linux/kernel/time/tick-sched.c

// SPDX-License-Identifier: GPL-2.0
/*
 *  Copyright(C) 2005-2006, Thomas Gleixner <[email protected]>
 *  Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
 *  Copyright(C) 2006-2007  Timesys Corp., Thomas Gleixner
 *
 *  NOHZ implementation for low and high resolution timers
 *
 *  Started by: Thomas Gleixner and Ingo Molnar
 */
#include <linux/compiler.h>
#include <linux/cpu.h>
#include <linux/err.h>
#include <linux/hrtimer.h>
#include <linux/interrupt.h>
#include <linux/kernel_stat.h>
#include <linux/percpu.h>
#include <linux/nmi.h>
#include <linux/profile.h>
#include <linux/sched/signal.h>
#include <linux/sched/clock.h>
#include <linux/sched/stat.h>
#include <linux/sched/nohz.h>
#include <linux/sched/loadavg.h>
#include <linux/module.h>
#include <linux/irq_work.h>
#include <linux/posix-timers.h>
#include <linux/context_tracking.h>
#include <linux/mm.h>

#include <asm/irq_regs.h>

#include "tick-internal.h"

#include <trace/events/timer.h>

/*
 * Per-CPU nohz control structure
 */
static DEFINE_PER_CPU(struct tick_sched, tick_cpu_sched);

struct tick_sched *tick_get_tick_sched(int cpu)
{}

/*
 * The time when the last jiffy update happened. Write access must hold
 * jiffies_lock and jiffies_seq. tick_nohz_next_event() needs to get a
 * consistent view of jiffies and last_jiffies_update.
 */
static ktime_t last_jiffies_update;

/*
 * Must be called with interrupts disabled !
 */
static void tick_do_update_jiffies64(ktime_t now)
{}

/*
 * Initialize and return retrieve the jiffies update.
 */
static ktime_t tick_init_jiffy_update(void)
{}

static inline int tick_sched_flag_test(struct tick_sched *ts,
				       unsigned long flag)
{}

static inline void tick_sched_flag_set(struct tick_sched *ts,
				       unsigned long flag)
{}

static inline void tick_sched_flag_clear(struct tick_sched *ts,
					 unsigned long flag)
{}

#define MAX_STALLED_JIFFIES

static void tick_sched_do_timer(struct tick_sched *ts, ktime_t now)
{}

static void tick_sched_handle(struct tick_sched *ts, struct pt_regs *regs)
{}

/*
 * We rearm the timer until we get disabled by the idle code.
 * Called with interrupts disabled.
 */
static enum hrtimer_restart tick_nohz_handler(struct hrtimer *timer)
{}

static void tick_sched_timer_cancel(struct tick_sched *ts)
{}

#ifdef CONFIG_NO_HZ_FULL
cpumask_var_t tick_nohz_full_mask;
EXPORT_SYMBOL_GPL(tick_nohz_full_mask);
bool tick_nohz_full_running;
EXPORT_SYMBOL_GPL(tick_nohz_full_running);
static atomic_t tick_dep_mask;

static bool check_tick_dependency(atomic_t *dep)
{
	int val = atomic_read(dep);

	if (val & TICK_DEP_MASK_POSIX_TIMER) {
		trace_tick_stop(0, TICK_DEP_MASK_POSIX_TIMER);
		return true;
	}

	if (val & TICK_DEP_MASK_PERF_EVENTS) {
		trace_tick_stop(0, TICK_DEP_MASK_PERF_EVENTS);
		return true;
	}

	if (val & TICK_DEP_MASK_SCHED) {
		trace_tick_stop(0, TICK_DEP_MASK_SCHED);
		return true;
	}

	if (val & TICK_DEP_MASK_CLOCK_UNSTABLE) {
		trace_tick_stop(0, TICK_DEP_MASK_CLOCK_UNSTABLE);
		return true;
	}

	if (val & TICK_DEP_MASK_RCU) {
		trace_tick_stop(0, TICK_DEP_MASK_RCU);
		return true;
	}

	if (val & TICK_DEP_MASK_RCU_EXP) {
		trace_tick_stop(0, TICK_DEP_MASK_RCU_EXP);
		return true;
	}

	return false;
}

static bool can_stop_full_tick(int cpu, struct tick_sched *ts)
{
	lockdep_assert_irqs_disabled();

	if (unlikely(!cpu_online(cpu)))
		return false;

	if (check_tick_dependency(&tick_dep_mask))
		return false;

	if (check_tick_dependency(&ts->tick_dep_mask))
		return false;

	if (check_tick_dependency(&current->tick_dep_mask))
		return false;

	if (check_tick_dependency(&current->signal->tick_dep_mask))
		return false;

	return true;
}

static void nohz_full_kick_func(struct irq_work *work)
{
	/* Empty, the tick restart happens on tick_nohz_irq_exit() */
}

static DEFINE_PER_CPU(struct irq_work, nohz_full_kick_work) =
	IRQ_WORK_INIT_HARD(nohz_full_kick_func);

/*
 * Kick this CPU if it's full dynticks in order to force it to
 * re-evaluate its dependency on the tick and restart it if necessary.
 * This kick, unlike tick_nohz_full_kick_cpu() and tick_nohz_full_kick_all(),
 * is NMI safe.
 */
static void tick_nohz_full_kick(void)
{
	if (!tick_nohz_full_cpu(smp_processor_id()))
		return;

	irq_work_queue(this_cpu_ptr(&nohz_full_kick_work));
}

/*
 * Kick the CPU if it's full dynticks in order to force it to
 * re-evaluate its dependency on the tick and restart it if necessary.
 */
void tick_nohz_full_kick_cpu(int cpu)
{
	if (!tick_nohz_full_cpu(cpu))
		return;

	irq_work_queue_on(&per_cpu(nohz_full_kick_work, cpu), cpu);
}

static void tick_nohz_kick_task(struct task_struct *tsk)
{
	int cpu;

	/*
	 * If the task is not running, run_posix_cpu_timers()
	 * has nothing to elapse, and an IPI can then be optimized out.
	 *
	 * activate_task()                      STORE p->tick_dep_mask
	 *   STORE p->on_rq
	 * __schedule() (switch to task 'p')    smp_mb() (atomic_fetch_or())
	 *   LOCK rq->lock                      LOAD p->on_rq
	 *   smp_mb__after_spin_lock()
	 *   tick_nohz_task_switch()
	 *     LOAD p->tick_dep_mask
	 *
	 * XXX given a task picks up the dependency on schedule(), should we
	 * only care about tasks that are currently on the CPU instead of all
	 * that are on the runqueue?
	 *
	 * That is, does this want to be: task_on_cpu() / task_curr()?
	 */
	if (!sched_task_on_rq(tsk))
		return;

	/*
	 * If the task concurrently migrates to another CPU,
	 * we guarantee it sees the new tick dependency upon
	 * schedule.
	 *
	 * set_task_cpu(p, cpu);
	 *   STORE p->cpu = @cpu
	 * __schedule() (switch to task 'p')
	 *   LOCK rq->lock
	 *   smp_mb__after_spin_lock()          STORE p->tick_dep_mask
	 *   tick_nohz_task_switch()            smp_mb() (atomic_fetch_or())
	 *      LOAD p->tick_dep_mask           LOAD p->cpu
	 */
	cpu = task_cpu(tsk);

	preempt_disable();
	if (cpu_online(cpu))
		tick_nohz_full_kick_cpu(cpu);
	preempt_enable();
}

/*
 * Kick all full dynticks CPUs in order to force these to re-evaluate
 * their dependency on the tick and restart it if necessary.
 */
static void tick_nohz_full_kick_all(void)
{
	int cpu;

	if (!tick_nohz_full_running)
		return;

	preempt_disable();
	for_each_cpu_and(cpu, tick_nohz_full_mask, cpu_online_mask)
		tick_nohz_full_kick_cpu(cpu);
	preempt_enable();
}

static void tick_nohz_dep_set_all(atomic_t *dep,
				  enum tick_dep_bits bit)
{
	int prev;

	prev = atomic_fetch_or(BIT(bit), dep);
	if (!prev)
		tick_nohz_full_kick_all();
}

/*
 * Set a global tick dependency. Used by perf events that rely on freq and
 * unstable clocks.
 */
void tick_nohz_dep_set(enum tick_dep_bits bit)
{
	tick_nohz_dep_set_all(&tick_dep_mask, bit);
}

void tick_nohz_dep_clear(enum tick_dep_bits bit)
{
	atomic_andnot(BIT(bit), &tick_dep_mask);
}

/*
 * Set per-CPU tick dependency. Used by scheduler and perf events in order to
 * manage event-throttling.
 */
void tick_nohz_dep_set_cpu(int cpu, enum tick_dep_bits bit)
{
	int prev;
	struct tick_sched *ts;

	ts = per_cpu_ptr(&tick_cpu_sched, cpu);

	prev = atomic_fetch_or(BIT(bit), &ts->tick_dep_mask);
	if (!prev) {
		preempt_disable();
		/* Perf needs local kick that is NMI safe */
		if (cpu == smp_processor_id()) {
			tick_nohz_full_kick();
		} else {
			/* Remote IRQ work not NMI-safe */
			if (!WARN_ON_ONCE(in_nmi()))
				tick_nohz_full_kick_cpu(cpu);
		}
		preempt_enable();
	}
}
EXPORT_SYMBOL_GPL(tick_nohz_dep_set_cpu);

void tick_nohz_dep_clear_cpu(int cpu, enum tick_dep_bits bit)
{
	struct tick_sched *ts = per_cpu_ptr(&tick_cpu_sched, cpu);

	atomic_andnot(BIT(bit), &ts->tick_dep_mask);
}
EXPORT_SYMBOL_GPL(tick_nohz_dep_clear_cpu);

/*
 * Set a per-task tick dependency. RCU needs this. Also posix CPU timers
 * in order to elapse per task timers.
 */
void tick_nohz_dep_set_task(struct task_struct *tsk, enum tick_dep_bits bit)
{
	if (!atomic_fetch_or(BIT(bit), &tsk->tick_dep_mask))
		tick_nohz_kick_task(tsk);
}
EXPORT_SYMBOL_GPL(tick_nohz_dep_set_task);

void tick_nohz_dep_clear_task(struct task_struct *tsk, enum tick_dep_bits bit)
{
	atomic_andnot(BIT(bit), &tsk->tick_dep_mask);
}
EXPORT_SYMBOL_GPL(tick_nohz_dep_clear_task);

/*
 * Set a per-taskgroup tick dependency. Posix CPU timers need this in order to elapse
 * per process timers.
 */
void tick_nohz_dep_set_signal(struct task_struct *tsk,
			      enum tick_dep_bits bit)
{
	int prev;
	struct signal_struct *sig = tsk->signal;

	prev = atomic_fetch_or(BIT(bit), &sig->tick_dep_mask);
	if (!prev) {
		struct task_struct *t;

		lockdep_assert_held(&tsk->sighand->siglock);
		__for_each_thread(sig, t)
			tick_nohz_kick_task(t);
	}
}

void tick_nohz_dep_clear_signal(struct signal_struct *sig, enum tick_dep_bits bit)
{
	atomic_andnot(BIT(bit), &sig->tick_dep_mask);
}

/*
 * Re-evaluate the need for the tick as we switch the current task.
 * It might need the tick due to per task/process properties:
 * perf events, posix CPU timers, ...
 */
void __tick_nohz_task_switch(void)
{
	struct tick_sched *ts;

	if (!tick_nohz_full_cpu(smp_processor_id()))
		return;

	ts = this_cpu_ptr(&tick_cpu_sched);

	if (tick_sched_flag_test(ts, TS_FLAG_STOPPED)) {
		if (atomic_read(&current->tick_dep_mask) ||
		    atomic_read(&current->signal->tick_dep_mask))
			tick_nohz_full_kick();
	}
}

/* Get the boot-time nohz CPU list from the kernel parameters. */
void __init tick_nohz_full_setup(cpumask_var_t cpumask)
{
	alloc_bootmem_cpumask_var(&tick_nohz_full_mask);
	cpumask_copy(tick_nohz_full_mask, cpumask);
	tick_nohz_full_running = true;
}

bool tick_nohz_cpu_hotpluggable(unsigned int cpu)
{
	/*
	 * The 'tick_do_timer_cpu' CPU handles housekeeping duty (unbound
	 * timers, workqueues, timekeeping, ...) on behalf of full dynticks
	 * CPUs. It must remain online when nohz full is enabled.
	 */
	if (tick_nohz_full_running && READ_ONCE(tick_do_timer_cpu) == cpu)
		return false;
	return true;
}

static int tick_nohz_cpu_down(unsigned int cpu)
{
	return tick_nohz_cpu_hotpluggable(cpu) ? 0 : -EBUSY;
}

void __init tick_nohz_init(void)
{
	int cpu, ret;

	if (!tick_nohz_full_running)
		return;

	/*
	 * Full dynticks uses IRQ work to drive the tick rescheduling on safe
	 * locking contexts. But then we need IRQ work to raise its own
	 * interrupts to avoid circular dependency on the tick.
	 */
	if (!arch_irq_work_has_interrupt()) {
		pr_warn("NO_HZ: Can't run full dynticks because arch doesn't support IRQ work self-IPIs\n");
		cpumask_clear(tick_nohz_full_mask);
		tick_nohz_full_running = false;
		return;
	}

	if (IS_ENABLED(CONFIG_PM_SLEEP_SMP) &&
			!IS_ENABLED(CONFIG_PM_SLEEP_SMP_NONZERO_CPU)) {
		cpu = smp_processor_id();

		if (cpumask_test_cpu(cpu, tick_nohz_full_mask)) {
			pr_warn("NO_HZ: Clearing %d from nohz_full range "
				"for timekeeping\n", cpu);
			cpumask_clear_cpu(cpu, tick_nohz_full_mask);
		}
	}

	for_each_cpu(cpu, tick_nohz_full_mask)
		ct_cpu_track_user(cpu);

	ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
					"kernel/nohz:predown", NULL,
					tick_nohz_cpu_down);
	WARN_ON(ret < 0);
	pr_info("NO_HZ: Full dynticks CPUs: %*pbl.\n",
		cpumask_pr_args(tick_nohz_full_mask));
}
#endif /* #ifdef CONFIG_NO_HZ_FULL */

/*
 * NOHZ - aka dynamic tick functionality
 */
#ifdef CONFIG_NO_HZ_COMMON
/*
 * NO HZ enabled ?
 */
bool tick_nohz_enabled __read_mostly  =;
unsigned long tick_nohz_active  __read_mostly;
/*
 * Enable / Disable tickless mode
 */
static int __init setup_tick_nohz(char *str)
{}

__setup();

bool tick_nohz_tick_stopped(void)
{}

bool tick_nohz_tick_stopped_cpu(int cpu)
{}

/**
 * tick_nohz_update_jiffies - update jiffies when idle was interrupted
 * @now: current ktime_t
 *
 * Called from interrupt entry when the CPU was idle
 *
 * In case the sched_tick was stopped on this CPU, we have to check if jiffies
 * must be updated. Otherwise an interrupt handler could use a stale jiffy
 * value. We do this unconditionally on any CPU, as we don't know whether the
 * CPU, which has the update task assigned, is in a long sleep.
 */
static void tick_nohz_update_jiffies(ktime_t now)
{}

static void tick_nohz_stop_idle(struct tick_sched *ts, ktime_t now)
{}

static void tick_nohz_start_idle(struct tick_sched *ts)
{}

static u64 get_cpu_sleep_time_us(struct tick_sched *ts, ktime_t *sleeptime,
				 bool compute_delta, u64 *last_update_time)
{}

/**
 * get_cpu_idle_time_us - get the total idle time of a CPU
 * @cpu: CPU number to query
 * @last_update_time: variable to store update time in. Do not update
 * counters if NULL.
 *
 * Return the cumulative idle time (since boot) for a given
 * CPU, in microseconds. Note that this is partially broken due to
 * the counter of iowait tasks that can be remotely updated without
 * any synchronization. Therefore it is possible to observe backward
 * values within two consecutive reads.
 *
 * This time is measured via accounting rather than sampling,
 * and is as accurate as ktime_get() is.
 *
 * Return: -1 if NOHZ is not enabled, else total idle time of the @cpu
 */
u64 get_cpu_idle_time_us(int cpu, u64 *last_update_time)
{}
EXPORT_SYMBOL_GPL();

/**
 * get_cpu_iowait_time_us - get the total iowait time of a CPU
 * @cpu: CPU number to query
 * @last_update_time: variable to store update time in. Do not update
 * counters if NULL.
 *
 * Return the cumulative iowait time (since boot) for a given
 * CPU, in microseconds. Note this is partially broken due to
 * the counter of iowait tasks that can be remotely updated without
 * any synchronization. Therefore it is possible to observe backward
 * values within two consecutive reads.
 *
 * This time is measured via accounting rather than sampling,
 * and is as accurate as ktime_get() is.
 *
 * Return: -1 if NOHZ is not enabled, else total iowait time of @cpu
 */
u64 get_cpu_iowait_time_us(int cpu, u64 *last_update_time)
{}
EXPORT_SYMBOL_GPL();

static void tick_nohz_restart(struct tick_sched *ts, ktime_t now)
{}

static inline bool local_timer_softirq_pending(void)
{}

/*
 * Read jiffies and the time when jiffies were updated last
 */
u64 get_jiffies_update(unsigned long *basej)
{}

/**
 * tick_nohz_next_event() - return the clock monotonic based next event
 * @ts:		pointer to tick_sched struct
 * @cpu:	CPU number
 *
 * Return:
 * *%0		- When the next event is a maximum of TICK_NSEC in the future
 *		  and the tick is not stopped yet
 * *%next_event	- Next event based on clock monotonic
 */
static ktime_t tick_nohz_next_event(struct tick_sched *ts, int cpu)
{}

static void tick_nohz_stop_tick(struct tick_sched *ts, int cpu)
{}

static void tick_nohz_retain_tick(struct tick_sched *ts)
{}

#ifdef CONFIG_NO_HZ_FULL
static void tick_nohz_full_stop_tick(struct tick_sched *ts, int cpu)
{
	if (tick_nohz_next_event(ts, cpu))
		tick_nohz_stop_tick(ts, cpu);
	else
		tick_nohz_retain_tick(ts);
}
#endif /* CONFIG_NO_HZ_FULL */

static void tick_nohz_restart_sched_tick(struct tick_sched *ts, ktime_t now)
{}

static void __tick_nohz_full_update_tick(struct tick_sched *ts,
					 ktime_t now)
{}

static void tick_nohz_full_update_tick(struct tick_sched *ts)
{}

/*
 * A pending softirq outside an IRQ (or softirq disabled section) context
 * should be waiting for ksoftirqd to handle it. Therefore we shouldn't
 * reach this code due to the need_resched() early check in can_stop_idle_tick().
 *
 * However if we are between CPUHP_AP_SMPBOOT_THREADS and CPU_TEARDOWN_CPU on the
 * cpu_down() process, softirqs can still be raised while ksoftirqd is parked,
 * triggering the code below, since wakep_softirqd() is ignored.
 *
 */
static bool report_idle_softirq(void)
{}

static bool can_stop_idle_tick(int cpu, struct tick_sched *ts)
{}

/**
 * tick_nohz_idle_stop_tick - stop the idle tick from the idle task
 *
 * When the next event is more than a tick into the future, stop the idle tick
 */
void tick_nohz_idle_stop_tick(void)
{}

void tick_nohz_idle_retain_tick(void)
{}

/**
 * tick_nohz_idle_enter - prepare for entering idle on the current CPU
 *
 * Called when we start the idle loop.
 */
void tick_nohz_idle_enter(void)
{}

/**
 * tick_nohz_irq_exit - Notify the tick about IRQ exit
 *
 * A timer may have been added/modified/deleted either by the current IRQ,
 * or by another place using this IRQ as a notification. This IRQ may have
 * also updated the RCU callback list. These events may require a
 * re-evaluation of the next tick. Depending on the context:
 *
 * 1) If the CPU is idle and no resched is pending, just proceed with idle
 *    time accounting. The next tick will be re-evaluated on the next idle
 *    loop iteration.
 *
 * 2) If the CPU is nohz_full:
 *
 *    2.1) If there is any tick dependency, restart the tick if stopped.
 *
 *    2.2) If there is no tick dependency, (re-)evaluate the next tick and
 *         stop/update it accordingly.
 */
void tick_nohz_irq_exit(void)
{}

/**
 * tick_nohz_idle_got_tick - Check whether or not the tick handler has run
 *
 * Return: %true if the tick handler has run, otherwise %false
 */
bool tick_nohz_idle_got_tick(void)
{}

/**
 * tick_nohz_get_next_hrtimer - return the next expiration time for the hrtimer
 * or the tick, whichever expires first. Note that, if the tick has been
 * stopped, it returns the next hrtimer.
 *
 * Called from power state control code with interrupts disabled
 *
 * Return: the next expiration time
 */
ktime_t tick_nohz_get_next_hrtimer(void)
{}

/**
 * tick_nohz_get_sleep_length - return the expected length of the current sleep
 * @delta_next: duration until the next event if the tick cannot be stopped
 *
 * Called from power state control code with interrupts disabled.
 *
 * The return value of this function and/or the value returned by it through the
 * @delta_next pointer can be negative which must be taken into account by its
 * callers.
 *
 * Return: the expected length of the current sleep
 */
ktime_t tick_nohz_get_sleep_length(ktime_t *delta_next)
{}

/**
 * tick_nohz_get_idle_calls_cpu - return the current idle calls counter value
 * for a particular CPU.
 * @cpu: target CPU number
 *
 * Called from the schedutil frequency scaling governor in scheduler context.
 *
 * Return: the current idle calls counter value for @cpu
 */
unsigned long tick_nohz_get_idle_calls_cpu(int cpu)
{}

static void tick_nohz_account_idle_time(struct tick_sched *ts,
					ktime_t now)
{}

void tick_nohz_idle_restart_tick(void)
{}

static void tick_nohz_idle_update_tick(struct tick_sched *ts, ktime_t now)
{}

/**
 * tick_nohz_idle_exit - Update the tick upon idle task exit
 *
 * When the idle task exits, update the tick depending on the
 * following situations:
 *
 * 1) If the CPU is not in nohz_full mode (most cases), then
 *    restart the tick.
 *
 * 2) If the CPU is in nohz_full mode (corner case):
 *   2.1) If the tick can be kept stopped (no tick dependencies)
 *        then re-evaluate the next tick and try to keep it stopped
 *        as long as possible.
 *   2.2) If the tick has dependencies, restart the tick.
 *
 */
void tick_nohz_idle_exit(void)
{}

/*
 * In low-resolution mode, the tick handler must be implemented directly
 * at the clockevent level. hrtimer can't be used instead, because its
 * infrastructure actually relies on the tick itself as a backend in
 * low-resolution mode (see hrtimer_run_queues()).
 */
static void tick_nohz_lowres_handler(struct clock_event_device *dev)
{}

static inline void tick_nohz_activate(struct tick_sched *ts)
{}

/**
 * tick_nohz_switch_to_nohz - switch to NOHZ mode
 */
static void tick_nohz_switch_to_nohz(void)
{}

static inline void tick_nohz_irq_enter(void)
{}

#else

static inline void tick_nohz_switch_to_nohz(void) { }
static inline void tick_nohz_irq_enter(void) { }
static inline void tick_nohz_activate(struct tick_sched *ts) { }

#endif /* CONFIG_NO_HZ_COMMON */

/*
 * Called from irq_enter() to notify about the possible interruption of idle()
 */
void tick_irq_enter(void)
{}

static int sched_skew_tick;

static int __init skew_tick(char *str)
{}
early_param();

/**
 * tick_setup_sched_timer - setup the tick emulation timer
 * @hrtimer: whether to use the hrtimer or not
 */
void tick_setup_sched_timer(bool hrtimer)
{}

/*
 * Shut down the tick and make sure the CPU won't try to retake the timekeeping
 * duty before disabling IRQs in idle for the last time.
 */
void tick_sched_timer_dying(int cpu)
{}

/*
 * Async notification about clocksource changes
 */
void tick_clock_notify(void)
{}

/*
 * Async notification about clock event changes
 */
void tick_oneshot_notify(void)
{}

/*
 * Check if a change happened, which makes oneshot possible.
 *
 * Called cyclically from the hrtimer softirq (driven by the timer
 * softirq). 'allow_nohz' signals that we can switch into low-res NOHZ
 * mode, because high resolution timers are disabled (either compile
 * or runtime). Called with interrupts disabled.
 */
int tick_check_oneshot_change(int allow_nohz)
{}