linux/kernel/futex/core.c

// SPDX-License-Identifier: GPL-2.0-or-later
/*
 *  Fast Userspace Mutexes (which I call "Futexes!").
 *  (C) Rusty Russell, IBM 2002
 *
 *  Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
 *  (C) Copyright 2003 Red Hat Inc, All Rights Reserved
 *
 *  Removed page pinning, fix privately mapped COW pages and other cleanups
 *  (C) Copyright 2003, 2004 Jamie Lokier
 *
 *  Robust futex support started by Ingo Molnar
 *  (C) Copyright 2006 Red Hat Inc, All Rights Reserved
 *  Thanks to Thomas Gleixner for suggestions, analysis and fixes.
 *
 *  PI-futex support started by Ingo Molnar and Thomas Gleixner
 *  Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <[email protected]>
 *  Copyright (C) 2006 Timesys Corp., Thomas Gleixner <[email protected]>
 *
 *  PRIVATE futexes by Eric Dumazet
 *  Copyright (C) 2007 Eric Dumazet <[email protected]>
 *
 *  Requeue-PI support by Darren Hart <[email protected]>
 *  Copyright (C) IBM Corporation, 2009
 *  Thanks to Thomas Gleixner for conceptual design and careful reviews.
 *
 *  Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
 *  enough at me, Linus for the original (flawed) idea, Matthew
 *  Kirkwood for proof-of-concept implementation.
 *
 *  "The futexes are also cursed."
 *  "But they come in a choice of three flavours!"
 */
#include <linux/compat.h>
#include <linux/jhash.h>
#include <linux/pagemap.h>
#include <linux/debugfs.h>
#include <linux/plist.h>
#include <linux/memblock.h>
#include <linux/fault-inject.h>
#include <linux/slab.h>

#include "futex.h"
#include "../locking/rtmutex_common.h"

/*
 * The base of the bucket array and its size are always used together
 * (after initialization only in futex_hash()), so ensure that they
 * reside in the same cacheline.
 */
static struct {} __futex_data __read_mostly __aligned();
#define futex_queues
#define futex_hashsize


/*
 * Fault injections for futexes.
 */
#ifdef CONFIG_FAIL_FUTEX

static struct {} fail_futex =;

static int __init setup_fail_futex(char *str)
{}
__setup();

bool should_fail_futex(bool fshared)
{}

#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS

static int __init fail_futex_debugfs(void)
{}

late_initcall(fail_futex_debugfs);

#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */

#endif /* CONFIG_FAIL_FUTEX */

/**
 * futex_hash - Return the hash bucket in the global hash
 * @key:	Pointer to the futex key for which the hash is calculated
 *
 * We hash on the keys returned from get_futex_key (see below) and return the
 * corresponding hash bucket in the global hash.
 */
struct futex_hash_bucket *futex_hash(union futex_key *key)
{}


/**
 * futex_setup_timer - set up the sleeping hrtimer.
 * @time:	ptr to the given timeout value
 * @timeout:	the hrtimer_sleeper structure to be set up
 * @flags:	futex flags
 * @range_ns:	optional range in ns
 *
 * Return: Initialized hrtimer_sleeper structure or NULL if no timeout
 *	   value given
 */
struct hrtimer_sleeper *
futex_setup_timer(ktime_t *time, struct hrtimer_sleeper *timeout,
		  int flags, u64 range_ns)
{}

/*
 * Generate a machine wide unique identifier for this inode.
 *
 * This relies on u64 not wrapping in the life-time of the machine; which with
 * 1ns resolution means almost 585 years.
 *
 * This further relies on the fact that a well formed program will not unmap
 * the file while it has a (shared) futex waiting on it. This mapping will have
 * a file reference which pins the mount and inode.
 *
 * If for some reason an inode gets evicted and read back in again, it will get
 * a new sequence number and will _NOT_ match, even though it is the exact same
 * file.
 *
 * It is important that futex_match() will never have a false-positive, esp.
 * for PI futexes that can mess up the state. The above argues that false-negatives
 * are only possible for malformed programs.
 */
static u64 get_inode_sequence_number(struct inode *inode)
{}

/**
 * get_futex_key() - Get parameters which are the keys for a futex
 * @uaddr:	virtual address of the futex
 * @flags:	FLAGS_*
 * @key:	address where result is stored.
 * @rw:		mapping needs to be read/write (values: FUTEX_READ,
 *              FUTEX_WRITE)
 *
 * Return: a negative error code or 0
 *
 * The key words are stored in @key on success.
 *
 * For shared mappings (when @fshared), the key is:
 *
 *   ( inode->i_sequence, page->index, offset_within_page )
 *
 * [ also see get_inode_sequence_number() ]
 *
 * For private mappings (or when !@fshared), the key is:
 *
 *   ( current->mm, address, 0 )
 *
 * This allows (cross process, where applicable) identification of the futex
 * without keeping the page pinned for the duration of the FUTEX_WAIT.
 *
 * lock_page() might sleep, the caller should not hold a spinlock.
 */
int get_futex_key(u32 __user *uaddr, unsigned int flags, union futex_key *key,
		  enum futex_access rw)
{}

/**
 * fault_in_user_writeable() - Fault in user address and verify RW access
 * @uaddr:	pointer to faulting user space address
 *
 * Slow path to fixup the fault we just took in the atomic write
 * access to @uaddr.
 *
 * We have no generic implementation of a non-destructive write to the
 * user address. We know that we faulted in the atomic pagefault
 * disabled section so we can as well avoid the #PF overhead by
 * calling get_user_pages() right away.
 */
int fault_in_user_writeable(u32 __user *uaddr)
{}

/**
 * futex_top_waiter() - Return the highest priority waiter on a futex
 * @hb:		the hash bucket the futex_q's reside in
 * @key:	the futex key (to distinguish it from other futex futex_q's)
 *
 * Must be called with the hb lock held.
 */
struct futex_q *futex_top_waiter(struct futex_hash_bucket *hb, union futex_key *key)
{}

int futex_cmpxchg_value_locked(u32 *curval, u32 __user *uaddr, u32 uval, u32 newval)
{}

int futex_get_value_locked(u32 *dest, u32 __user *from)
{}

/**
 * wait_for_owner_exiting - Block until the owner has exited
 * @ret: owner's current futex lock status
 * @exiting:	Pointer to the exiting task
 *
 * Caller must hold a refcount on @exiting.
 */
void wait_for_owner_exiting(int ret, struct task_struct *exiting)
{}

/**
 * __futex_unqueue() - Remove the futex_q from its futex_hash_bucket
 * @q:	The futex_q to unqueue
 *
 * The q->lock_ptr must not be NULL and must be held by the caller.
 */
void __futex_unqueue(struct futex_q *q)
{}

/* The key must be already stored in q->key. */
struct futex_hash_bucket *futex_q_lock(struct futex_q *q)
	__acquires(&hb->lock)
{}

void futex_q_unlock(struct futex_hash_bucket *hb)
	__releases(&hb->lock)
{}

void __futex_queue(struct futex_q *q, struct futex_hash_bucket *hb)
{}

/**
 * futex_unqueue() - Remove the futex_q from its futex_hash_bucket
 * @q:	The futex_q to unqueue
 *
 * The q->lock_ptr must not be held by the caller. A call to futex_unqueue() must
 * be paired with exactly one earlier call to futex_queue().
 *
 * Return:
 *  - 1 - if the futex_q was still queued (and we removed unqueued it);
 *  - 0 - if the futex_q was already removed by the waking thread
 */
int futex_unqueue(struct futex_q *q)
{}

/*
 * PI futexes can not be requeued and must remove themselves from the hash
 * bucket. The hash bucket lock (i.e. lock_ptr) is held.
 */
void futex_unqueue_pi(struct futex_q *q)
{}

/* Constants for the pending_op argument of handle_futex_death */
#define HANDLE_DEATH_PENDING
#define HANDLE_DEATH_LIST

/*
 * Process a futex-list entry, check whether it's owned by the
 * dying task, and do notification if so:
 */
static int handle_futex_death(u32 __user *uaddr, struct task_struct *curr,
			      bool pi, bool pending_op)
{}

/*
 * Fetch a robust-list pointer. Bit 0 signals PI futexes:
 */
static inline int fetch_robust_entry(struct robust_list __user **entry,
				     struct robust_list __user * __user *head,
				     unsigned int *pi)
{}

/*
 * Walk curr->robust_list (very carefully, it's a userspace list!)
 * and mark any locks found there dead, and notify any waiters.
 *
 * We silently return on any sign of list-walking problem.
 */
static void exit_robust_list(struct task_struct *curr)
{}

#ifdef CONFIG_COMPAT
static void __user *futex_uaddr(struct robust_list __user *entry,
				compat_long_t futex_offset)
{}

/*
 * Fetch a robust-list pointer. Bit 0 signals PI futexes:
 */
static inline int
compat_fetch_robust_entry(compat_uptr_t *uentry, struct robust_list __user **entry,
		   compat_uptr_t __user *head, unsigned int *pi)
{}

/*
 * Walk curr->robust_list (very carefully, it's a userspace list!)
 * and mark any locks found there dead, and notify any waiters.
 *
 * We silently return on any sign of list-walking problem.
 */
static void compat_exit_robust_list(struct task_struct *curr)
{}
#endif

#ifdef CONFIG_FUTEX_PI

/*
 * This task is holding PI mutexes at exit time => bad.
 * Kernel cleans up PI-state, but userspace is likely hosed.
 * (Robust-futex cleanup is separate and might save the day for userspace.)
 */
static void exit_pi_state_list(struct task_struct *curr)
{}
#else
static inline void exit_pi_state_list(struct task_struct *curr) { }
#endif

static void futex_cleanup(struct task_struct *tsk)
{}

/**
 * futex_exit_recursive - Set the tasks futex state to FUTEX_STATE_DEAD
 * @tsk:	task to set the state on
 *
 * Set the futex exit state of the task lockless. The futex waiter code
 * observes that state when a task is exiting and loops until the task has
 * actually finished the futex cleanup. The worst case for this is that the
 * waiter runs through the wait loop until the state becomes visible.
 *
 * This is called from the recursive fault handling path in make_task_dead().
 *
 * This is best effort. Either the futex exit code has run already or
 * not. If the OWNER_DIED bit has been set on the futex then the waiter can
 * take it over. If not, the problem is pushed back to user space. If the
 * futex exit code did not run yet, then an already queued waiter might
 * block forever, but there is nothing which can be done about that.
 */
void futex_exit_recursive(struct task_struct *tsk)
{}

static void futex_cleanup_begin(struct task_struct *tsk)
{}

static void futex_cleanup_end(struct task_struct *tsk, int state)
{}

void futex_exec_release(struct task_struct *tsk)
{}

void futex_exit_release(struct task_struct *tsk)
{}

static int __init futex_init(void)
{}
core_initcall(futex_init);