *rq)
{
	return NULL;
}

#endif /* !CONFIG_CPU_IDLE */

extern void schedule_idle(void);
asmlinkage void schedule_user(void);

extern void sysrq_sched_debug_show(void);
extern void sched_init_granularity(void);
extern void update_max_interval(void);

extern void init_sched_dl_class(void);
extern void init_sched_rt_class(void);
extern void init_sched_fair_class(void);

extern void resched_curr(struct rq *rq);
extern void resched_cpu(int cpu);

extern void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime);
extern bool sched_rt_bandwidth_account(struct rt_rq *rt_rq);

extern void init_dl_entity(struct sched_dl_entity *dl_se);

#define BW_SHIFT
#define BW_UNIT
#define RATIO_SHIFT
#define MAX_BW_BITS
#define MAX_BW

extern unsigned long to_ratio(u64 period, u64 runtime);

extern void init_entity_runnable_average(struct sched_entity *se);
extern void post_init_entity_util_avg(struct task_struct *p);

#ifdef CONFIG_NO_HZ_FULL
extern bool sched_can_stop_tick(struct rq *rq);
extern int __init sched_tick_offload_init(void);

/*
 * Tick may be needed by tasks in the runqueue depending on their policy and
 * requirements. If tick is needed, lets send the target an IPI to kick it out of
 * nohz mode if necessary.
 */
static inline void sched_update_tick_dependency(struct rq *rq)
{
	int cpu = cpu_of(rq);

	if (!tick_nohz_full_cpu(cpu))
		return;

	if (sched_can_stop_tick(rq))
		tick_nohz_dep_clear_cpu(cpu, TICK_DEP_BIT_SCHED);
	else
		tick_nohz_dep_set_cpu(cpu, TICK_DEP_BIT_SCHED);
}
#else /* !CONFIG_NO_HZ_FULL: */
static inline int sched_tick_offload_init(void) {}
static inline void sched_update_tick_dependency(struct rq *rq) {}
#endif /* !CONFIG_NO_HZ_FULL */

static inline void add_nr_running(struct rq *rq, unsigned count)
{}

static inline void sub_nr_running(struct rq *rq, unsigned count)
{}

static inline void __block_task(struct rq *rq, struct task_struct *p)
{}

extern void activate_task(struct rq *rq, struct task_struct *p, int flags);
extern void deactivate_task(struct rq *rq, struct task_struct *p, int flags);

extern void wakeup_preempt(struct rq *rq, struct task_struct *p, int flags);

#ifdef CONFIG_PREEMPT_RT
#define SCHED_NR_MIGRATE_BREAK
#else
#define SCHED_NR_MIGRATE_BREAK
#endif

extern const_debug unsigned int sysctl_sched_nr_migrate;
extern const_debug unsigned int sysctl_sched_migration_cost;

extern unsigned int sysctl_sched_base_slice;

#ifdef CONFIG_SCHED_DEBUG
extern int sysctl_resched_latency_warn_ms;
extern int sysctl_resched_latency_warn_once;

extern unsigned int sysctl_sched_tunable_scaling;

extern unsigned int sysctl_numa_balancing_scan_delay;
extern unsigned int sysctl_numa_balancing_scan_period_min;
extern unsigned int sysctl_numa_balancing_scan_period_max;
extern unsigned int sysctl_numa_balancing_scan_size;
extern unsigned int sysctl_numa_balancing_hot_threshold;
#endif

#ifdef CONFIG_SCHED_HRTICK

/*
 * Use hrtick when:
 *  - enabled by features
 *  - hrtimer is actually high res
 */
static inline int hrtick_enabled(struct rq *rq)
{}

static inline int hrtick_enabled_fair(struct rq *rq)
{}

static inline int hrtick_enabled_dl(struct rq *rq)
{}

extern void hrtick_start(struct rq *rq, u64 delay);

#else /* !CONFIG_SCHED_HRTICK: */

static inline int hrtick_enabled_fair(struct rq *rq)
{
	return 0;
}

static inline int hrtick_enabled_dl(struct rq *rq)
{
	return 0;
}

static inline int hrtick_enabled(struct rq *rq)
{
	return 0;
}

#endif /* !CONFIG_SCHED_HRTICK */

#ifndef arch_scale_freq_tick
static __always_inline void arch_scale_freq_tick(void) { }
#endif

#ifndef arch_scale_freq_capacity
/**
 * arch_scale_freq_capacity - get the frequency scale factor of a given CPU.
 * @cpu: the CPU in question.
 *
 * Return: the frequency scale factor normalized against SCHED_CAPACITY_SCALE, i.e.
 *
 *     f_curr
 *     ------ * SCHED_CAPACITY_SCALE
 *     f_max
 */
static __always_inline
unsigned long arch_scale_freq_capacity(int cpu)
{
	return SCHED_CAPACITY_SCALE;
}
#endif

#ifdef CONFIG_SCHED_DEBUG
/*
 * In double_lock_balance()/double_rq_lock(), we use raw_spin_rq_lock() to
 * acquire rq lock instead of rq_lock(). So at the end of these two functions
 * we need to call double_rq_clock_clear_update() to clear RQCF_UPDATED of
 * rq->clock_update_flags to avoid the WARN_DOUBLE_CLOCK warning.
 */
static inline void double_rq_clock_clear_update(struct rq *rq1, struct rq *rq2)
{}
#else
static inline void double_rq_clock_clear_update(struct rq *rq1, struct rq *rq2) { }
#endif

#define DEFINE_LOCK_GUARD_2(name, type, _lock, _unlock, ...)

#ifdef CONFIG_SMP

static inline bool rq_order_less(struct rq *rq1, struct rq *rq2)
{}

extern void double_rq_lock(struct rq *rq1, struct rq *rq2);

#ifdef CONFIG_PREEMPTION

/*
 * fair double_lock_balance: Safely acquires both rq->locks in a fair
 * way at the expense of forcing extra atomic operations in all
 * invocations.  This assures that the double_lock is acquired using the
 * same underlying policy as the spinlock_t on this architecture, which
 * reduces latency compared to the unfair variant below.  However, it
 * also adds more overhead and therefore may reduce throughput.
 */
static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
	__releases(this_rq->lock)
	__acquires(busiest->lock)
	__acquires(this_rq->lock)
{}

#else /* !CONFIG_PREEMPTION: */
/*
 * Unfair double_lock_balance: Optimizes throughput at the expense of
 * latency by eliminating extra atomic operations when the locks are
 * already in proper order on entry.  This favors lower CPU-ids and will
 * grant the double lock to lower CPUs over higher ids under contention,
 * regardless of entry order into the function.
 */
static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
	__releases(this_rq->lock)
	__acquires(busiest->lock)
	__acquires(this_rq->lock)
{
	if (__rq_lockp(this_rq) == __rq_lockp(busiest) ||
	    likely(raw_spin_rq_trylock(busiest))) {
		double_rq_clock_clear_update(this_rq, busiest);
		return 0;
	}

	if (rq_order_less(this_rq, busiest)) {
		raw_spin_rq_lock_nested(busiest, SINGLE_DEPTH_NESTING);
		double_rq_clock_clear_update(this_rq, busiest);
		return 0;
	}

	raw_spin_rq_unlock(this_rq);
	double_rq_lock(this_rq, busiest);

	return 1;
}

#endif /* !CONFIG_PREEMPTION */

/*
 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
 */
static inline int double_lock_balance(struct rq *this_rq, struct rq *busiest)
{}

static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
	__releases(busiest->lock)
{}

static inline void double_lock(spinlock_t *l1, spinlock_t *l2)
{}

static inline void double_lock_irq(spinlock_t *l1, spinlock_t *l2)
{}

static inline void double_raw_lock(raw_spinlock_t *l1, raw_spinlock_t *l2)
{}

static inline void double_raw_unlock(raw_spinlock_t *l1, raw_spinlock_t *l2)
{}

DEFINE_LOCK_GUARD_2(double_raw_spinlock, raw_spinlock_t,
		    double_raw_lock(_T->lock, _T->lock2),
		    double_raw_unlock(_T->lock, _T->lock2))

/*
 * double_rq_unlock - safely unlock two runqueues
 *
 * Note this does not restore interrupts like task_rq_unlock,
 * you need to do so manually after calling.
 */
static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
	__releases(rq1->lock)
	__releases(rq2->lock)
{}

extern void set_rq_online (struct rq *rq);
extern void set_rq_offline(struct rq *rq);

extern bool sched_smp_initialized;

#else /* !CONFIG_SMP: */

/*
 * double_rq_lock - safely lock two runqueues
 *
 * Note this does not disable interrupts like task_rq_lock,
 * you need to do so manually before calling.
 */
static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
	__acquires(rq1->lock)
	__acquires(rq2->lock)
{
	WARN_ON_ONCE(!irqs_disabled());
	WARN_ON_ONCE(rq1 != rq2);
	raw_spin_rq_lock(rq1);
	__acquire(rq2->lock);	/* Fake it out ;) */
	double_rq_clock_clear_update(rq1, rq2);
}

/*
 * double_rq_unlock - safely unlock two runqueues
 *
 * Note this does not restore interrupts like task_rq_unlock,
 * you need to do so manually after calling.
 */
static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
	__releases(rq1->lock)
	__releases(rq2->lock)
{
	WARN_ON_ONCE(rq1 != rq2);
	raw_spin_rq_unlock(rq1);
	__release(rq2->lock);
}

#endif /* !CONFIG_SMP */

DEFINE_LOCK_GUARD_2(double_rq_lock, } 

extern struct sched_entity *__pick_root_entity(struct cfs_rq *cfs_rq);
extern struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq);
extern struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq);

#ifdef	CONFIG_SCHED_DEBUG
extern bool sched_debug_verbose;

extern void print_cfs_stats(struct seq_file *m, int cpu);
extern void print_rt_stats(struct seq_file *m, int cpu);
extern void print_dl_stats(struct seq_file *m, int cpu);
extern void print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq);
extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq);
extern void print_dl_rq(struct seq_file *m, int cpu, struct dl_rq *dl_rq);

extern void resched_latency_warn(int cpu, u64 latency);
# ifdef CONFIG_NUMA_BALANCING
extern void show_numa_stats(struct task_struct *p, struct seq_file *m);
extern void
print_numa_stats(struct seq_file *m, int node, unsigned long tsf,
		 unsigned long tpf, unsigned long gsf, unsigned long gpf);
# endif /* CONFIG_NUMA_BALANCING */
#else /* !CONFIG_SCHED_DEBUG: */
static inline void resched_latency_warn(int cpu, u64 latency) { }
#endif /* !CONFIG_SCHED_DEBUG */

extern void init_cfs_rq(struct cfs_rq *cfs_rq);
extern void init_rt_rq(struct rt_rq *rt_rq);
extern void init_dl_rq(struct dl_rq *dl_rq);

extern void cfs_bandwidth_usage_inc(void);
extern void cfs_bandwidth_usage_dec(void);

#ifdef CONFIG_NO_HZ_COMMON

#define NOHZ_BALANCE_KICK_BIT
#define NOHZ_STATS_KICK_BIT
#define NOHZ_NEWILB_KICK_BIT
#define NOHZ_NEXT_KICK_BIT

/* Run sched_balance_domains() */
#define NOHZ_BALANCE_KICK
/* Update blocked load */
#define NOHZ_STATS_KICK
/* Update blocked load when entering idle */
#define NOHZ_NEWILB_KICK
/* Update nohz.next_balance */
#define NOHZ_NEXT_KICK

#define NOHZ_KICK_MASK

#define nohz_flags(cpu)

extern void nohz_balance_exit_idle(struct rq *rq);
#else /* !CONFIG_NO_HZ_COMMON: */
static inline void nohz_balance_exit_idle(struct rq *rq) { }
#endif /* !CONFIG_NO_HZ_COMMON */

#if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
extern void nohz_run_idle_balance(int cpu);
#else
static inline void nohz_run_idle_balance(int cpu) { }
#endif

#ifdef CONFIG_IRQ_TIME_ACCOUNTING

struct irqtime {};

DECLARE_PER_CPU(struct irqtime, cpu_irqtime);

/*
 * Returns the irqtime minus the softirq time computed by ksoftirqd.
 * Otherwise ksoftirqd's sum_exec_runtime is subtracted its own runtime
 * and never move forward.
 */
static inline u64 irq_time_read(int cpu)
{}

#endif /* CONFIG_IRQ_TIME_ACCOUNTING */

#ifdef CONFIG_CPU_FREQ

DECLARE_PER_CPU(struct update_util_data __rcu *, cpufreq_update_util_data);

/**
 * cpufreq_update_util - Take a note about CPU utilization changes.
 * @rq: Runqueue to carry out the update for.
 * @flags: Update reason flags.
 *
 * This function is called by the scheduler on the CPU whose utilization is
 * being updated.
 *
 * It can only be called from RCU-sched read-side critical sections.
 *
 * The way cpufreq is currently arranged requires it to evaluate the CPU
 * performance state (frequency/voltage) on a regular basis to prevent it from
 * being stuck in a completely inadequate performance level for too long.
 * That is not guaranteed to happen if the updates are only triggered from CFS
 * and DL, though, because they may not be coming in if only RT tasks are
 * active all the time (or there are RT tasks only).
 *
 * As a workaround for that issue, this function is called periodically by the
 * RT sched class to trigger extra cpufreq updates to prevent it from stalling,
 * but that really is a band-aid.  Going forward it should be replaced with
 * solutions targeted more specifically at RT tasks.
 */
static inline void cpufreq_update_util(struct rq *rq, unsigned int flags)
{}
#else /* !CONFIG_CPU_FREQ: */
static inline void cpufreq_update_util(struct rq *rq, unsigned int flags) { }
#endif /* !CONFIG_CPU_FREQ */

#ifdef arch_scale_freq_capacity
# ifndef arch_scale_freq_invariant
#define arch_scale_freq_invariant
# endif
#else
#define arch_scale_freq_invariant
#endif

#ifdef CONFIG_SMP

unsigned long effective_cpu_util(int cpu, unsigned long util_cfs,
				 unsigned long *min,
				 unsigned long *max);

unsigned long sugov_effective_cpu_perf(int cpu, unsigned long actual,
				 unsigned long min,
				 unsigned long max);


/*
 * Verify the fitness of task @p to run on @cpu taking into account the
 * CPU original capacity and the runtime/deadline ratio of the task.
 *
 * The function will return true if the original capacity of @cpu is
 * greater than or equal to task's deadline density right shifted by
 * (BW_SHIFT - SCHED_CAPACITY_SHIFT) and false otherwise.
 */
static inline bool dl_task_fits_capacity(struct task_struct *p, int cpu)
{}

static inline unsigned long cpu_bw_dl(struct rq *rq)
{}

static inline unsigned long cpu_util_dl(struct rq *rq)
{}


extern unsigned long cpu_util_cfs(int cpu);
extern unsigned long cpu_util_cfs_boost(int cpu);

static inline unsigned long cpu_util_rt(struct rq *rq)
{}

#else /* !CONFIG_SMP */
static inline bool update_other_load_avgs(struct rq *rq) { return false; }
#endif /* CONFIG_SMP */

#ifdef CONFIG_UCLAMP_TASK

unsigned long uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id);

static inline unsigned long uclamp_rq_get(struct rq *rq,
					  enum uclamp_id clamp_id)
{}

static inline void uclamp_rq_set(struct rq *rq, enum uclamp_id clamp_id,
				 unsigned int value)
{}

static inline bool uclamp_rq_is_idle(struct rq *rq)
{}

/* Is the rq being capped/throttled by uclamp_max? */
static inline bool uclamp_rq_is_capped(struct rq *rq)
{}

/*
 * When uclamp is compiled in, the aggregation at rq level is 'turned off'
 * by default in the fast path and only gets turned on once userspace performs
 * an operation that requires it.
 *
 * Returns true if userspace opted-in to use uclamp and aggregation at rq level
 * hence is active.
 */
static inline bool uclamp_is_used(void)
{}

#define for_each_clamp_id(clamp_id)

extern unsigned int sysctl_sched_uclamp_util_min_rt_default;


static inline unsigned int uclamp_none(enum uclamp_id clamp_id)
{}

/* Integer rounded range for each bucket */
#define UCLAMP_BUCKET_DELTA

static inline unsigned int uclamp_bucket_id(unsigned int clamp_value)
{}

static inline void
uclamp_se_set(struct uclamp_se *uc_se, unsigned int value, bool user_defined)
{}

#else /* !CONFIG_UCLAMP_TASK: */

static inline unsigned long
uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id)
{
	if (clamp_id == UCLAMP_MIN)
		return 0;

	return SCHED_CAPACITY_SCALE;
}

static inline bool uclamp_rq_is_capped(struct rq *rq) { return false; }

static inline bool uclamp_is_used(void)
{
	return false;
}

static inline unsigned long
uclamp_rq_get(struct rq *rq, enum uclamp_id clamp_id)
{
	if (clamp_id == UCLAMP_MIN)
		return 0;

	return SCHED_CAPACITY_SCALE;
}

static inline void
uclamp_rq_set(struct rq *rq, enum uclamp_id clamp_id, unsigned int value)
{
}

static inline bool uclamp_rq_is_idle(struct rq *rq)
{
	return false;
}

#endif /* !CONFIG_UCLAMP_TASK */

#ifdef CONFIG_HAVE_SCHED_AVG_IRQ

static inline unsigned long cpu_util_irq(struct rq *rq)
{}

static inline
unsigned long scale_irq_capacity(unsigned long util, unsigned long irq, unsigned long max)
{}

#else /* !CONFIG_HAVE_SCHED_AVG_IRQ: */

static inline unsigned long cpu_util_irq(struct rq *rq)
{
	return 0;
}

static inline
unsigned long scale_irq_capacity(unsigned long util, unsigned long irq, unsigned long max)
{
	return util;
}

#endif /* !CONFIG_HAVE_SCHED_AVG_IRQ */

#if defined(CONFIG_ENERGY_MODEL) && defined(CONFIG_CPU_FREQ_GOV_SCHEDUTIL)

#define perf_domain_span(pd)

DECLARE_STATIC_KEY_FALSE(sched_energy_present);

static inline bool sched_energy_enabled(void)
{}

extern struct cpufreq_governor schedutil_gov;

#else /* ! (CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL) */

#define perf_domain_span

static inline bool sched_energy_enabled(void) { return false; }

#endif /* CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL */

#ifdef CONFIG_MEMBARRIER

/*
 * The scheduler provides memory barriers required by membarrier between:
 * - prior user-space memory accesses and store to rq->membarrier_state,
 * - store to rq->membarrier_state and following user-space memory accesses.
 * In the same way it provides those guarantees around store to rq->curr.
 */
static inline void membarrier_switch_mm(struct rq *rq,
					struct mm_struct *prev_mm,
					struct mm_struct *next_mm)
{}

#else /* !CONFIG_MEMBARRIER :*/

static inline void membarrier_switch_mm(struct rq *rq,
					struct mm_struct *prev_mm,
					struct mm_struct *next_mm)
{
}

#endif /* !CONFIG_MEMBARRIER */

#ifdef CONFIG_SMP
static inline bool is_per_cpu_kthread(struct task_struct *p)
{}
#endif

extern void swake_up_all_locked(struct swait_queue_head *q);
extern void __prepare_to_swait(struct swait_queue_head *q, struct swait_queue *wait);

extern int try_to_wake_up(struct task_struct *tsk, unsigned int state, int wake_flags);

#ifdef CONFIG_PREEMPT_DYNAMIC
extern int preempt_dynamic_mode;
extern int sched_dynamic_mode(const char *str);
extern void sched_dynamic_update(int mode);
#endif

#ifdef CONFIG_SCHED_MM_CID

#define SCHED_MM_CID_PERIOD_NS
#define MM_CID_SCAN_DELAY

extern raw_spinlock_t cid_lock;
extern int use_cid_lock;

extern void sched_mm_cid_migrate_from(struct task_struct *t);
extern void sched_mm_cid_migrate_to(struct rq *dst_rq, struct task_struct *t);
extern void task_tick_mm_cid(struct rq *rq, struct task_struct *curr);
extern void init_sched_mm_cid(struct task_struct *t);

static inline void __mm_cid_put(struct mm_struct *mm, int cid)
{}

/*
 * The per-mm/cpu cid can have the MM_CID_LAZY_PUT flag set or transition to
 * the MM_CID_UNSET state without holding the rq lock, but the rq lock needs to
 * be held to transition to other states.
 *
 * State transitions synchronized with cmpxchg or try_cmpxchg need to be
 * consistent across CPUs, which prevents use of this_cpu_cmpxchg.
 */
static inline void mm_cid_put_lazy(struct task_struct *t)
{}

static inline int mm_cid_pcpu_unset(struct mm_struct *mm)
{}

static inline void mm_cid_put(struct mm_struct *mm)
{}

static inline int __mm_cid_try_get(struct mm_struct *mm)
{}

/*
 * Save a snapshot of the current runqueue time of this cpu
 * with the per-cpu cid value, allowing to estimate how recently it was used.
 */
static inline void mm_cid_snapshot_time(struct rq *rq, struct mm_struct *mm)
{}

static inline int __mm_cid_get(struct rq *rq, struct mm_struct *mm)
{}

static inline int mm_cid_get(struct rq *rq, struct mm_struct *mm)
{}

static inline void switch_mm_cid(struct rq *rq,
				 struct task_struct *prev,
				 struct task_struct *next)
{}

#else /* !CONFIG_SCHED_MM_CID: */
static inline void switch_mm_cid(struct rq *rq, struct task_struct *prev, struct task_struct *next) { }
static inline void sched_mm_cid_migrate_from(struct task_struct *t) { }
static inline void sched_mm_cid_migrate_to(struct rq *dst_rq, struct task_struct *t) { }
static inline void task_tick_mm_cid(struct rq *rq, struct task_struct *curr) { }
static inline void init_sched_mm_cid(struct task_struct *t) { }
#endif /* !CONFIG_SCHED_MM_CID */

extern u64 avg_vruntime(struct cfs_rq *cfs_rq);
extern int entity_eligible(struct cfs_rq *cfs_rq, struct sched_entity *se);

#ifdef CONFIG_RT_MUTEXES

static inline int __rt_effective_prio(struct task_struct *pi_task, int prio)
{}

static inline int rt_effective_prio(struct task_struct *p, int prio)
{}

#else /* !CONFIG_RT_MUTEXES: */

static inline int rt_effective_prio(struct task_struct *p, int prio)
{
	return prio;
}

#endif /* !CONFIG_RT_MUTEXES */

extern int __sched_setscheduler(struct task_struct *p, const struct sched_attr *attr, bool user, bool pi);
extern int __sched_setaffinity(struct task_struct *p, struct affinity_context *ctx);
extern const struct sched_class *__setscheduler_class(int policy, int prio);
extern void set_load_weight(struct task_struct *p, bool update_load);
extern void enqueue_task(struct rq *rq, struct task_struct *p, int flags);
extern bool dequeue_task(struct rq *rq, struct task_struct *p, int flags);

extern void check_class_changing(struct rq *rq, struct task_struct *p,
				 const struct sched_class *prev_class);
extern void check_class_changed(struct rq *rq, struct task_struct *p,
				const struct sched_class *prev_class,
				int oldprio);

#ifdef CONFIG_SMP
extern struct balance_callback *splice_balance_callbacks(struct rq *rq);
extern void balance_callbacks(struct rq *rq, struct balance_callback *head);
#else

static inline struct balance_callback *splice_balance_callbacks(struct rq *rq)
{
	return NULL;
}

static inline void balance_callbacks(struct rq *rq, struct balance_callback *head)
{
}

#endif

#ifdef CONFIG_SCHED_CLASS_EXT
/*
 * Used by SCX in the enable/disable paths to move tasks between sched_classes
 * and establish invariants.
 */
struct sched_enq_and_set_ctx {
	struct task_struct	*p;
	int			queue_flags;
	bool			queued;
	bool			running;
};

void sched_deq_and_put_task(struct task_struct *p, int queue_flags,
			    struct sched_enq_and_set_ctx *ctx);
void sched_enq_and_set_task(struct sched_enq_and_set_ctx *ctx);

#endif /* CONFIG_SCHED_CLASS_EXT */

#include "ext.h"

#endif /* _KERNEL_SCHED_SCHED_H */