linux/kernel/rcu/tree_nocb.h

/* SPDX-License-Identifier: GPL-2.0+ */
/*
 * Read-Copy Update mechanism for mutual exclusion (tree-based version)
 * Internal non-public definitions that provide either classic
 * or preemptible semantics.
 *
 * Copyright Red Hat, 2009
 * Copyright IBM Corporation, 2009
 * Copyright SUSE, 2021
 *
 * Author: Ingo Molnar <[email protected]>
 *	   Paul E. McKenney <[email protected]>
 *	   Frederic Weisbecker <[email protected]>
 */

#ifdef CONFIG_RCU_NOCB_CPU
static cpumask_var_t rcu_nocb_mask; /* CPUs to have callbacks offloaded. */
static bool __read_mostly rcu_nocb_poll;    /* Offload kthread are to poll. */

static inline bool rcu_current_is_nocb_kthread(struct rcu_data *rdp)
{}

/*
 * Offload callback processing from the boot-time-specified set of CPUs
 * specified by rcu_nocb_mask.  For the CPUs in the set, there are kthreads
 * created that pull the callbacks from the corresponding CPU, wait for
 * a grace period to elapse, and invoke the callbacks.  These kthreads
 * are organized into GP kthreads, which manage incoming callbacks, wait for
 * grace periods, and awaken CB kthreads, and the CB kthreads, which only
 * invoke callbacks.  Each GP kthread invokes its own CBs.  The no-CBs CPUs
 * do a wake_up() on their GP kthread when they insert a callback into any
 * empty list, unless the rcu_nocb_poll boot parameter has been specified,
 * in which case each kthread actively polls its CPU.  (Which isn't so great
 * for energy efficiency, but which does reduce RCU's overhead on that CPU.)
 *
 * This is intended to be used in conjunction with Frederic Weisbecker's
 * adaptive-idle work, which would seriously reduce OS jitter on CPUs
 * running CPU-bound user-mode computations.
 *
 * Offloading of callbacks can also be used as an energy-efficiency
 * measure because CPUs with no RCU callbacks queued are more aggressive
 * about entering dyntick-idle mode.
 */


/*
 * Parse the boot-time rcu_nocb_mask CPU list from the kernel parameters.
 * If the list is invalid, a warning is emitted and all CPUs are offloaded.
 */
static int __init rcu_nocb_setup(char *str)
{}
__setup();

static int __init parse_rcu_nocb_poll(char *arg)
{}
__setup();

/*
 * Don't bother bypassing ->cblist if the call_rcu() rate is low.
 * After all, the main point of bypassing is to avoid lock contention
 * on ->nocb_lock, which only can happen at high call_rcu() rates.
 */
static int nocb_nobypass_lim_per_jiffy =;
module_param(nocb_nobypass_lim_per_jiffy, int, 0);

/*
 * Acquire the specified rcu_data structure's ->nocb_bypass_lock.  If the
 * lock isn't immediately available, perform minimal sanity check.
 */
static void rcu_nocb_bypass_lock(struct rcu_data *rdp)
	__acquires(&rdp->nocb_bypass_lock)
{}

/*
 * Conditionally acquire the specified rcu_data structure's
 * ->nocb_bypass_lock.
 */
static bool rcu_nocb_bypass_trylock(struct rcu_data *rdp)
{}

/*
 * Release the specified rcu_data structure's ->nocb_bypass_lock.
 */
static void rcu_nocb_bypass_unlock(struct rcu_data *rdp)
	__releases(&rdp->nocb_bypass_lock)
{}

/*
 * Acquire the specified rcu_data structure's ->nocb_lock, but only
 * if it corresponds to a no-CBs CPU.
 */
static void rcu_nocb_lock(struct rcu_data *rdp)
{}

/*
 * Release the specified rcu_data structure's ->nocb_lock, but only
 * if it corresponds to a no-CBs CPU.
 */
static void rcu_nocb_unlock(struct rcu_data *rdp)
{}

/*
 * Release the specified rcu_data structure's ->nocb_lock and restore
 * interrupts, but only if it corresponds to a no-CBs CPU.
 */
static void rcu_nocb_unlock_irqrestore(struct rcu_data *rdp,
				       unsigned long flags)
{}

/* Lockdep check that ->cblist may be safely accessed. */
static void rcu_lockdep_assert_cblist_protected(struct rcu_data *rdp)
{}

/*
 * Wake up any no-CBs CPUs' kthreads that were waiting on the just-ended
 * grace period.
 */
static void rcu_nocb_gp_cleanup(struct swait_queue_head *sq)
{}

static struct swait_queue_head *rcu_nocb_gp_get(struct rcu_node *rnp)
{}

static void rcu_init_one_nocb(struct rcu_node *rnp)
{}

static bool __wake_nocb_gp(struct rcu_data *rdp_gp,
			   struct rcu_data *rdp,
			   bool force, unsigned long flags)
	__releases(rdp_gp->nocb_gp_lock)
{}

/*
 * Kick the GP kthread for this NOCB group.
 */
static bool wake_nocb_gp(struct rcu_data *rdp, bool force)
{}

#ifdef CONFIG_RCU_LAZY
/*
 * LAZY_FLUSH_JIFFIES decides the maximum amount of time that
 * can elapse before lazy callbacks are flushed. Lazy callbacks
 * could be flushed much earlier for a number of other reasons
 * however, LAZY_FLUSH_JIFFIES will ensure no lazy callbacks are
 * left unsubmitted to RCU after those many jiffies.
 */
#define LAZY_FLUSH_JIFFIES
static unsigned long jiffies_lazy_flush =;

// To be called only from test code.
void rcu_set_jiffies_lazy_flush(unsigned long jif)
{}
EXPORT_SYMBOL();

unsigned long rcu_get_jiffies_lazy_flush(void)
{}
EXPORT_SYMBOL();
#endif

/*
 * Arrange to wake the GP kthread for this NOCB group at some future
 * time when it is safe to do so.
 */
static void wake_nocb_gp_defer(struct rcu_data *rdp, int waketype,
			       const char *reason)
{}

/*
 * Flush the ->nocb_bypass queue into ->cblist, enqueuing rhp if non-NULL.
 * However, if there is a callback to be enqueued and if ->nocb_bypass
 * proves to be initially empty, just return false because the no-CB GP
 * kthread may need to be awakened in this case.
 *
 * Return true if there was something to be flushed and it succeeded, otherwise
 * false.
 *
 * Note that this function always returns true if rhp is NULL.
 */
static bool rcu_nocb_do_flush_bypass(struct rcu_data *rdp, struct rcu_head *rhp_in,
				     unsigned long j, bool lazy)
{}

/*
 * Flush the ->nocb_bypass queue into ->cblist, enqueuing rhp if non-NULL.
 * However, if there is a callback to be enqueued and if ->nocb_bypass
 * proves to be initially empty, just return false because the no-CB GP
 * kthread may need to be awakened in this case.
 *
 * Note that this function always returns true if rhp is NULL.
 */
static bool rcu_nocb_flush_bypass(struct rcu_data *rdp, struct rcu_head *rhp,
				  unsigned long j, bool lazy)
{}

/*
 * If the ->nocb_bypass_lock is immediately available, flush the
 * ->nocb_bypass queue into ->cblist.
 */
static void rcu_nocb_try_flush_bypass(struct rcu_data *rdp, unsigned long j)
{}

/*
 * See whether it is appropriate to use the ->nocb_bypass list in order
 * to control contention on ->nocb_lock.  A limited number of direct
 * enqueues are permitted into ->cblist per jiffy.  If ->nocb_bypass
 * is non-empty, further callbacks must be placed into ->nocb_bypass,
 * otherwise rcu_barrier() breaks.  Use rcu_nocb_flush_bypass() to switch
 * back to direct use of ->cblist.  However, ->nocb_bypass should not be
 * used if ->cblist is empty, because otherwise callbacks can be stranded
 * on ->nocb_bypass because we cannot count on the current CPU ever again
 * invoking call_rcu().  The general rule is that if ->nocb_bypass is
 * non-empty, the corresponding no-CBs grace-period kthread must not be
 * in an indefinite sleep state.
 *
 * Finally, it is not permitted to use the bypass during early boot,
 * as doing so would confuse the auto-initialization code.  Besides
 * which, there is no point in worrying about lock contention while
 * there is only one CPU in operation.
 */
static bool rcu_nocb_try_bypass(struct rcu_data *rdp, struct rcu_head *rhp,
				bool *was_alldone, unsigned long flags,
				bool lazy)
{}

/*
 * Awaken the no-CBs grace-period kthread if needed, either due to it
 * legitimately being asleep or due to overload conditions.
 *
 * If warranted, also wake up the kthread servicing this CPUs queues.
 */
static void __call_rcu_nocb_wake(struct rcu_data *rdp, bool was_alldone,
				 unsigned long flags)
				 __releases(rdp->nocb_lock)
{}

static void call_rcu_nocb(struct rcu_data *rdp, struct rcu_head *head,
			  rcu_callback_t func, unsigned long flags, bool lazy)
{}

static void nocb_gp_toggle_rdp(struct rcu_data *rdp_gp, struct rcu_data *rdp)
{}

static void nocb_gp_sleep(struct rcu_data *my_rdp, int cpu)
{}

/*
 * No-CBs GP kthreads come here to wait for additional callbacks to show up
 * or for grace periods to end.
 */
static void nocb_gp_wait(struct rcu_data *my_rdp)
{}

/*
 * No-CBs grace-period-wait kthread.  There is one of these per group
 * of CPUs, but only once at least one CPU in that group has come online
 * at least once since boot.  This kthread checks for newly posted
 * callbacks from any of the CPUs it is responsible for, waits for a
 * grace period, then awakens all of the rcu_nocb_cb_kthread() instances
 * that then have callback-invocation work to do.
 */
static int rcu_nocb_gp_kthread(void *arg)
{}

static inline bool nocb_cb_wait_cond(struct rcu_data *rdp)
{}

/*
 * Invoke any ready callbacks from the corresponding no-CBs CPU,
 * then, if there are no more, wait for more to appear.
 */
static void nocb_cb_wait(struct rcu_data *rdp)
{}

/*
 * Per-rcu_data kthread, but only for no-CBs CPUs.  Repeatedly invoke
 * nocb_cb_wait() to do the dirty work.
 */
static int rcu_nocb_cb_kthread(void *arg)
{}

/* Is a deferred wakeup of rcu_nocb_kthread() required? */
static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp, int level)
{}

/* Do a deferred wakeup of rcu_nocb_kthread(). */
static bool do_nocb_deferred_wakeup_common(struct rcu_data *rdp_gp,
					   struct rcu_data *rdp, int level,
					   unsigned long flags)
	__releases(rdp_gp->nocb_gp_lock)
{}

/* Do a deferred wakeup of rcu_nocb_kthread() from a timer handler. */
static void do_nocb_deferred_wakeup_timer(struct timer_list *t)
{}

/*
 * Do a deferred wakeup of rcu_nocb_kthread() from fastpath.
 * This means we do an inexact common-case check.  Note that if
 * we miss, ->nocb_timer will eventually clean things up.
 */
static bool do_nocb_deferred_wakeup(struct rcu_data *rdp)
{}

void rcu_nocb_flush_deferred_wakeup(void)
{}
EXPORT_SYMBOL_GPL();

static int rcu_nocb_queue_toggle_rdp(struct rcu_data *rdp)
{}

static bool rcu_nocb_rdp_deoffload_wait_cond(struct rcu_data *rdp)
{}

static int rcu_nocb_rdp_deoffload(struct rcu_data *rdp)
{}

int rcu_nocb_cpu_deoffload(int cpu)
{}
EXPORT_SYMBOL_GPL();

static bool rcu_nocb_rdp_offload_wait_cond(struct rcu_data *rdp)
{}

static int rcu_nocb_rdp_offload(struct rcu_data *rdp)
{}

int rcu_nocb_cpu_offload(int cpu)
{}
EXPORT_SYMBOL_GPL();

#ifdef CONFIG_RCU_LAZY
static unsigned long
lazy_rcu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
{}

static unsigned long
lazy_rcu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
{}
#endif // #ifdef CONFIG_RCU_LAZY

void __init rcu_init_nohz(void)
{}

/* Initialize per-rcu_data variables for no-CBs CPUs. */
static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
{}

/*
 * If the specified CPU is a no-CBs CPU that does not already have its
 * rcuo CB kthread, spawn it.  Additionally, if the rcuo GP kthread
 * for this CPU's group has not yet been created, spawn it as well.
 */
static void rcu_spawn_cpu_nocb_kthread(int cpu)
{}

/* How many CB CPU IDs per GP kthread?  Default of -1 for sqrt(nr_cpu_ids). */
static int rcu_nocb_gp_stride =;
module_param(rcu_nocb_gp_stride, int, 0444);

/*
 * Initialize GP-CB relationships for all no-CBs CPU.
 */
static void __init rcu_organize_nocb_kthreads(void)
{}

/*
 * Bind the current task to the offloaded CPUs.  If there are no offloaded
 * CPUs, leave the task unbound.  Splat if the bind attempt fails.
 */
void rcu_bind_current_to_nocb(void)
{}
EXPORT_SYMBOL_GPL();

// The ->on_cpu field is available only in CONFIG_SMP=y, so...
#ifdef CONFIG_SMP
static char *show_rcu_should_be_on_cpu(struct task_struct *tsp)
{}
#else // #ifdef CONFIG_SMP
static char *show_rcu_should_be_on_cpu(struct task_struct *tsp)
{
	return "";
}
#endif // #else #ifdef CONFIG_SMP

/*
 * Dump out nocb grace-period kthread state for the specified rcu_data
 * structure.
 */
static void show_rcu_nocb_gp_state(struct rcu_data *rdp)
{}

/* Dump out nocb kthread state for the specified rcu_data structure. */
static void show_rcu_nocb_state(struct rcu_data *rdp)
{}

#else /* #ifdef CONFIG_RCU_NOCB_CPU */

/* No ->nocb_lock to acquire.  */
static void rcu_nocb_lock(struct rcu_data *rdp)
{
}

/* No ->nocb_lock to release.  */
static void rcu_nocb_unlock(struct rcu_data *rdp)
{
}

/* No ->nocb_lock to release.  */
static void rcu_nocb_unlock_irqrestore(struct rcu_data *rdp,
				       unsigned long flags)
{
	local_irq_restore(flags);
}

/* Lockdep check that ->cblist may be safely accessed. */
static void rcu_lockdep_assert_cblist_protected(struct rcu_data *rdp)
{
	lockdep_assert_irqs_disabled();
}

static void rcu_nocb_gp_cleanup(struct swait_queue_head *sq)
{
}

static struct swait_queue_head *rcu_nocb_gp_get(struct rcu_node *rnp)
{
	return NULL;
}

static void rcu_init_one_nocb(struct rcu_node *rnp)
{
}

static bool wake_nocb_gp(struct rcu_data *rdp, bool force)
{
	return false;
}

static bool rcu_nocb_flush_bypass(struct rcu_data *rdp, struct rcu_head *rhp,
				  unsigned long j, bool lazy)
{
	return true;
}

static void call_rcu_nocb(struct rcu_data *rdp, struct rcu_head *head,
			  rcu_callback_t func, unsigned long flags, bool lazy)
{
	WARN_ON_ONCE(1);  /* Should be dead code! */
}

static void __call_rcu_nocb_wake(struct rcu_data *rdp, bool was_empty,
				 unsigned long flags)
{
	WARN_ON_ONCE(1);  /* Should be dead code! */
}

static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
{
}

static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp, int level)
{
	return false;
}

static bool do_nocb_deferred_wakeup(struct rcu_data *rdp)
{
	return false;
}

static void rcu_spawn_cpu_nocb_kthread(int cpu)
{
}

static void show_rcu_nocb_state(struct rcu_data *rdp)
{
}

#endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */