linux/kernel/rcu/tree.c

// SPDX-License-Identifier: GPL-2.0+
/*
 * Read-Copy Update mechanism for mutual exclusion (tree-based version)
 *
 * Copyright IBM Corporation, 2008
 *
 * Authors: Dipankar Sarma <[email protected]>
 *	    Manfred Spraul <[email protected]>
 *	    Paul E. McKenney <[email protected]>
 *
 * Based on the original work by Paul McKenney <[email protected]>
 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
 *
 * For detailed explanation of Read-Copy Update mechanism see -
 *	Documentation/RCU
 */

#define pr_fmt(fmt)

#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/spinlock.h>
#include <linux/smp.h>
#include <linux/rcupdate_wait.h>
#include <linux/interrupt.h>
#include <linux/sched.h>
#include <linux/sched/debug.h>
#include <linux/nmi.h>
#include <linux/atomic.h>
#include <linux/bitops.h>
#include <linux/export.h>
#include <linux/completion.h>
#include <linux/kmemleak.h>
#include <linux/moduleparam.h>
#include <linux/panic.h>
#include <linux/panic_notifier.h>
#include <linux/percpu.h>
#include <linux/notifier.h>
#include <linux/cpu.h>
#include <linux/mutex.h>
#include <linux/time.h>
#include <linux/kernel_stat.h>
#include <linux/wait.h>
#include <linux/kthread.h>
#include <uapi/linux/sched/types.h>
#include <linux/prefetch.h>
#include <linux/delay.h>
#include <linux/random.h>
#include <linux/trace_events.h>
#include <linux/suspend.h>
#include <linux/ftrace.h>
#include <linux/tick.h>
#include <linux/sysrq.h>
#include <linux/kprobes.h>
#include <linux/gfp.h>
#include <linux/oom.h>
#include <linux/smpboot.h>
#include <linux/jiffies.h>
#include <linux/slab.h>
#include <linux/sched/isolation.h>
#include <linux/sched/clock.h>
#include <linux/vmalloc.h>
#include <linux/mm.h>
#include <linux/kasan.h>
#include <linux/context_tracking.h>
#include "../time/tick-internal.h"

#include "tree.h"
#include "rcu.h"

#ifdef MODULE_PARAM_PREFIX
#undef MODULE_PARAM_PREFIX
#endif
#define MODULE_PARAM_PREFIX

/* Data structures. */
static void rcu_sr_normal_gp_cleanup_work(struct work_struct *);

static DEFINE_PER_CPU_SHARED_ALIGNED(struct rcu_data, rcu_data) =;
static struct rcu_state rcu_state =;

/* Dump rcu_node combining tree at boot to verify correct setup. */
static bool dump_tree;
module_param(dump_tree, bool, 0444);
/* By default, use RCU_SOFTIRQ instead of rcuc kthreads. */
static bool use_softirq = !IS_ENABLED();
#ifndef CONFIG_PREEMPT_RT
module_param(use_softirq, bool, 0444);
#endif
/* Control rcu_node-tree auto-balancing at boot time. */
static bool rcu_fanout_exact;
module_param(rcu_fanout_exact, bool, 0444);
/* Increase (but not decrease) the RCU_FANOUT_LEAF at boot time. */
static int rcu_fanout_leaf =;
module_param(rcu_fanout_leaf, int, 0444);
int rcu_num_lvls __read_mostly =;
/* Number of rcu_nodes at specified level. */
int num_rcu_lvl[] =;
int rcu_num_nodes __read_mostly =; /* Total # rcu_nodes in use. */

/*
 * The rcu_scheduler_active variable is initialized to the value
 * RCU_SCHEDULER_INACTIVE and transitions RCU_SCHEDULER_INIT just before the
 * first task is spawned.  So when this variable is RCU_SCHEDULER_INACTIVE,
 * RCU can assume that there is but one task, allowing RCU to (for example)
 * optimize synchronize_rcu() to a simple barrier().  When this variable
 * is RCU_SCHEDULER_INIT, RCU must actually do all the hard work required
 * to detect real grace periods.  This variable is also used to suppress
 * boot-time false positives from lockdep-RCU error checking.  Finally, it
 * transitions from RCU_SCHEDULER_INIT to RCU_SCHEDULER_RUNNING after RCU
 * is fully initialized, including all of its kthreads having been spawned.
 */
int rcu_scheduler_active __read_mostly;
EXPORT_SYMBOL_GPL();

/*
 * The rcu_scheduler_fully_active variable transitions from zero to one
 * during the early_initcall() processing, which is after the scheduler
 * is capable of creating new tasks.  So RCU processing (for example,
 * creating tasks for RCU priority boosting) must be delayed until after
 * rcu_scheduler_fully_active transitions from zero to one.  We also
 * currently delay invocation of any RCU callbacks until after this point.
 *
 * It might later prove better for people registering RCU callbacks during
 * early boot to take responsibility for these callbacks, but one step at
 * a time.
 */
static int rcu_scheduler_fully_active __read_mostly;

static void rcu_report_qs_rnp(unsigned long mask, struct rcu_node *rnp,
			      unsigned long gps, unsigned long flags);
static struct task_struct *rcu_boost_task(struct rcu_node *rnp);
static void invoke_rcu_core(void);
static void rcu_report_exp_rdp(struct rcu_data *rdp);
static void sync_sched_exp_online_cleanup(int cpu);
static void check_cb_ovld_locked(struct rcu_data *rdp, struct rcu_node *rnp);
static bool rcu_rdp_is_offloaded(struct rcu_data *rdp);
static bool rcu_rdp_cpu_online(struct rcu_data *rdp);
static bool rcu_init_invoked(void);
static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf);
static void rcu_init_new_rnp(struct rcu_node *rnp_leaf);

/*
 * rcuc/rcub/rcuop kthread realtime priority. The "rcuop"
 * real-time priority(enabling/disabling) is controlled by
 * the extra CONFIG_RCU_NOCB_CPU_CB_BOOST configuration.
 */
static int kthread_prio =;
module_param(kthread_prio, int, 0444);

/* Delay in jiffies for grace-period initialization delays, debug only. */

static int gp_preinit_delay;
module_param(gp_preinit_delay, int, 0444);
static int gp_init_delay;
module_param(gp_init_delay, int, 0444);
static int gp_cleanup_delay;
module_param(gp_cleanup_delay, int, 0444);
static int nohz_full_patience_delay;
module_param(nohz_full_patience_delay, int, 0444);
static int nohz_full_patience_delay_jiffies;

// Add delay to rcu_read_unlock() for strict grace periods.
static int rcu_unlock_delay;
#ifdef CONFIG_RCU_STRICT_GRACE_PERIOD
module_param(rcu_unlock_delay, int, 0444);
#endif

/*
 * This rcu parameter is runtime-read-only. It reflects
 * a minimum allowed number of objects which can be cached
 * per-CPU. Object size is equal to one page. This value
 * can be changed at boot time.
 */
static int rcu_min_cached_objs =;
module_param(rcu_min_cached_objs, int, 0444);

// A page shrinker can ask for pages to be freed to make them
// available for other parts of the system. This usually happens
// under low memory conditions, and in that case we should also
// defer page-cache filling for a short time period.
//
// The default value is 5 seconds, which is long enough to reduce
// interference with the shrinker while it asks other systems to
// drain their caches.
static int rcu_delay_page_cache_fill_msec =;
module_param(rcu_delay_page_cache_fill_msec, int, 0444);

/* Retrieve RCU kthreads priority for rcutorture */
int rcu_get_gp_kthreads_prio(void)
{}
EXPORT_SYMBOL_GPL();

/*
 * Number of grace periods between delays, normalized by the duration of
 * the delay.  The longer the delay, the more the grace periods between
 * each delay.  The reason for this normalization is that it means that,
 * for non-zero delays, the overall slowdown of grace periods is constant
 * regardless of the duration of the delay.  This arrangement balances
 * the need for long delays to increase some race probabilities with the
 * need for fast grace periods to increase other race probabilities.
 */
#define PER_RCU_NODE_PERIOD

/*
 * Return true if an RCU grace period is in progress.  The READ_ONCE()s
 * permit this function to be invoked without holding the root rcu_node
 * structure's ->lock, but of course results can be subject to change.
 */
static int rcu_gp_in_progress(void)
{}

/*
 * Return the number of callbacks queued on the specified CPU.
 * Handles both the nocbs and normal cases.
 */
static long rcu_get_n_cbs_cpu(int cpu)
{}

/**
 * rcu_softirq_qs - Provide a set of RCU quiescent states in softirq processing
 *
 * Mark a quiescent state for RCU, Tasks RCU, and Tasks Trace RCU.
 * This is a special-purpose function to be used in the softirq
 * infrastructure and perhaps the occasional long-running softirq
 * handler.
 *
 * Note that from RCU's viewpoint, a call to rcu_softirq_qs() is
 * equivalent to momentarily completely enabling preemption.  For
 * example, given this code::
 *
 *	local_bh_disable();
 *	do_something();
 *	rcu_softirq_qs();  // A
 *	do_something_else();
 *	local_bh_enable();  // B
 *
 * A call to synchronize_rcu() that began concurrently with the
 * call to do_something() would be guaranteed to wait only until
 * execution reached statement A.  Without that rcu_softirq_qs(),
 * that same synchronize_rcu() would instead be guaranteed to wait
 * until execution reached statement B.
 */
void rcu_softirq_qs(void)
{}

/*
 * Reset the current CPU's RCU_WATCHING counter to indicate that the
 * newly onlined CPU is no longer in an extended quiescent state.
 * This will either leave the counter unchanged, or increment it
 * to the next non-quiescent value.
 *
 * The non-atomic test/increment sequence works because the upper bits
 * of the ->state variable are manipulated only by the corresponding CPU,
 * or when the corresponding CPU is offline.
 */
static void rcu_watching_online(void)
{}

/*
 * Return true if the snapshot returned from ct_rcu_watching()
 * indicates that RCU is in an extended quiescent state.
 */
static bool rcu_watching_snap_in_eqs(int snap)
{}

/**
 * rcu_watching_snap_stopped_since() - Has RCU stopped watching a given CPU
 * since the specified @snap?
 *
 * @rdp: The rcu_data corresponding to the CPU for which to check EQS.
 * @snap: rcu_watching snapshot taken when the CPU wasn't in an EQS.
 *
 * Returns true if the CPU corresponding to @rdp has spent some time in an
 * extended quiescent state since @snap. Note that this doesn't check if it
 * /still/ is in an EQS, just that it went through one since @snap.
 *
 * This is meant to be used in a loop waiting for a CPU to go through an EQS.
 */
static bool rcu_watching_snap_stopped_since(struct rcu_data *rdp, int snap)
{}

/*
 * Return true if the referenced integer is zero while the specified
 * CPU remains within a single extended quiescent state.
 */
bool rcu_watching_zero_in_eqs(int cpu, int *vp)
{}

/*
 * Let the RCU core know that this CPU has gone through the scheduler,
 * which is a quiescent state.  This is called when the need for a
 * quiescent state is urgent, so we burn an atomic operation and full
 * memory barriers to let the RCU core know about it, regardless of what
 * this CPU might (or might not) do in the near future.
 *
 * We inform the RCU core by emulating a zero-duration dyntick-idle period.
 *
 * The caller must have disabled interrupts and must not be idle.
 */
notrace void rcu_momentary_eqs(void)
{}
EXPORT_SYMBOL_GPL();

/**
 * rcu_is_cpu_rrupt_from_idle - see if 'interrupted' from idle
 *
 * If the current CPU is idle and running at a first-level (not nested)
 * interrupt, or directly, from idle, return true.
 *
 * The caller must have at least disabled IRQs.
 */
static int rcu_is_cpu_rrupt_from_idle(void)
{}

#define DEFAULT_RCU_BLIMIT
				// Maximum callbacks per rcu_do_batch ...
#define DEFAULT_MAX_RCU_BLIMIT
static long blimit =;
#define DEFAULT_RCU_QHIMARK
static long qhimark =;
#define DEFAULT_RCU_QLOMARK
static long qlowmark =;
#define DEFAULT_RCU_QOVLD_MULT
#define DEFAULT_RCU_QOVLD
static long qovld =; // If this many pending, hammer QS.
static long qovld_calc =;	  // No pre-initialization lock acquisitions!

module_param(blimit, long, 0444);
module_param(qhimark, long, 0444);
module_param(qlowmark, long, 0444);
module_param(qovld, long, 0444);

static ulong jiffies_till_first_fqs =;
static ulong jiffies_till_next_fqs =;
static bool rcu_kick_kthreads;
static int rcu_divisor =;
module_param(rcu_divisor, int, 0644);

/* Force an exit from rcu_do_batch() after 3 milliseconds. */
static long rcu_resched_ns =;
module_param(rcu_resched_ns, long, 0644);

/*
 * How long the grace period must be before we start recruiting
 * quiescent-state help from rcu_note_context_switch().
 */
static ulong jiffies_till_sched_qs =;
module_param(jiffies_till_sched_qs, ulong, 0444);
static ulong jiffies_to_sched_qs; /* See adjust_jiffies_till_sched_qs(). */
module_param(jiffies_to_sched_qs, ulong, 0444); /* Display only! */

/*
 * Make sure that we give the grace-period kthread time to detect any
 * idle CPUs before taking active measures to force quiescent states.
 * However, don't go below 100 milliseconds, adjusted upwards for really
 * large systems.
 */
static void adjust_jiffies_till_sched_qs(void)
{}

static int param_set_first_fqs_jiffies(const char *val, const struct kernel_param *kp)
{}

static int param_set_next_fqs_jiffies(const char *val, const struct kernel_param *kp)
{}

static const struct kernel_param_ops first_fqs_jiffies_ops =;

static const struct kernel_param_ops next_fqs_jiffies_ops =;

module_param_cb();
module_param_cb();
module_param(rcu_kick_kthreads, bool, 0644);

static void force_qs_rnp(int (*f)(struct rcu_data *rdp));
static int rcu_pending(int user);

/*
 * Return the number of RCU GPs completed thus far for debug & stats.
 */
unsigned long rcu_get_gp_seq(void)
{}
EXPORT_SYMBOL_GPL();

/*
 * Return the number of RCU expedited batches completed thus far for
 * debug & stats.  Odd numbers mean that a batch is in progress, even
 * numbers mean idle.  The value returned will thus be roughly double
 * the cumulative batches since boot.
 */
unsigned long rcu_exp_batches_completed(void)
{}
EXPORT_SYMBOL_GPL();

/*
 * Return the root node of the rcu_state structure.
 */
static struct rcu_node *rcu_get_root(void)
{}

/*
 * Send along grace-period-related data for rcutorture diagnostics.
 */
void rcutorture_get_gp_data(int *flags, unsigned long *gp_seq)
{}
EXPORT_SYMBOL_GPL();

#if defined(CONFIG_NO_HZ_FULL) && (!defined(CONFIG_GENERIC_ENTRY) || !defined(CONFIG_KVM_XFER_TO_GUEST_WORK))
/*
 * An empty function that will trigger a reschedule on
 * IRQ tail once IRQs get re-enabled on userspace/guest resume.
 */
static void late_wakeup_func(struct irq_work *work)
{
}

static DEFINE_PER_CPU(struct irq_work, late_wakeup_work) =
	IRQ_WORK_INIT(late_wakeup_func);

/*
 * If either:
 *
 * 1) the task is about to enter in guest mode and $ARCH doesn't support KVM generic work
 * 2) the task is about to enter in user mode and $ARCH doesn't support generic entry.
 *
 * In these cases the late RCU wake ups aren't supported in the resched loops and our
 * last resort is to fire a local irq_work that will trigger a reschedule once IRQs
 * get re-enabled again.
 */
noinstr void rcu_irq_work_resched(void)
{
	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);

	if (IS_ENABLED(CONFIG_GENERIC_ENTRY) && !(current->flags & PF_VCPU))
		return;

	if (IS_ENABLED(CONFIG_KVM_XFER_TO_GUEST_WORK) && (current->flags & PF_VCPU))
		return;

	instrumentation_begin();
	if (do_nocb_deferred_wakeup(rdp) && need_resched()) {
		irq_work_queue(this_cpu_ptr(&late_wakeup_work));
	}
	instrumentation_end();
}
#endif /* #if defined(CONFIG_NO_HZ_FULL) && (!defined(CONFIG_GENERIC_ENTRY) || !defined(CONFIG_KVM_XFER_TO_GUEST_WORK)) */

#ifdef CONFIG_PROVE_RCU
/**
 * rcu_irq_exit_check_preempt - Validate that scheduling is possible
 */
void rcu_irq_exit_check_preempt(void)
{}
#endif /* #ifdef CONFIG_PROVE_RCU */

#ifdef CONFIG_NO_HZ_FULL
/**
 * __rcu_irq_enter_check_tick - Enable scheduler tick on CPU if RCU needs it.
 *
 * The scheduler tick is not normally enabled when CPUs enter the kernel
 * from nohz_full userspace execution.  After all, nohz_full userspace
 * execution is an RCU quiescent state and the time executing in the kernel
 * is quite short.  Except of course when it isn't.  And it is not hard to
 * cause a large system to spend tens of seconds or even minutes looping
 * in the kernel, which can cause a number of problems, include RCU CPU
 * stall warnings.
 *
 * Therefore, if a nohz_full CPU fails to report a quiescent state
 * in a timely manner, the RCU grace-period kthread sets that CPU's
 * ->rcu_urgent_qs flag with the expectation that the next interrupt or
 * exception will invoke this function, which will turn on the scheduler
 * tick, which will enable RCU to detect that CPU's quiescent states,
 * for example, due to cond_resched() calls in CONFIG_PREEMPT=n kernels.
 * The tick will be disabled once a quiescent state is reported for
 * this CPU.
 *
 * Of course, in carefully tuned systems, there might never be an
 * interrupt or exception.  In that case, the RCU grace-period kthread
 * will eventually cause one to happen.  However, in less carefully
 * controlled environments, this function allows RCU to get what it
 * needs without creating otherwise useless interruptions.
 */
void __rcu_irq_enter_check_tick(void)
{
	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);

	// If we're here from NMI there's nothing to do.
	if (in_nmi())
		return;

	RCU_LOCKDEP_WARN(!rcu_is_watching_curr_cpu(),
			 "Illegal rcu_irq_enter_check_tick() from extended quiescent state");

	if (!tick_nohz_full_cpu(rdp->cpu) ||
	    !READ_ONCE(rdp->rcu_urgent_qs) ||
	    READ_ONCE(rdp->rcu_forced_tick)) {
		// RCU doesn't need nohz_full help from this CPU, or it is
		// already getting that help.
		return;
	}

	// We get here only when not in an extended quiescent state and
	// from interrupts (as opposed to NMIs).  Therefore, (1) RCU is
	// already watching and (2) The fact that we are in an interrupt
	// handler and that the rcu_node lock is an irq-disabled lock
	// prevents self-deadlock.  So we can safely recheck under the lock.
	// Note that the nohz_full state currently cannot change.
	raw_spin_lock_rcu_node(rdp->mynode);
	if (READ_ONCE(rdp->rcu_urgent_qs) && !rdp->rcu_forced_tick) {
		// A nohz_full CPU is in the kernel and RCU needs a
		// quiescent state.  Turn on the tick!
		WRITE_ONCE(rdp->rcu_forced_tick, true);
		tick_dep_set_cpu(rdp->cpu, TICK_DEP_BIT_RCU);
	}
	raw_spin_unlock_rcu_node(rdp->mynode);
}
NOKPROBE_SYMBOL(__rcu_irq_enter_check_tick);
#endif /* CONFIG_NO_HZ_FULL */

/*
 * Check to see if any future non-offloaded RCU-related work will need
 * to be done by the current CPU, even if none need be done immediately,
 * returning 1 if so.  This function is part of the RCU implementation;
 * it is -not- an exported member of the RCU API.  This is used by
 * the idle-entry code to figure out whether it is safe to disable the
 * scheduler-clock interrupt.
 *
 * Just check whether or not this CPU has non-offloaded RCU callbacks
 * queued.
 */
int rcu_needs_cpu(void)
{}

/*
 * If any sort of urgency was applied to the current CPU (for example,
 * the scheduler-clock interrupt was enabled on a nohz_full CPU) in order
 * to get to a quiescent state, disable it.
 */
static void rcu_disable_urgency_upon_qs(struct rcu_data *rdp)
{}

/**
 * rcu_is_watching - RCU read-side critical sections permitted on current CPU?
 *
 * Return @true if RCU is watching the running CPU and @false otherwise.
 * An @true return means that this CPU can safely enter RCU read-side
 * critical sections.
 *
 * Although calls to rcu_is_watching() from most parts of the kernel
 * will return @true, there are important exceptions.  For example, if the
 * current CPU is deep within its idle loop, in kernel entry/exit code,
 * or offline, rcu_is_watching() will return @false.
 *
 * Make notrace because it can be called by the internal functions of
 * ftrace, and making this notrace removes unnecessary recursion calls.
 */
notrace bool rcu_is_watching(void)
{}
EXPORT_SYMBOL_GPL();

/*
 * If a holdout task is actually running, request an urgent quiescent
 * state from its CPU.  This is unsynchronized, so migrations can cause
 * the request to go to the wrong CPU.  Which is OK, all that will happen
 * is that the CPU's next context switch will be a bit slower and next
 * time around this task will generate another request.
 */
void rcu_request_urgent_qs_task(struct task_struct *t)
{}

/*
 * When trying to report a quiescent state on behalf of some other CPU,
 * it is our responsibility to check for and handle potential overflow
 * of the rcu_node ->gp_seq counter with respect to the rcu_data counters.
 * After all, the CPU might be in deep idle state, and thus executing no
 * code whatsoever.
 */
static void rcu_gpnum_ovf(struct rcu_node *rnp, struct rcu_data *rdp)
{}

/*
 * Snapshot the specified CPU's RCU_WATCHING counter so that we can later
 * credit them with an implicit quiescent state.  Return 1 if this CPU
 * is in dynticks idle mode, which is an extended quiescent state.
 */
static int rcu_watching_snap_save(struct rcu_data *rdp)
{}

/*
 * Returns positive if the specified CPU has passed through a quiescent state
 * by virtue of being in or having passed through an dynticks idle state since
 * the last call to rcu_watching_snap_save() for this same CPU, or by
 * virtue of having been offline.
 *
 * Returns negative if the specified CPU needs a force resched.
 *
 * Returns zero otherwise.
 */
static int rcu_watching_snap_recheck(struct rcu_data *rdp)
{}

/* Trace-event wrapper function for trace_rcu_future_grace_period.  */
static void trace_rcu_this_gp(struct rcu_node *rnp, struct rcu_data *rdp,
			      unsigned long gp_seq_req, const char *s)
{}

/*
 * rcu_start_this_gp - Request the start of a particular grace period
 * @rnp_start: The leaf node of the CPU from which to start.
 * @rdp: The rcu_data corresponding to the CPU from which to start.
 * @gp_seq_req: The gp_seq of the grace period to start.
 *
 * Start the specified grace period, as needed to handle newly arrived
 * callbacks.  The required future grace periods are recorded in each
 * rcu_node structure's ->gp_seq_needed field.  Returns true if there
 * is reason to awaken the grace-period kthread.
 *
 * The caller must hold the specified rcu_node structure's ->lock, which
 * is why the caller is responsible for waking the grace-period kthread.
 *
 * Returns true if the GP thread needs to be awakened else false.
 */
static bool rcu_start_this_gp(struct rcu_node *rnp_start, struct rcu_data *rdp,
			      unsigned long gp_seq_req)
{}

/*
 * Clean up any old requests for the just-ended grace period.  Also return
 * whether any additional grace periods have been requested.
 */
static bool rcu_future_gp_cleanup(struct rcu_node *rnp)
{}

static void swake_up_one_online_ipi(void *arg)
{}

static void swake_up_one_online(struct swait_queue_head *wqh)
{}

/*
 * Awaken the grace-period kthread.  Don't do a self-awaken (unless in an
 * interrupt or softirq handler, in which case we just might immediately
 * sleep upon return, resulting in a grace-period hang), and don't bother
 * awakening when there is nothing for the grace-period kthread to do
 * (as in several CPUs raced to awaken, we lost), and finally don't try
 * to awaken a kthread that has not yet been created.  If all those checks
 * are passed, track some debug information and awaken.
 *
 * So why do the self-wakeup when in an interrupt or softirq handler
 * in the grace-period kthread's context?  Because the kthread might have
 * been interrupted just as it was going to sleep, and just after the final
 * pre-sleep check of the awaken condition.  In this case, a wakeup really
 * is required, and is therefore supplied.
 */
static void rcu_gp_kthread_wake(void)
{}

/*
 * If there is room, assign a ->gp_seq number to any callbacks on this
 * CPU that have not already been assigned.  Also accelerate any callbacks
 * that were previously assigned a ->gp_seq number that has since proven
 * to be too conservative, which can happen if callbacks get assigned a
 * ->gp_seq number while RCU is idle, but with reference to a non-root
 * rcu_node structure.  This function is idempotent, so it does not hurt
 * to call it repeatedly.  Returns an flag saying that we should awaken
 * the RCU grace-period kthread.
 *
 * The caller must hold rnp->lock with interrupts disabled.
 */
static bool rcu_accelerate_cbs(struct rcu_node *rnp, struct rcu_data *rdp)
{}

/*
 * Similar to rcu_accelerate_cbs(), but does not require that the leaf
 * rcu_node structure's ->lock be held.  It consults the cached value
 * of ->gp_seq_needed in the rcu_data structure, and if that indicates
 * that a new grace-period request be made, invokes rcu_accelerate_cbs()
 * while holding the leaf rcu_node structure's ->lock.
 */
static void rcu_accelerate_cbs_unlocked(struct rcu_node *rnp,
					struct rcu_data *rdp)
{}

/*
 * Move any callbacks whose grace period has completed to the
 * RCU_DONE_TAIL sublist, then compact the remaining sublists and
 * assign ->gp_seq numbers to any callbacks in the RCU_NEXT_TAIL
 * sublist.  This function is idempotent, so it does not hurt to
 * invoke it repeatedly.  As long as it is not invoked -too- often...
 * Returns true if the RCU grace-period kthread needs to be awakened.
 *
 * The caller must hold rnp->lock with interrupts disabled.
 */
static bool rcu_advance_cbs(struct rcu_node *rnp, struct rcu_data *rdp)
{}

/*
 * Move and classify callbacks, but only if doing so won't require
 * that the RCU grace-period kthread be awakened.
 */
static void __maybe_unused rcu_advance_cbs_nowake(struct rcu_node *rnp,
						  struct rcu_data *rdp)
{}

/*
 * In CONFIG_RCU_STRICT_GRACE_PERIOD=y kernels, attempt to generate a
 * quiescent state.  This is intended to be invoked when the CPU notices
 * a new grace period.
 */
static void rcu_strict_gp_check_qs(void)
{}

/*
 * Update CPU-local rcu_data state to record the beginnings and ends of
 * grace periods.  The caller must hold the ->lock of the leaf rcu_node
 * structure corresponding to the current CPU, and must have irqs disabled.
 * Returns true if the grace-period kthread needs to be awakened.
 */
static bool __note_gp_changes(struct rcu_node *rnp, struct rcu_data *rdp)
{}

static void note_gp_changes(struct rcu_data *rdp)
{}

static atomic_t *rcu_gp_slow_suppress;

/* Register a counter to suppress debugging grace-period delays. */
void rcu_gp_slow_register(atomic_t *rgssp)
{}
EXPORT_SYMBOL_GPL();

/* Unregister a counter, with NULL for not caring which. */
void rcu_gp_slow_unregister(atomic_t *rgssp)
{}
EXPORT_SYMBOL_GPL();

static bool rcu_gp_slow_is_suppressed(void)
{}

static void rcu_gp_slow(int delay)
{}

static unsigned long sleep_duration;

/* Allow rcutorture to stall the grace-period kthread. */
void rcu_gp_set_torture_wait(int duration)
{}
EXPORT_SYMBOL_GPL();

/* Actually implement the aforementioned wait. */
static void rcu_gp_torture_wait(void)
{}

/*
 * Handler for on_each_cpu() to invoke the target CPU's RCU core
 * processing.
 */
static void rcu_strict_gp_boundary(void *unused)
{}

// Make the polled API aware of the beginning of a grace period.
static void rcu_poll_gp_seq_start(unsigned long *snap)
{}

// Make the polled API aware of the end of a grace period.
static void rcu_poll_gp_seq_end(unsigned long *snap)
{}

// Make the polled API aware of the beginning of a grace period, but
// where caller does not hold the root rcu_node structure's lock.
static void rcu_poll_gp_seq_start_unlocked(unsigned long *snap)
{}

// Make the polled API aware of the end of a grace period, but where
// caller does not hold the root rcu_node structure's lock.
static void rcu_poll_gp_seq_end_unlocked(unsigned long *snap)
{}

/*
 * There is a single llist, which is used for handling
 * synchronize_rcu() users' enqueued rcu_synchronize nodes.
 * Within this llist, there are two tail pointers:
 *
 * wait tail: Tracks the set of nodes, which need to
 *            wait for the current GP to complete.
 * done tail: Tracks the set of nodes, for which grace
 *            period has elapsed. These nodes processing
 *            will be done as part of the cleanup work
 *            execution by a kworker.
 *
 * At every grace period init, a new wait node is added
 * to the llist. This wait node is used as wait tail
 * for this new grace period. Given that there are a fixed
 * number of wait nodes, if all wait nodes are in use
 * (which can happen when kworker callback processing
 * is delayed) and additional grace period is requested.
 * This means, a system is slow in processing callbacks.
 *
 * TODO: If a slow processing is detected, a first node
 * in the llist should be used as a wait-tail for this
 * grace period, therefore users which should wait due
 * to a slow process are handled by _this_ grace period
 * and not next.
 *
 * Below is an illustration of how the done and wait
 * tail pointers move from one set of rcu_synchronize nodes
 * to the other, as grace periods start and finish and
 * nodes are processed by kworker.
 *
 *
 * a. Initial llist callbacks list:
 *
 * +----------+           +--------+          +-------+
 * |          |           |        |          |       |
 * |   head   |---------> |   cb2  |--------->| cb1   |
 * |          |           |        |          |       |
 * +----------+           +--------+          +-------+
 *
 *
 *
 * b. New GP1 Start:
 *
 *                    WAIT TAIL
 *                      |
 *                      |
 *                      v
 * +----------+     +--------+      +--------+        +-------+
 * |          |     |        |      |        |        |       |
 * |   head   ------> wait   |------>   cb2  |------> |  cb1  |
 * |          |     | head1  |      |        |        |       |
 * +----------+     +--------+      +--------+        +-------+
 *
 *
 *
 * c. GP completion:
 *
 * WAIT_TAIL == DONE_TAIL
 *
 *                   DONE TAIL
 *                     |
 *                     |
 *                     v
 * +----------+     +--------+      +--------+        +-------+
 * |          |     |        |      |        |        |       |
 * |   head   ------> wait   |------>   cb2  |------> |  cb1  |
 * |          |     | head1  |      |        |        |       |
 * +----------+     +--------+      +--------+        +-------+
 *
 *
 *
 * d. New callbacks and GP2 start:
 *
 *                    WAIT TAIL                          DONE TAIL
 *                      |                                 |
 *                      |                                 |
 *                      v                                 v
 * +----------+     +------+    +------+    +------+    +-----+    +-----+    +-----+
 * |          |     |      |    |      |    |      |    |     |    |     |    |     |
 * |   head   ------> wait |--->|  cb4 |--->| cb3  |--->|wait |--->| cb2 |--->| cb1 |
 * |          |     | head2|    |      |    |      |    |head1|    |     |    |     |
 * +----------+     +------+    +------+    +------+    +-----+    +-----+    +-----+
 *
 *
 *
 * e. GP2 completion:
 *
 * WAIT_TAIL == DONE_TAIL
 *                   DONE TAIL
 *                      |
 *                      |
 *                      v
 * +----------+     +------+    +------+    +------+    +-----+    +-----+    +-----+
 * |          |     |      |    |      |    |      |    |     |    |     |    |     |
 * |   head   ------> wait |--->|  cb4 |--->| cb3  |--->|wait |--->| cb2 |--->| cb1 |
 * |          |     | head2|    |      |    |      |    |head1|    |     |    |     |
 * +----------+     +------+    +------+    +------+    +-----+    +-----+    +-----+
 *
 *
 * While the llist state transitions from d to e, a kworker
 * can start executing rcu_sr_normal_gp_cleanup_work() and
 * can observe either the old done tail (@c) or the new
 * done tail (@e). So, done tail updates and reads need
 * to use the rel-acq semantics. If the concurrent kworker
 * observes the old done tail, the newly queued work
 * execution will process the updated done tail. If the
 * concurrent kworker observes the new done tail, then
 * the newly queued work will skip processing the done
 * tail, as workqueue semantics guarantees that the new
 * work is executed only after the previous one completes.
 *
 * f. kworker callbacks processing complete:
 *
 *
 *                   DONE TAIL
 *                     |
 *                     |
 *                     v
 * +----------+     +--------+
 * |          |     |        |
 * |   head   ------> wait   |
 * |          |     | head2  |
 * +----------+     +--------+
 *
 */
static bool rcu_sr_is_wait_head(struct llist_node *node)
{}

static struct llist_node *rcu_sr_get_wait_head(void)
{}

static void rcu_sr_put_wait_head(struct llist_node *node)
{}

/* Disabled by default. */
static int rcu_normal_wake_from_gp;
module_param(rcu_normal_wake_from_gp, int, 0644);
static struct workqueue_struct *sync_wq;

static void rcu_sr_normal_complete(struct llist_node *node)
{}

static void rcu_sr_normal_gp_cleanup_work(struct work_struct *work)
{}

/*
 * Helper function for rcu_gp_cleanup().
 */
static void rcu_sr_normal_gp_cleanup(void)
{}

/*
 * Helper function for rcu_gp_init().
 */
static bool rcu_sr_normal_gp_init(void)
{}

static void rcu_sr_normal_add_req(struct rcu_synchronize *rs)
{}

/*
 * Initialize a new grace period.  Return false if no grace period required.
 */
static noinline_for_stack bool rcu_gp_init(void)
{}

/*
 * Helper function for swait_event_idle_exclusive() wakeup at force-quiescent-state
 * time.
 */
static bool rcu_gp_fqs_check_wake(int *gfp)
{}

/*
 * Do one round of quiescent-state forcing.
 */
static void rcu_gp_fqs(bool first_time)
{}

/*
 * Loop doing repeated quiescent-state forcing until the grace period ends.
 */
static noinline_for_stack void rcu_gp_fqs_loop(void)
{}

/*
 * Clean up after the old grace period.
 */
static noinline void rcu_gp_cleanup(void)
{}

/*
 * Body of kthread that handles grace periods.
 */
static int __noreturn rcu_gp_kthread(void *unused)
{}

/*
 * Report a full set of quiescent states to the rcu_state data structure.
 * Invoke rcu_gp_kthread_wake() to awaken the grace-period kthread if
 * another grace period is required.  Whether we wake the grace-period
 * kthread or it awakens itself for the next round of quiescent-state
 * forcing, that kthread will clean up after the just-completed grace
 * period.  Note that the caller must hold rnp->lock, which is released
 * before return.
 */
static void rcu_report_qs_rsp(unsigned long flags)
	__releases(rcu_get_root()->lock)
{}

/*
 * Similar to rcu_report_qs_rdp(), for which it is a helper function.
 * Allows quiescent states for a group of CPUs to be reported at one go
 * to the specified rcu_node structure, though all the CPUs in the group
 * must be represented by the same rcu_node structure (which need not be a
 * leaf rcu_node structure, though it often will be).  The gps parameter
 * is the grace-period snapshot, which means that the quiescent states
 * are valid only if rnp->gp_seq is equal to gps.  That structure's lock
 * must be held upon entry, and it is released before return.
 *
 * As a special case, if mask is zero, the bit-already-cleared check is
 * disabled.  This allows propagating quiescent state due to resumed tasks
 * during grace-period initialization.
 */
static void rcu_report_qs_rnp(unsigned long mask, struct rcu_node *rnp,
			      unsigned long gps, unsigned long flags)
	__releases(rnp->lock)
{}

/*
 * Record a quiescent state for all tasks that were previously queued
 * on the specified rcu_node structure and that were blocking the current
 * RCU grace period.  The caller must hold the corresponding rnp->lock with
 * irqs disabled, and this lock is released upon return, but irqs remain
 * disabled.
 */
static void __maybe_unused
rcu_report_unblock_qs_rnp(struct rcu_node *rnp, unsigned long flags)
	__releases(rnp->lock)
{}

/*
 * Record a quiescent state for the specified CPU to that CPU's rcu_data
 * structure.  This must be called from the specified CPU.
 */
static void
rcu_report_qs_rdp(struct rcu_data *rdp)
{}

/*
 * Check to see if there is a new grace period of which this CPU
 * is not yet aware, and if so, set up local rcu_data state for it.
 * Otherwise, see if this CPU has just passed through its first
 * quiescent state for this grace period, and record that fact if so.
 */
static void
rcu_check_quiescent_state(struct rcu_data *rdp)
{}

/* Return true if callback-invocation time limit exceeded. */
static bool rcu_do_batch_check_time(long count, long tlimit,
				    bool jlimit_check, unsigned long jlimit)
{}

/*
 * Invoke any RCU callbacks that have made it to the end of their grace
 * period.  Throttle as specified by rdp->blimit.
 */
static void rcu_do_batch(struct rcu_data *rdp)
{}

/*
 * This function is invoked from each scheduling-clock interrupt,
 * and checks to see if this CPU is in a non-context-switch quiescent
 * state, for example, user mode or idle loop.  It also schedules RCU
 * core processing.  If the current grace period has gone on too long,
 * it will ask the scheduler to manufacture a context switch for the sole
 * purpose of providing the needed quiescent state.
 */
void rcu_sched_clock_irq(int user)
{}

/*
 * Scan the leaf rcu_node structures.  For each structure on which all
 * CPUs have reported a quiescent state and on which there are tasks
 * blocking the current grace period, initiate RCU priority boosting.
 * Otherwise, invoke the specified function to check dyntick state for
 * each CPU that has not yet reported a quiescent state.
 */
static void force_qs_rnp(int (*f)(struct rcu_data *rdp))
{}

/*
 * Force quiescent states on reluctant CPUs, and also detect which
 * CPUs are in dyntick-idle mode.
 */
void rcu_force_quiescent_state(void)
{}
EXPORT_SYMBOL_GPL();

// Workqueue handler for an RCU reader for kernels enforcing struct RCU
// grace periods.
static void strict_work_handler(struct work_struct *work)
{}

/* Perform RCU core processing work for the current CPU.  */
static __latent_entropy void rcu_core(void)
{}

static void rcu_core_si(void)
{}

static void rcu_wake_cond(struct task_struct *t, int status)
{}

static void invoke_rcu_core_kthread(void)
{}

/*
 * Wake up this CPU's rcuc kthread to do RCU core processing.
 */
static void invoke_rcu_core(void)
{}

static void rcu_cpu_kthread_park(unsigned int cpu)
{}

static int rcu_cpu_kthread_should_run(unsigned int cpu)
{}

/*
 * Per-CPU kernel thread that invokes RCU callbacks.  This replaces
 * the RCU softirq used in configurations of RCU that do not support RCU
 * priority boosting.
 */
static void rcu_cpu_kthread(unsigned int cpu)
{}

static struct smp_hotplug_thread rcu_cpu_thread_spec =;

/*
 * Spawn per-CPU RCU core processing kthreads.
 */
static int __init rcu_spawn_core_kthreads(void)
{}

static void rcutree_enqueue(struct rcu_data *rdp, struct rcu_head *head, rcu_callback_t func)
{}

/*
 * Handle any core-RCU processing required by a call_rcu() invocation.
 */
static void call_rcu_core(struct rcu_data *rdp, struct rcu_head *head,
			  rcu_callback_t func, unsigned long flags)
{}

/*
 * RCU callback function to leak a callback.
 */
static void rcu_leak_callback(struct rcu_head *rhp)
{}

/*
 * Check and if necessary update the leaf rcu_node structure's
 * ->cbovldmask bit corresponding to the current CPU based on that CPU's
 * number of queued RCU callbacks.  The caller must hold the leaf rcu_node
 * structure's ->lock.
 */
static void check_cb_ovld_locked(struct rcu_data *rdp, struct rcu_node *rnp)
{}

/*
 * Check and if necessary update the leaf rcu_node structure's
 * ->cbovldmask bit corresponding to the current CPU based on that CPU's
 * number of queued RCU callbacks.  No locks need be held, but the
 * caller must have disabled interrupts.
 *
 * Note that this function ignores the possibility that there are a lot
 * of callbacks all of which have already seen the end of their respective
 * grace periods.  This omission is due to the need for no-CBs CPUs to
 * be holding ->nocb_lock to do this check, which is too heavy for a
 * common-case operation.
 */
static void check_cb_ovld(struct rcu_data *rdp)
{}

static void
__call_rcu_common(struct rcu_head *head, rcu_callback_t func, bool lazy_in)
{}

#ifdef CONFIG_RCU_LAZY
static bool enable_rcu_lazy __read_mostly = !IS_ENABLED();
module_param(enable_rcu_lazy, bool, 0444);

/**
 * call_rcu_hurry() - Queue RCU callback for invocation after grace period, and
 * flush all lazy callbacks (including the new one) to the main ->cblist while
 * doing so.
 *
 * @head: structure to be used for queueing the RCU updates.
 * @func: actual callback function to be invoked after the grace period
 *
 * The callback function will be invoked some time after a full grace
 * period elapses, in other words after all pre-existing RCU read-side
 * critical sections have completed.
 *
 * Use this API instead of call_rcu() if you don't want the callback to be
 * invoked after very long periods of time, which can happen on systems without
 * memory pressure and on systems which are lightly loaded or mostly idle.
 * This function will cause callbacks to be invoked sooner than later at the
 * expense of extra power. Other than that, this function is identical to, and
 * reuses call_rcu()'s logic. Refer to call_rcu() for more details about memory
 * ordering and other functionality.
 */
void call_rcu_hurry(struct rcu_head *head, rcu_callback_t func)
{}
EXPORT_SYMBOL_GPL();
#else
#define enable_rcu_lazy
#endif

/**
 * call_rcu() - Queue an RCU callback for invocation after a grace period.
 * By default the callbacks are 'lazy' and are kept hidden from the main
 * ->cblist to prevent starting of grace periods too soon.
 * If you desire grace periods to start very soon, use call_rcu_hurry().
 *
 * @head: structure to be used for queueing the RCU updates.
 * @func: actual callback function to be invoked after the grace period
 *
 * The callback function will be invoked some time after a full grace
 * period elapses, in other words after all pre-existing RCU read-side
 * critical sections have completed.  However, the callback function
 * might well execute concurrently with RCU read-side critical sections
 * that started after call_rcu() was invoked.
 *
 * RCU read-side critical sections are delimited by rcu_read_lock()
 * and rcu_read_unlock(), and may be nested.  In addition, but only in
 * v5.0 and later, regions of code across which interrupts, preemption,
 * or softirqs have been disabled also serve as RCU read-side critical
 * sections.  This includes hardware interrupt handlers, softirq handlers,
 * and NMI handlers.
 *
 * Note that all CPUs must agree that the grace period extended beyond
 * all pre-existing RCU read-side critical section.  On systems with more
 * than one CPU, this means that when "func()" is invoked, each CPU is
 * guaranteed to have executed a full memory barrier since the end of its
 * last RCU read-side critical section whose beginning preceded the call
 * to call_rcu().  It also means that each CPU executing an RCU read-side
 * critical section that continues beyond the start of "func()" must have
 * executed a memory barrier after the call_rcu() but before the beginning
 * of that RCU read-side critical section.  Note that these guarantees
 * include CPUs that are offline, idle, or executing in user mode, as
 * well as CPUs that are executing in the kernel.
 *
 * Furthermore, if CPU A invoked call_rcu() and CPU B invoked the
 * resulting RCU callback function "func()", then both CPU A and CPU B are
 * guaranteed to execute a full memory barrier during the time interval
 * between the call to call_rcu() and the invocation of "func()" -- even
 * if CPU A and CPU B are the same CPU (but again only if the system has
 * more than one CPU).
 *
 * Implementation of these memory-ordering guarantees is described here:
 * Documentation/RCU/Design/Memory-Ordering/Tree-RCU-Memory-Ordering.rst.
 */
void call_rcu(struct rcu_head *head, rcu_callback_t func)
{}
EXPORT_SYMBOL_GPL();

/* Maximum number of jiffies to wait before draining a batch. */
#define KFREE_DRAIN_JIFFIES
#define KFREE_N_BATCHES
#define FREE_N_CHANNELS

/**
 * struct kvfree_rcu_bulk_data - single block to store kvfree_rcu() pointers
 * @list: List node. All blocks are linked between each other
 * @gp_snap: Snapshot of RCU state for objects placed to this bulk
 * @nr_records: Number of active pointers in the array
 * @records: Array of the kvfree_rcu() pointers
 */
struct kvfree_rcu_bulk_data {};

/*
 * This macro defines how many entries the "records" array
 * will contain. It is based on the fact that the size of
 * kvfree_rcu_bulk_data structure becomes exactly one page.
 */
#define KVFREE_BULK_MAX_ENTR

/**
 * struct kfree_rcu_cpu_work - single batch of kfree_rcu() requests
 * @rcu_work: Let queue_rcu_work() invoke workqueue handler after grace period
 * @head_free: List of kfree_rcu() objects waiting for a grace period
 * @head_free_gp_snap: Grace-period snapshot to check for attempted premature frees.
 * @bulk_head_free: Bulk-List of kvfree_rcu() objects waiting for a grace period
 * @krcp: Pointer to @kfree_rcu_cpu structure
 */

struct kfree_rcu_cpu_work {};

/**
 * struct kfree_rcu_cpu - batch up kfree_rcu() requests for RCU grace period
 * @head: List of kfree_rcu() objects not yet waiting for a grace period
 * @head_gp_snap: Snapshot of RCU state for objects placed to "@head"
 * @bulk_head: Bulk-List of kvfree_rcu() objects not yet waiting for a grace period
 * @krw_arr: Array of batches of kfree_rcu() objects waiting for a grace period
 * @lock: Synchronize access to this structure
 * @monitor_work: Promote @head to @head_free after KFREE_DRAIN_JIFFIES
 * @initialized: The @rcu_work fields have been initialized
 * @head_count: Number of objects in rcu_head singular list
 * @bulk_count: Number of objects in bulk-list
 * @bkvcache:
 *	A simple cache list that contains objects for reuse purpose.
 *	In order to save some per-cpu space the list is singular.
 *	Even though it is lockless an access has to be protected by the
 *	per-cpu lock.
 * @page_cache_work: A work to refill the cache when it is empty
 * @backoff_page_cache_fill: Delay cache refills
 * @work_in_progress: Indicates that page_cache_work is running
 * @hrtimer: A hrtimer for scheduling a page_cache_work
 * @nr_bkv_objs: number of allocated objects at @bkvcache.
 *
 * This is a per-CPU structure.  The reason that it is not included in
 * the rcu_data structure is to permit this code to be extracted from
 * the RCU files.  Such extraction could allow further optimization of
 * the interactions with the slab allocators.
 */
struct kfree_rcu_cpu {};

static DEFINE_PER_CPU(struct kfree_rcu_cpu, krc) =;

static __always_inline void
debug_rcu_bhead_unqueue(struct kvfree_rcu_bulk_data *bhead)
{}

static inline struct kfree_rcu_cpu *
krc_this_cpu_lock(unsigned long *flags)
{}

static inline void
krc_this_cpu_unlock(struct kfree_rcu_cpu *krcp, unsigned long flags)
{}

static inline struct kvfree_rcu_bulk_data *
get_cached_bnode(struct kfree_rcu_cpu *krcp)
{}

static inline bool
put_cached_bnode(struct kfree_rcu_cpu *krcp,
	struct kvfree_rcu_bulk_data *bnode)
{}

static int
drain_page_cache(struct kfree_rcu_cpu *krcp)
{}

static void
kvfree_rcu_bulk(struct kfree_rcu_cpu *krcp,
	struct kvfree_rcu_bulk_data *bnode, int idx)
{}

static void
kvfree_rcu_list(struct rcu_head *head)
{}

/*
 * This function is invoked in workqueue context after a grace period.
 * It frees all the objects queued on ->bulk_head_free or ->head_free.
 */
static void kfree_rcu_work(struct work_struct *work)
{}

static bool
need_offload_krc(struct kfree_rcu_cpu *krcp)
{}

static bool
need_wait_for_krwp_work(struct kfree_rcu_cpu_work *krwp)
{}

static int krc_count(struct kfree_rcu_cpu *krcp)
{}

static void
schedule_delayed_monitor_work(struct kfree_rcu_cpu *krcp)
{}

static void
kvfree_rcu_drain_ready(struct kfree_rcu_cpu *krcp)
{}

/*
 * Return: %true if a work is queued, %false otherwise.
 */
static bool
kvfree_rcu_queue_batch(struct kfree_rcu_cpu *krcp)
{}

/*
 * This function is invoked after the KFREE_DRAIN_JIFFIES timeout.
 */
static void kfree_rcu_monitor(struct work_struct *work)
{}

static enum hrtimer_restart
schedule_page_work_fn(struct hrtimer *t)
{}

static void fill_page_cache_func(struct work_struct *work)
{}

static void
run_page_cache_worker(struct kfree_rcu_cpu *krcp)
{}

// Record ptr in a page managed by krcp, with the pre-krc_this_cpu_lock()
// state specified by flags.  If can_alloc is true, the caller must
// be schedulable and not be holding any locks or mutexes that might be
// acquired by the memory allocator or anything that it might invoke.
// Returns true if ptr was successfully recorded, else the caller must
// use a fallback.
static inline bool
add_ptr_to_bulk_krc_lock(struct kfree_rcu_cpu **krcp,
	unsigned long *flags, void *ptr, bool can_alloc)
{}

/*
 * Queue a request for lazy invocation of the appropriate free routine
 * after a grace period.  Please note that three paths are maintained,
 * two for the common case using arrays of pointers and a third one that
 * is used only when the main paths cannot be used, for example, due to
 * memory pressure.
 *
 * Each kvfree_call_rcu() request is added to a batch. The batch will be drained
 * every KFREE_DRAIN_JIFFIES number of jiffies. All the objects in the batch will
 * be free'd in workqueue context. This allows us to: batch requests together to
 * reduce the number of grace periods during heavy kfree_rcu()/kvfree_rcu() load.
 */
void kvfree_call_rcu(struct rcu_head *head, void *ptr)
{}
EXPORT_SYMBOL_GPL();

/**
 * kvfree_rcu_barrier - Wait until all in-flight kvfree_rcu() complete.
 *
 * Note that a single argument of kvfree_rcu() call has a slow path that
 * triggers synchronize_rcu() following by freeing a pointer. It is done
 * before the return from the function. Therefore for any single-argument
 * call that will result in a kfree() to a cache that is to be destroyed
 * during module exit, it is developer's responsibility to ensure that all
 * such calls have returned before the call to kmem_cache_destroy().
 */
void kvfree_rcu_barrier(void)
{}
EXPORT_SYMBOL_GPL();

static unsigned long
kfree_rcu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
{}

static unsigned long
kfree_rcu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
{}

void __init kfree_rcu_scheduler_running(void)
{}

/*
 * During early boot, any blocking grace-period wait automatically
 * implies a grace period.
 *
 * Later on, this could in theory be the case for kernels built with
 * CONFIG_SMP=y && CONFIG_PREEMPTION=y running on a single CPU, but this
 * is not a common case.  Furthermore, this optimization would cause
 * the rcu_gp_oldstate structure to expand by 50%, so this potential
 * grace-period optimization is ignored once the scheduler is running.
 */
static int rcu_blocking_is_gp(void)
{}

/*
 * Helper function for the synchronize_rcu() API.
 */
static void synchronize_rcu_normal(void)
{}

/**
 * synchronize_rcu - wait until a grace period has elapsed.
 *
 * Control will return to the caller some time after a full grace
 * period has elapsed, in other words after all currently executing RCU
 * read-side critical sections have completed.  Note, however, that
 * upon return from synchronize_rcu(), the caller might well be executing
 * concurrently with new RCU read-side critical sections that began while
 * synchronize_rcu() was waiting.
 *
 * RCU read-side critical sections are delimited by rcu_read_lock()
 * and rcu_read_unlock(), and may be nested.  In addition, but only in
 * v5.0 and later, regions of code across which interrupts, preemption,
 * or softirqs have been disabled also serve as RCU read-side critical
 * sections.  This includes hardware interrupt handlers, softirq handlers,
 * and NMI handlers.
 *
 * Note that this guarantee implies further memory-ordering guarantees.
 * On systems with more than one CPU, when synchronize_rcu() returns,
 * each CPU is guaranteed to have executed a full memory barrier since
 * the end of its last RCU read-side critical section whose beginning
 * preceded the call to synchronize_rcu().  In addition, each CPU having
 * an RCU read-side critical section that extends beyond the return from
 * synchronize_rcu() is guaranteed to have executed a full memory barrier
 * after the beginning of synchronize_rcu() and before the beginning of
 * that RCU read-side critical section.  Note that these guarantees include
 * CPUs that are offline, idle, or executing in user mode, as well as CPUs
 * that are executing in the kernel.
 *
 * Furthermore, if CPU A invoked synchronize_rcu(), which returned
 * to its caller on CPU B, then both CPU A and CPU B are guaranteed
 * to have executed a full memory barrier during the execution of
 * synchronize_rcu() -- even if CPU A and CPU B are the same CPU (but
 * again only if the system has more than one CPU).
 *
 * Implementation of these memory-ordering guarantees is described here:
 * Documentation/RCU/Design/Memory-Ordering/Tree-RCU-Memory-Ordering.rst.
 */
void synchronize_rcu(void)
{}
EXPORT_SYMBOL_GPL();

/**
 * get_completed_synchronize_rcu_full - Return a full pre-completed polled state cookie
 * @rgosp: Place to put state cookie
 *
 * Stores into @rgosp a value that will always be treated by functions
 * like poll_state_synchronize_rcu_full() as a cookie whose grace period
 * has already completed.
 */
void get_completed_synchronize_rcu_full(struct rcu_gp_oldstate *rgosp)
{}
EXPORT_SYMBOL_GPL();

/**
 * get_state_synchronize_rcu - Snapshot current RCU state
 *
 * Returns a cookie that is used by a later call to cond_synchronize_rcu()
 * or poll_state_synchronize_rcu() to determine whether or not a full
 * grace period has elapsed in the meantime.
 */
unsigned long get_state_synchronize_rcu(void)
{}
EXPORT_SYMBOL_GPL();

/**
 * get_state_synchronize_rcu_full - Snapshot RCU state, both normal and expedited
 * @rgosp: location to place combined normal/expedited grace-period state
 *
 * Places the normal and expedited grace-period states in @rgosp.  This
 * state value can be passed to a later call to cond_synchronize_rcu_full()
 * or poll_state_synchronize_rcu_full() to determine whether or not a
 * grace period (whether normal or expedited) has elapsed in the meantime.
 * The rcu_gp_oldstate structure takes up twice the memory of an unsigned
 * long, but is guaranteed to see all grace periods.  In contrast, the
 * combined state occupies less memory, but can sometimes fail to take
 * grace periods into account.
 *
 * This does not guarantee that the needed grace period will actually
 * start.
 */
void get_state_synchronize_rcu_full(struct rcu_gp_oldstate *rgosp)
{}
EXPORT_SYMBOL_GPL();

/*
 * Helper function for start_poll_synchronize_rcu() and
 * start_poll_synchronize_rcu_full().
 */
static void start_poll_synchronize_rcu_common(void)
{}

/**
 * start_poll_synchronize_rcu - Snapshot and start RCU grace period
 *
 * Returns a cookie that is used by a later call to cond_synchronize_rcu()
 * or poll_state_synchronize_rcu() to determine whether or not a full
 * grace period has elapsed in the meantime.  If the needed grace period
 * is not already slated to start, notifies RCU core of the need for that
 * grace period.
 *
 * Interrupts must be enabled for the case where it is necessary to awaken
 * the grace-period kthread.
 */
unsigned long start_poll_synchronize_rcu(void)
{}
EXPORT_SYMBOL_GPL();

/**
 * start_poll_synchronize_rcu_full - Take a full snapshot and start RCU grace period
 * @rgosp: value from get_state_synchronize_rcu_full() or start_poll_synchronize_rcu_full()
 *
 * Places the normal and expedited grace-period states in *@rgos.  This
 * state value can be passed to a later call to cond_synchronize_rcu_full()
 * or poll_state_synchronize_rcu_full() to determine whether or not a
 * grace period (whether normal or expedited) has elapsed in the meantime.
 * If the needed grace period is not already slated to start, notifies
 * RCU core of the need for that grace period.
 *
 * Interrupts must be enabled for the case where it is necessary to awaken
 * the grace-period kthread.
 */
void start_poll_synchronize_rcu_full(struct rcu_gp_oldstate *rgosp)
{}
EXPORT_SYMBOL_GPL();

/**
 * poll_state_synchronize_rcu - Has the specified RCU grace period completed?
 * @oldstate: value from get_state_synchronize_rcu() or start_poll_synchronize_rcu()
 *
 * If a full RCU grace period has elapsed since the earlier call from
 * which @oldstate was obtained, return @true, otherwise return @false.
 * If @false is returned, it is the caller's responsibility to invoke this
 * function later on until it does return @true.  Alternatively, the caller
 * can explicitly wait for a grace period, for example, by passing @oldstate
 * to either cond_synchronize_rcu() or cond_synchronize_rcu_expedited()
 * on the one hand or by directly invoking either synchronize_rcu() or
 * synchronize_rcu_expedited() on the other.
 *
 * Yes, this function does not take counter wrap into account.
 * But counter wrap is harmless.  If the counter wraps, we have waited for
 * more than a billion grace periods (and way more on a 64-bit system!).
 * Those needing to keep old state values for very long time periods
 * (many hours even on 32-bit systems) should check them occasionally and
 * either refresh them or set a flag indicating that the grace period has
 * completed.  Alternatively, they can use get_completed_synchronize_rcu()
 * to get a guaranteed-completed grace-period state.
 *
 * In addition, because oldstate compresses the grace-period state for
 * both normal and expedited grace periods into a single unsigned long,
 * it can miss a grace period when synchronize_rcu() runs concurrently
 * with synchronize_rcu_expedited().  If this is unacceptable, please
 * instead use the _full() variant of these polling APIs.
 *
 * This function provides the same memory-ordering guarantees that
 * would be provided by a synchronize_rcu() that was invoked at the call
 * to the function that provided @oldstate, and that returned at the end
 * of this function.
 */
bool poll_state_synchronize_rcu(unsigned long oldstate)
{}
EXPORT_SYMBOL_GPL();

/**
 * poll_state_synchronize_rcu_full - Has the specified RCU grace period completed?
 * @rgosp: value from get_state_synchronize_rcu_full() or start_poll_synchronize_rcu_full()
 *
 * If a full RCU grace period has elapsed since the earlier call from
 * which *rgosp was obtained, return @true, otherwise return @false.
 * If @false is returned, it is the caller's responsibility to invoke this
 * function later on until it does return @true.  Alternatively, the caller
 * can explicitly wait for a grace period, for example, by passing @rgosp
 * to cond_synchronize_rcu() or by directly invoking synchronize_rcu().
 *
 * Yes, this function does not take counter wrap into account.
 * But counter wrap is harmless.  If the counter wraps, we have waited
 * for more than a billion grace periods (and way more on a 64-bit
 * system!).  Those needing to keep rcu_gp_oldstate values for very
 * long time periods (many hours even on 32-bit systems) should check
 * them occasionally and either refresh them or set a flag indicating
 * that the grace period has completed.  Alternatively, they can use
 * get_completed_synchronize_rcu_full() to get a guaranteed-completed
 * grace-period state.
 *
 * This function provides the same memory-ordering guarantees that would
 * be provided by a synchronize_rcu() that was invoked at the call to
 * the function that provided @rgosp, and that returned at the end of this
 * function.  And this guarantee requires that the root rcu_node structure's
 * ->gp_seq field be checked instead of that of the rcu_state structure.
 * The problem is that the just-ending grace-period's callbacks can be
 * invoked between the time that the root rcu_node structure's ->gp_seq
 * field is updated and the time that the rcu_state structure's ->gp_seq
 * field is updated.  Therefore, if a single synchronize_rcu() is to
 * cause a subsequent poll_state_synchronize_rcu_full() to return @true,
 * then the root rcu_node structure is the one that needs to be polled.
 */
bool poll_state_synchronize_rcu_full(struct rcu_gp_oldstate *rgosp)
{}
EXPORT_SYMBOL_GPL();

/**
 * cond_synchronize_rcu - Conditionally wait for an RCU grace period
 * @oldstate: value from get_state_synchronize_rcu(), start_poll_synchronize_rcu(), or start_poll_synchronize_rcu_expedited()
 *
 * If a full RCU grace period has elapsed since the earlier call to
 * get_state_synchronize_rcu() or start_poll_synchronize_rcu(), just return.
 * Otherwise, invoke synchronize_rcu() to wait for a full grace period.
 *
 * Yes, this function does not take counter wrap into account.
 * But counter wrap is harmless.  If the counter wraps, we have waited for
 * more than 2 billion grace periods (and way more on a 64-bit system!),
 * so waiting for a couple of additional grace periods should be just fine.
 *
 * This function provides the same memory-ordering guarantees that
 * would be provided by a synchronize_rcu() that was invoked at the call
 * to the function that provided @oldstate and that returned at the end
 * of this function.
 */
void cond_synchronize_rcu(unsigned long oldstate)
{}
EXPORT_SYMBOL_GPL();

/**
 * cond_synchronize_rcu_full - Conditionally wait for an RCU grace period
 * @rgosp: value from get_state_synchronize_rcu_full(), start_poll_synchronize_rcu_full(), or start_poll_synchronize_rcu_expedited_full()
 *
 * If a full RCU grace period has elapsed since the call to
 * get_state_synchronize_rcu_full(), start_poll_synchronize_rcu_full(),
 * or start_poll_synchronize_rcu_expedited_full() from which @rgosp was
 * obtained, just return.  Otherwise, invoke synchronize_rcu() to wait
 * for a full grace period.
 *
 * Yes, this function does not take counter wrap into account.
 * But counter wrap is harmless.  If the counter wraps, we have waited for
 * more than 2 billion grace periods (and way more on a 64-bit system!),
 * so waiting for a couple of additional grace periods should be just fine.
 *
 * This function provides the same memory-ordering guarantees that
 * would be provided by a synchronize_rcu() that was invoked at the call
 * to the function that provided @rgosp and that returned at the end of
 * this function.
 */
void cond_synchronize_rcu_full(struct rcu_gp_oldstate *rgosp)
{}
EXPORT_SYMBOL_GPL();

/*
 * Check to see if there is any immediate RCU-related work to be done by
 * the current CPU, returning 1 if so and zero otherwise.  The checks are
 * in order of increasing expense: checks that can be carried out against
 * CPU-local state are performed first.  However, we must check for CPU
 * stalls first, else we might not get a chance.
 */
static int rcu_pending(int user)
{}

/*
 * Helper function for rcu_barrier() tracing.  If tracing is disabled,
 * the compiler is expected to optimize this away.
 */
static void rcu_barrier_trace(const char *s, int cpu, unsigned long done)
{}

/*
 * RCU callback function for rcu_barrier().  If we are last, wake
 * up the task executing rcu_barrier().
 *
 * Note that the value of rcu_state.barrier_sequence must be captured
 * before the atomic_dec_and_test().  Otherwise, if this CPU is not last,
 * other CPUs might count the value down to zero before this CPU gets
 * around to invoking rcu_barrier_trace(), which might result in bogus
 * data from the next instance of rcu_barrier().
 */
static void rcu_barrier_callback(struct rcu_head *rhp)
{}

/*
 * If needed, entrain an rcu_barrier() callback on rdp->cblist.
 */
static void rcu_barrier_entrain(struct rcu_data *rdp)
{}

/*
 * Called with preemption disabled, and from cross-cpu IRQ context.
 */
static void rcu_barrier_handler(void *cpu_in)
{}

/**
 * rcu_barrier - Wait until all in-flight call_rcu() callbacks complete.
 *
 * Note that this primitive does not necessarily wait for an RCU grace period
 * to complete.  For example, if there are no RCU callbacks queued anywhere
 * in the system, then rcu_barrier() is within its rights to return
 * immediately, without waiting for anything, much less an RCU grace period.
 */
void rcu_barrier(void)
{}
EXPORT_SYMBOL_GPL();

static unsigned long rcu_barrier_last_throttle;

/**
 * rcu_barrier_throttled - Do rcu_barrier(), but limit to one per second
 *
 * This can be thought of as guard rails around rcu_barrier() that
 * permits unrestricted userspace use, at least assuming the hardware's
 * try_cmpxchg() is robust.  There will be at most one call per second to
 * rcu_barrier() system-wide from use of this function, which means that
 * callers might needlessly wait a second or three.
 *
 * This is intended for use by test suites to avoid OOM by flushing RCU
 * callbacks from the previous test before starting the next.  See the
 * rcutree.do_rcu_barrier module parameter for more information.
 *
 * Why not simply make rcu_barrier() more scalable?  That might be
 * the eventual endpoint, but let's keep it simple for the time being.
 * Note that the module parameter infrastructure serializes calls to a
 * given .set() function, but should concurrent .set() invocation ever be
 * possible, we are ready!
 */
static void rcu_barrier_throttled(void)
{}

/*
 * Invoke rcu_barrier_throttled() when a rcutree.do_rcu_barrier
 * request arrives.  We insist on a true value to allow for possible
 * future expansion.
 */
static int param_set_do_rcu_barrier(const char *val, const struct kernel_param *kp)
{}

/*
 * Output the number of outstanding rcutree.do_rcu_barrier requests.
 */
static int param_get_do_rcu_barrier(char *buffer, const struct kernel_param *kp)
{}

static const struct kernel_param_ops do_rcu_barrier_ops =;
static atomic_t do_rcu_barrier;
module_param_cb();

/*
 * Compute the mask of online CPUs for the specified rcu_node structure.
 * This will not be stable unless the rcu_node structure's ->lock is
 * held, but the bit corresponding to the current CPU will be stable
 * in most contexts.
 */
static unsigned long rcu_rnp_online_cpus(struct rcu_node *rnp)
{}

/*
 * Is the CPU corresponding to the specified rcu_data structure online
 * from RCU's perspective?  This perspective is given by that structure's
 * ->qsmaskinitnext field rather than by the global cpu_online_mask.
 */
static bool rcu_rdp_cpu_online(struct rcu_data *rdp)
{}

bool rcu_cpu_online(int cpu)
{}

#if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU)

/*
 * Is the current CPU online as far as RCU is concerned?
 *
 * Disable preemption to avoid false positives that could otherwise
 * happen due to the current CPU number being sampled, this task being
 * preempted, its old CPU being taken offline, resuming on some other CPU,
 * then determining that its old CPU is now offline.
 *
 * Disable checking if in an NMI handler because we cannot safely
 * report errors from NMI handlers anyway.  In addition, it is OK to use
 * RCU on an offline processor during initial boot, hence the check for
 * rcu_scheduler_fully_active.
 */
bool rcu_lockdep_current_cpu_online(void)
{}
EXPORT_SYMBOL_GPL();

#endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */

// Has rcu_init() been invoked?  This is used (for example) to determine
// whether spinlocks may be acquired safely.
static bool rcu_init_invoked(void)
{}

/*
 * All CPUs for the specified rcu_node structure have gone offline,
 * and all tasks that were preempted within an RCU read-side critical
 * section while running on one of those CPUs have since exited their RCU
 * read-side critical section.  Some other CPU is reporting this fact with
 * the specified rcu_node structure's ->lock held and interrupts disabled.
 * This function therefore goes up the tree of rcu_node structures,
 * clearing the corresponding bits in the ->qsmaskinit fields.  Note that
 * the leaf rcu_node structure's ->qsmaskinit field has already been
 * updated.
 *
 * This function does check that the specified rcu_node structure has
 * all CPUs offline and no blocked tasks, so it is OK to invoke it
 * prematurely.  That said, invoking it after the fact will cost you
 * a needless lock acquisition.  So once it has done its work, don't
 * invoke it again.
 */
static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf)
{}

/*
 * Propagate ->qsinitmask bits up the rcu_node tree to account for the
 * first CPU in a given leaf rcu_node structure coming online.  The caller
 * must hold the corresponding leaf rcu_node ->lock with interrupts
 * disabled.
 */
static void rcu_init_new_rnp(struct rcu_node *rnp_leaf)
{}

/*
 * Do boot-time initialization of a CPU's per-CPU RCU data.
 */
static void __init
rcu_boot_init_percpu_data(int cpu)
{}

struct kthread_worker *rcu_exp_gp_kworker;

static void rcu_spawn_exp_par_gp_kworker(struct rcu_node *rnp)
{}

static struct task_struct *rcu_exp_par_gp_task(struct rcu_node *rnp)
{}

static void __init rcu_start_exp_gp_kworker(void)
{}

static void rcu_spawn_rnp_kthreads(struct rcu_node *rnp)
{}

/*
 * Invoked early in the CPU-online process, when pretty much all services
 * are available.  The incoming CPU is not present.
 *
 * Initializes a CPU's per-CPU RCU data.  Note that only one online or
 * offline event can be happening at a given time.  Note also that we can
 * accept some slop in the rsp->gp_seq access due to the fact that this
 * CPU cannot possibly have any non-offloaded RCU callbacks in flight yet.
 * And any offloaded callbacks are being numbered elsewhere.
 */
int rcutree_prepare_cpu(unsigned int cpu)
{}

/*
 * Update kthreads affinity during CPU-hotplug changes.
 *
 * Set the per-rcu_node kthread's affinity to cover all CPUs that are
 * served by the rcu_node in question.  The CPU hotplug lock is still
 * held, so the value of rnp->qsmaskinit will be stable.
 *
 * We don't include outgoingcpu in the affinity set, use -1 if there is
 * no outgoing CPU.  If there are no CPUs left in the affinity set,
 * this function allows the kthread to execute on any CPU.
 *
 * Any future concurrent calls are serialized via ->kthread_mutex.
 */
static void rcutree_affinity_setting(unsigned int cpu, int outgoingcpu)
{}

/*
 * Has the specified (known valid) CPU ever been fully online?
 */
bool rcu_cpu_beenfullyonline(int cpu)
{}

/*
 * Near the end of the CPU-online process.  Pretty much all services
 * enabled, and the CPU is now very much alive.
 */
int rcutree_online_cpu(unsigned int cpu)
{}

/*
 * Mark the specified CPU as being online so that subsequent grace periods
 * (both expedited and normal) will wait on it.  Note that this means that
 * incoming CPUs are not allowed to use RCU read-side critical sections
 * until this function is called.  Failing to observe this restriction
 * will result in lockdep splats.
 *
 * Note that this function is special in that it is invoked directly
 * from the incoming CPU rather than from the cpuhp_step mechanism.
 * This is because this function must be invoked at a precise location.
 * This incoming CPU must not have enabled interrupts yet.
 *
 * This mirrors the effects of rcutree_report_cpu_dead().
 */
void rcutree_report_cpu_starting(unsigned int cpu)
{}

/*
 * The outgoing function has no further need of RCU, so remove it from
 * the rcu_node tree's ->qsmaskinitnext bit masks.
 *
 * Note that this function is special in that it is invoked directly
 * from the outgoing CPU rather than from the cpuhp_step mechanism.
 * This is because this function must be invoked at a precise location.
 *
 * This mirrors the effect of rcutree_report_cpu_starting().
 */
void rcutree_report_cpu_dead(void)
{}

#ifdef CONFIG_HOTPLUG_CPU
/*
 * The outgoing CPU has just passed through the dying-idle state, and we
 * are being invoked from the CPU that was IPIed to continue the offline
 * operation.  Migrate the outgoing CPU's callbacks to the current CPU.
 */
void rcutree_migrate_callbacks(int cpu)
{}

/*
 * The CPU has been completely removed, and some other CPU is reporting
 * this fact from process context.  Do the remainder of the cleanup.
 * There can only be one CPU hotplug operation at a time, so no need for
 * explicit locking.
 */
int rcutree_dead_cpu(unsigned int cpu)
{}

/*
 * Near the end of the offline process.  Trace the fact that this CPU
 * is going offline.
 */
int rcutree_dying_cpu(unsigned int cpu)
{}

/*
 * Near the beginning of the process.  The CPU is still very much alive
 * with pretty much all services enabled.
 */
int rcutree_offline_cpu(unsigned int cpu)
{}
#endif /* #ifdef CONFIG_HOTPLUG_CPU */

/*
 * On non-huge systems, use expedited RCU grace periods to make suspend
 * and hibernation run faster.
 */
static int rcu_pm_notify(struct notifier_block *self,
			 unsigned long action, void *hcpu)
{}

/*
 * Spawn the kthreads that handle RCU's grace periods.
 */
static int __init rcu_spawn_gp_kthread(void)
{}
early_initcall(rcu_spawn_gp_kthread);

/*
 * This function is invoked towards the end of the scheduler's
 * initialization process.  Before this is called, the idle task might
 * contain synchronous grace-period primitives (during which time, this idle
 * task is booting the system, and such primitives are no-ops).  After this
 * function is called, any synchronous grace-period primitives are run as
 * expedited, with the requesting task driving the grace period forward.
 * A later core_initcall() rcu_set_runtime_mode() will switch to full
 * runtime RCU functionality.
 */
void rcu_scheduler_starting(void)
{}

/*
 * Helper function for rcu_init() that initializes the rcu_state structure.
 */
static void __init rcu_init_one(void)
{}

/*
 * Force priority from the kernel command-line into range.
 */
static void __init sanitize_kthread_prio(void)
{}

/*
 * Compute the rcu_node tree geometry from kernel parameters.  This cannot
 * replace the definitions in tree.h because those are needed to size
 * the ->node array in the rcu_state structure.
 */
void rcu_init_geometry(void)
{}

/*
 * Dump out the structure of the rcu_node combining tree associated
 * with the rcu_state structure.
 */
static void __init rcu_dump_rcu_node_tree(void)
{}

struct workqueue_struct *rcu_gp_wq;

static void __init kfree_rcu_batch_init(void)
{}

void __init rcu_init(void)
{}

#include "tree_stall.h"
#include "tree_exp.h"
#include "tree_nocb.h"
#include "tree_plugin.h"