linux/mm/vmscan.c

// SPDX-License-Identifier: GPL-2.0
/*
 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
 *
 *  Swap reorganised 29.12.95, Stephen Tweedie.
 *  kswapd added: 7.1.96  sct
 *  Removed kswapd_ctl limits, and swap out as many pages as needed
 *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
 *  Zone aware kswapd started 02/00, Kanoj Sarcar ([email protected]).
 *  Multiqueue VM started 5.8.00, Rik van Riel.
 */

#define pr_fmt(fmt)

#include <linux/mm.h>
#include <linux/sched/mm.h>
#include <linux/module.h>
#include <linux/gfp.h>
#include <linux/kernel_stat.h>
#include <linux/swap.h>
#include <linux/pagemap.h>
#include <linux/init.h>
#include <linux/highmem.h>
#include <linux/vmpressure.h>
#include <linux/vmstat.h>
#include <linux/file.h>
#include <linux/writeback.h>
#include <linux/blkdev.h>
#include <linux/buffer_head.h>	/* for buffer_heads_over_limit */
#include <linux/mm_inline.h>
#include <linux/backing-dev.h>
#include <linux/rmap.h>
#include <linux/topology.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
#include <linux/compaction.h>
#include <linux/notifier.h>
#include <linux/delay.h>
#include <linux/kthread.h>
#include <linux/freezer.h>
#include <linux/memcontrol.h>
#include <linux/migrate.h>
#include <linux/delayacct.h>
#include <linux/sysctl.h>
#include <linux/memory-tiers.h>
#include <linux/oom.h>
#include <linux/pagevec.h>
#include <linux/prefetch.h>
#include <linux/printk.h>
#include <linux/dax.h>
#include <linux/psi.h>
#include <linux/pagewalk.h>
#include <linux/shmem_fs.h>
#include <linux/ctype.h>
#include <linux/debugfs.h>
#include <linux/khugepaged.h>
#include <linux/rculist_nulls.h>
#include <linux/random.h>
#include <linux/mmu_notifier.h>

#include <asm/tlbflush.h>
#include <asm/div64.h>

#include <linux/swapops.h>
#include <linux/balloon_compaction.h>
#include <linux/sched/sysctl.h>

#include "internal.h"
#include "swap.h"

#define CREATE_TRACE_POINTS
#include <trace/events/vmscan.h>

struct scan_control {};

#ifdef ARCH_HAS_PREFETCHW
#define prefetchw_prev_lru_folio(_folio, _base, _field)
#else
#define prefetchw_prev_lru_folio
#endif

/*
 * From 0 .. MAX_SWAPPINESS.  Higher means more swappy.
 */
int vm_swappiness =;

#ifdef CONFIG_MEMCG

/* Returns true for reclaim through cgroup limits or cgroup interfaces. */
static bool cgroup_reclaim(struct scan_control *sc)
{}

/*
 * Returns true for reclaim on the root cgroup. This is true for direct
 * allocator reclaim and reclaim through cgroup interfaces on the root cgroup.
 */
static bool root_reclaim(struct scan_control *sc)
{}

/**
 * writeback_throttling_sane - is the usual dirty throttling mechanism available?
 * @sc: scan_control in question
 *
 * The normal page dirty throttling mechanism in balance_dirty_pages() is
 * completely broken with the legacy memcg and direct stalling in
 * shrink_folio_list() is used for throttling instead, which lacks all the
 * niceties such as fairness, adaptive pausing, bandwidth proportional
 * allocation and configurability.
 *
 * This function tests whether the vmscan currently in progress can assume
 * that the normal dirty throttling mechanism is operational.
 */
static bool writeback_throttling_sane(struct scan_control *sc)
{}

static int sc_swappiness(struct scan_control *sc, struct mem_cgroup *memcg)
{}
#else
static bool cgroup_reclaim(struct scan_control *sc)
{
	return false;
}

static bool root_reclaim(struct scan_control *sc)
{
	return true;
}

static bool writeback_throttling_sane(struct scan_control *sc)
{
	return true;
}

static int sc_swappiness(struct scan_control *sc, struct mem_cgroup *memcg)
{
	return READ_ONCE(vm_swappiness);
}
#endif

static void set_task_reclaim_state(struct task_struct *task,
				   struct reclaim_state *rs)
{}

/*
 * flush_reclaim_state(): add pages reclaimed outside of LRU-based reclaim to
 * scan_control->nr_reclaimed.
 */
static void flush_reclaim_state(struct scan_control *sc)
{}

static bool can_demote(int nid, struct scan_control *sc)
{}

static inline bool can_reclaim_anon_pages(struct mem_cgroup *memcg,
					  int nid,
					  struct scan_control *sc)
{}

/*
 * This misses isolated folios which are not accounted for to save counters.
 * As the data only determines if reclaim or compaction continues, it is
 * not expected that isolated folios will be a dominating factor.
 */
unsigned long zone_reclaimable_pages(struct zone *zone)
{}

/**
 * lruvec_lru_size -  Returns the number of pages on the given LRU list.
 * @lruvec: lru vector
 * @lru: lru to use
 * @zone_idx: zones to consider (use MAX_NR_ZONES - 1 for the whole LRU list)
 */
static unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru,
				     int zone_idx)
{}

static unsigned long drop_slab_node(int nid)
{}

void drop_slab(void)
{}

static int reclaimer_offset(void)
{}

static inline int is_page_cache_freeable(struct folio *folio)
{}

/*
 * We detected a synchronous write error writing a folio out.  Probably
 * -ENOSPC.  We need to propagate that into the address_space for a subsequent
 * fsync(), msync() or close().
 *
 * The tricky part is that after writepage we cannot touch the mapping: nothing
 * prevents it from being freed up.  But we have a ref on the folio and once
 * that folio is locked, the mapping is pinned.
 *
 * We're allowed to run sleeping folio_lock() here because we know the caller has
 * __GFP_FS.
 */
static void handle_write_error(struct address_space *mapping,
				struct folio *folio, int error)
{}

static bool skip_throttle_noprogress(pg_data_t *pgdat)
{}

void reclaim_throttle(pg_data_t *pgdat, enum vmscan_throttle_state reason)
{}

/*
 * Account for folios written if tasks are throttled waiting on dirty
 * folios to clean. If enough folios have been cleaned since throttling
 * started then wakeup the throttled tasks.
 */
void __acct_reclaim_writeback(pg_data_t *pgdat, struct folio *folio,
							int nr_throttled)
{}

/* possible outcome of pageout() */
pageout_t;

/*
 * pageout is called by shrink_folio_list() for each dirty folio.
 * Calls ->writepage().
 */
static pageout_t pageout(struct folio *folio, struct address_space *mapping,
			 struct swap_iocb **plug, struct list_head *folio_list)
{}

/*
 * Same as remove_mapping, but if the folio is removed from the mapping, it
 * gets returned with a refcount of 0.
 */
static int __remove_mapping(struct address_space *mapping, struct folio *folio,
			    bool reclaimed, struct mem_cgroup *target_memcg)
{}

/**
 * remove_mapping() - Attempt to remove a folio from its mapping.
 * @mapping: The address space.
 * @folio: The folio to remove.
 *
 * If the folio is dirty, under writeback or if someone else has a ref
 * on it, removal will fail.
 * Return: The number of pages removed from the mapping.  0 if the folio
 * could not be removed.
 * Context: The caller should have a single refcount on the folio and
 * hold its lock.
 */
long remove_mapping(struct address_space *mapping, struct folio *folio)
{}

/**
 * folio_putback_lru - Put previously isolated folio onto appropriate LRU list.
 * @folio: Folio to be returned to an LRU list.
 *
 * Add previously isolated @folio to appropriate LRU list.
 * The folio may still be unevictable for other reasons.
 *
 * Context: lru_lock must not be held, interrupts must be enabled.
 */
void folio_putback_lru(struct folio *folio)
{}

enum folio_references {};

static enum folio_references folio_check_references(struct folio *folio,
						  struct scan_control *sc)
{}

/* Check if a folio is dirty or under writeback */
static void folio_check_dirty_writeback(struct folio *folio,
				       bool *dirty, bool *writeback)
{}

struct folio *alloc_migrate_folio(struct folio *src, unsigned long private)
{}

/*
 * Take folios on @demote_folios and attempt to demote them to another node.
 * Folios which are not demoted are left on @demote_folios.
 */
static unsigned int demote_folio_list(struct list_head *demote_folios,
				     struct pglist_data *pgdat)
{}

static bool may_enter_fs(struct folio *folio, gfp_t gfp_mask)
{}

/*
 * shrink_folio_list() returns the number of reclaimed pages
 */
static unsigned int shrink_folio_list(struct list_head *folio_list,
		struct pglist_data *pgdat, struct scan_control *sc,
		struct reclaim_stat *stat, bool ignore_references)
{}

unsigned int reclaim_clean_pages_from_list(struct zone *zone,
					   struct list_head *folio_list)
{}

/*
 * Update LRU sizes after isolating pages. The LRU size updates must
 * be complete before mem_cgroup_update_lru_size due to a sanity check.
 */
static __always_inline void update_lru_sizes(struct lruvec *lruvec,
			enum lru_list lru, unsigned long *nr_zone_taken)
{}

/*
 * Isolating page from the lruvec to fill in @dst list by nr_to_scan times.
 *
 * lruvec->lru_lock is heavily contended.  Some of the functions that
 * shrink the lists perform better by taking out a batch of pages
 * and working on them outside the LRU lock.
 *
 * For pagecache intensive workloads, this function is the hottest
 * spot in the kernel (apart from copy_*_user functions).
 *
 * Lru_lock must be held before calling this function.
 *
 * @nr_to_scan:	The number of eligible pages to look through on the list.
 * @lruvec:	The LRU vector to pull pages from.
 * @dst:	The temp list to put pages on to.
 * @nr_scanned:	The number of pages that were scanned.
 * @sc:		The scan_control struct for this reclaim session
 * @lru:	LRU list id for isolating
 *
 * returns how many pages were moved onto *@dst.
 */
static unsigned long isolate_lru_folios(unsigned long nr_to_scan,
		struct lruvec *lruvec, struct list_head *dst,
		unsigned long *nr_scanned, struct scan_control *sc,
		enum lru_list lru)
{}

/**
 * folio_isolate_lru() - Try to isolate a folio from its LRU list.
 * @folio: Folio to isolate from its LRU list.
 *
 * Isolate a @folio from an LRU list and adjust the vmstat statistic
 * corresponding to whatever LRU list the folio was on.
 *
 * The folio will have its LRU flag cleared.  If it was found on the
 * active list, it will have the Active flag set.  If it was found on the
 * unevictable list, it will have the Unevictable flag set.  These flags
 * may need to be cleared by the caller before letting the page go.
 *
 * Context:
 *
 * (1) Must be called with an elevated refcount on the folio. This is a
 *     fundamental difference from isolate_lru_folios() (which is called
 *     without a stable reference).
 * (2) The lru_lock must not be held.
 * (3) Interrupts must be enabled.
 *
 * Return: true if the folio was removed from an LRU list.
 * false if the folio was not on an LRU list.
 */
bool folio_isolate_lru(struct folio *folio)
{}

/*
 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
 * then get rescheduled. When there are massive number of tasks doing page
 * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
 * the LRU list will go small and be scanned faster than necessary, leading to
 * unnecessary swapping, thrashing and OOM.
 */
static bool too_many_isolated(struct pglist_data *pgdat, int file,
		struct scan_control *sc)
{}

/*
 * move_folios_to_lru() moves folios from private @list to appropriate LRU list.
 *
 * Returns the number of pages moved to the given lruvec.
 */
static unsigned int move_folios_to_lru(struct lruvec *lruvec,
		struct list_head *list)
{}

/*
 * If a kernel thread (such as nfsd for loop-back mounts) services a backing
 * device by writing to the page cache it sets PF_LOCAL_THROTTLE. In this case
 * we should not throttle.  Otherwise it is safe to do so.
 */
static int current_may_throttle(void)
{}

/*
 * shrink_inactive_list() is a helper for shrink_node().  It returns the number
 * of reclaimed pages
 */
static unsigned long shrink_inactive_list(unsigned long nr_to_scan,
		struct lruvec *lruvec, struct scan_control *sc,
		enum lru_list lru)
{}

/*
 * shrink_active_list() moves folios from the active LRU to the inactive LRU.
 *
 * We move them the other way if the folio is referenced by one or more
 * processes.
 *
 * If the folios are mostly unmapped, the processing is fast and it is
 * appropriate to hold lru_lock across the whole operation.  But if
 * the folios are mapped, the processing is slow (folio_referenced()), so
 * we should drop lru_lock around each folio.  It's impossible to balance
 * this, so instead we remove the folios from the LRU while processing them.
 * It is safe to rely on the active flag against the non-LRU folios in here
 * because nobody will play with that bit on a non-LRU folio.
 *
 * The downside is that we have to touch folio->_refcount against each folio.
 * But we had to alter folio->flags anyway.
 */
static void shrink_active_list(unsigned long nr_to_scan,
			       struct lruvec *lruvec,
			       struct scan_control *sc,
			       enum lru_list lru)
{}

static unsigned int reclaim_folio_list(struct list_head *folio_list,
				      struct pglist_data *pgdat)
{}

unsigned long reclaim_pages(struct list_head *folio_list)
{}

static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
				 struct lruvec *lruvec, struct scan_control *sc)
{}

/*
 * The inactive anon list should be small enough that the VM never has
 * to do too much work.
 *
 * The inactive file list should be small enough to leave most memory
 * to the established workingset on the scan-resistant active list,
 * but large enough to avoid thrashing the aggregate readahead window.
 *
 * Both inactive lists should also be large enough that each inactive
 * folio has a chance to be referenced again before it is reclaimed.
 *
 * If that fails and refaulting is observed, the inactive list grows.
 *
 * The inactive_ratio is the target ratio of ACTIVE to INACTIVE folios
 * on this LRU, maintained by the pageout code. An inactive_ratio
 * of 3 means 3:1 or 25% of the folios are kept on the inactive list.
 *
 * total     target    max
 * memory    ratio     inactive
 * -------------------------------------
 *   10MB       1         5MB
 *  100MB       1        50MB
 *    1GB       3       250MB
 *   10GB      10       0.9GB
 *  100GB      31         3GB
 *    1TB     101        10GB
 *   10TB     320        32GB
 */
static bool inactive_is_low(struct lruvec *lruvec, enum lru_list inactive_lru)
{}

enum scan_balance {};

static void prepare_scan_control(pg_data_t *pgdat, struct scan_control *sc)
{}

/*
 * Determine how aggressively the anon and file LRU lists should be
 * scanned.
 *
 * nr[0] = anon inactive folios to scan; nr[1] = anon active folios to scan
 * nr[2] = file inactive folios to scan; nr[3] = file active folios to scan
 */
static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc,
			   unsigned long *nr)
{}

/*
 * Anonymous LRU management is a waste if there is
 * ultimately no way to reclaim the memory.
 */
static bool can_age_anon_pages(struct pglist_data *pgdat,
			       struct scan_control *sc)
{}

#ifdef CONFIG_LRU_GEN

#ifdef CONFIG_LRU_GEN_ENABLED
DEFINE_STATIC_KEY_ARRAY_TRUE(lru_gen_caps, NR_LRU_GEN_CAPS);
#define get_cap(cap)
#else
DEFINE_STATIC_KEY_ARRAY_FALSE(lru_gen_caps, NR_LRU_GEN_CAPS);
#define get_cap
#endif

static bool should_walk_mmu(void)
{}

static bool should_clear_pmd_young(void)
{}

/******************************************************************************
 *                          shorthand helpers
 ******************************************************************************/

#define LRU_REFS_FLAGS

#define DEFINE_MAX_SEQ(lruvec)

#define DEFINE_MIN_SEQ(lruvec)

#define for_each_gen_type_zone(gen, type, zone)

#define get_memcg_gen(seq)
#define get_memcg_bin(bin)

static struct lruvec *get_lruvec(struct mem_cgroup *memcg, int nid)
{}

static int get_swappiness(struct lruvec *lruvec, struct scan_control *sc)
{}

static int get_nr_gens(struct lruvec *lruvec, int type)
{}

static bool __maybe_unused seq_is_valid(struct lruvec *lruvec)
{}

/******************************************************************************
 *                          Bloom filters
 ******************************************************************************/

/*
 * Bloom filters with m=1<<15, k=2 and the false positive rates of ~1/5 when
 * n=10,000 and ~1/2 when n=20,000, where, conventionally, m is the number of
 * bits in a bitmap, k is the number of hash functions and n is the number of
 * inserted items.
 *
 * Page table walkers use one of the two filters to reduce their search space.
 * To get rid of non-leaf entries that no longer have enough leaf entries, the
 * aging uses the double-buffering technique to flip to the other filter each
 * time it produces a new generation. For non-leaf entries that have enough
 * leaf entries, the aging carries them over to the next generation in
 * walk_pmd_range(); the eviction also report them when walking the rmap
 * in lru_gen_look_around().
 *
 * For future optimizations:
 * 1. It's not necessary to keep both filters all the time. The spare one can be
 *    freed after the RCU grace period and reallocated if needed again.
 * 2. And when reallocating, it's worth scaling its size according to the number
 *    of inserted entries in the other filter, to reduce the memory overhead on
 *    small systems and false positives on large systems.
 * 3. Jenkins' hash function is an alternative to Knuth's.
 */
#define BLOOM_FILTER_SHIFT

static inline int filter_gen_from_seq(unsigned long seq)
{}

static void get_item_key(void *item, int *key)
{}

static bool test_bloom_filter(struct lru_gen_mm_state *mm_state, unsigned long seq,
			      void *item)
{}

static void update_bloom_filter(struct lru_gen_mm_state *mm_state, unsigned long seq,
				void *item)
{}

static void reset_bloom_filter(struct lru_gen_mm_state *mm_state, unsigned long seq)
{}

/******************************************************************************
 *                          mm_struct list
 ******************************************************************************/

#ifdef CONFIG_LRU_GEN_WALKS_MMU

static struct lru_gen_mm_list *get_mm_list(struct mem_cgroup *memcg)
{}

static struct lru_gen_mm_state *get_mm_state(struct lruvec *lruvec)
{}

static struct mm_struct *get_next_mm(struct lru_gen_mm_walk *walk)
{}

void lru_gen_add_mm(struct mm_struct *mm)
{}

void lru_gen_del_mm(struct mm_struct *mm)
{}

#ifdef CONFIG_MEMCG
void lru_gen_migrate_mm(struct mm_struct *mm)
{}
#endif

#else /* !CONFIG_LRU_GEN_WALKS_MMU */

static struct lru_gen_mm_list *get_mm_list(struct mem_cgroup *memcg)
{
	return NULL;
}

static struct lru_gen_mm_state *get_mm_state(struct lruvec *lruvec)
{
	return NULL;
}

static struct mm_struct *get_next_mm(struct lru_gen_mm_walk *walk)
{
	return NULL;
}

#endif

static void reset_mm_stats(struct lru_gen_mm_walk *walk, bool last)
{}

static bool iterate_mm_list(struct lru_gen_mm_walk *walk, struct mm_struct **iter)
{}

static bool iterate_mm_list_nowalk(struct lruvec *lruvec, unsigned long seq)
{}

/******************************************************************************
 *                          PID controller
 ******************************************************************************/

/*
 * A feedback loop based on Proportional-Integral-Derivative (PID) controller.
 *
 * The P term is refaulted/(evicted+protected) from a tier in the generation
 * currently being evicted; the I term is the exponential moving average of the
 * P term over the generations previously evicted, using the smoothing factor
 * 1/2; the D term isn't supported.
 *
 * The setpoint (SP) is always the first tier of one type; the process variable
 * (PV) is either any tier of the other type or any other tier of the same
 * type.
 *
 * The error is the difference between the SP and the PV; the correction is to
 * turn off protection when SP>PV or turn on protection when SP<PV.
 *
 * For future optimizations:
 * 1. The D term may discount the other two terms over time so that long-lived
 *    generations can resist stale information.
 */
struct ctrl_pos {};

static void read_ctrl_pos(struct lruvec *lruvec, int type, int tier, int gain,
			  struct ctrl_pos *pos)
{}

static void reset_ctrl_pos(struct lruvec *lruvec, int type, bool carryover)
{}

static bool positive_ctrl_err(struct ctrl_pos *sp, struct ctrl_pos *pv)
{}

/******************************************************************************
 *                          the aging
 ******************************************************************************/

/* promote pages accessed through page tables */
static int folio_update_gen(struct folio *folio, int gen)
{}

/* protect pages accessed multiple times through file descriptors */
static int folio_inc_gen(struct lruvec *lruvec, struct folio *folio, bool reclaiming)
{}

static void update_batch_size(struct lru_gen_mm_walk *walk, struct folio *folio,
			      int old_gen, int new_gen)
{}

static void reset_batch_size(struct lru_gen_mm_walk *walk)
{}

static int should_skip_vma(unsigned long start, unsigned long end, struct mm_walk *args)
{}

/*
 * Some userspace memory allocators map many single-page VMAs. Instead of
 * returning back to the PGD table for each of such VMAs, finish an entire PMD
 * table to reduce zigzags and improve cache performance.
 */
static bool get_next_vma(unsigned long mask, unsigned long size, struct mm_walk *args,
			 unsigned long *vm_start, unsigned long *vm_end)
{}

static unsigned long get_pte_pfn(pte_t pte, struct vm_area_struct *vma, unsigned long addr,
				 struct pglist_data *pgdat)
{}

static unsigned long get_pmd_pfn(pmd_t pmd, struct vm_area_struct *vma, unsigned long addr,
				 struct pglist_data *pgdat)
{}

static struct folio *get_pfn_folio(unsigned long pfn, struct mem_cgroup *memcg,
				   struct pglist_data *pgdat, bool can_swap)
{}

static bool suitable_to_scan(int total, int young)
{}

static bool walk_pte_range(pmd_t *pmd, unsigned long start, unsigned long end,
			   struct mm_walk *args)
{}

static void walk_pmd_range_locked(pud_t *pud, unsigned long addr, struct vm_area_struct *vma,
				  struct mm_walk *args, unsigned long *bitmap, unsigned long *first)
{}

static void walk_pmd_range(pud_t *pud, unsigned long start, unsigned long end,
			   struct mm_walk *args)
{}

static int walk_pud_range(p4d_t *p4d, unsigned long start, unsigned long end,
			  struct mm_walk *args)
{}

static void walk_mm(struct mm_struct *mm, struct lru_gen_mm_walk *walk)
{}

static struct lru_gen_mm_walk *set_mm_walk(struct pglist_data *pgdat, bool force_alloc)
{}

static void clear_mm_walk(void)
{}

static bool inc_min_seq(struct lruvec *lruvec, int type, bool can_swap)
{}

static bool try_to_inc_min_seq(struct lruvec *lruvec, bool can_swap)
{}

static bool inc_max_seq(struct lruvec *lruvec, unsigned long seq,
			bool can_swap, bool force_scan)
{}

static bool try_to_inc_max_seq(struct lruvec *lruvec, unsigned long seq,
			       bool can_swap, bool force_scan)
{}

/******************************************************************************
 *                          working set protection
 ******************************************************************************/

static void set_initial_priority(struct pglist_data *pgdat, struct scan_control *sc)
{}

static bool lruvec_is_sizable(struct lruvec *lruvec, struct scan_control *sc)
{}

static bool lruvec_is_reclaimable(struct lruvec *lruvec, struct scan_control *sc,
				  unsigned long min_ttl)
{}

/* to protect the working set of the last N jiffies */
static unsigned long lru_gen_min_ttl __read_mostly;

static void lru_gen_age_node(struct pglist_data *pgdat, struct scan_control *sc)
{}

/******************************************************************************
 *                          rmap/PT walk feedback
 ******************************************************************************/

/*
 * This function exploits spatial locality when shrink_folio_list() walks the
 * rmap. It scans the adjacent PTEs of a young PTE and promotes hot pages. If
 * the scan was done cacheline efficiently, it adds the PMD entry pointing to
 * the PTE table to the Bloom filter. This forms a feedback loop between the
 * eviction and the aging.
 */
bool lru_gen_look_around(struct page_vma_mapped_walk *pvmw)
{}

/******************************************************************************
 *                          memcg LRU
 ******************************************************************************/

/* see the comment on MEMCG_NR_GENS */
enum {};

static void lru_gen_rotate_memcg(struct lruvec *lruvec, int op)
{}

#ifdef CONFIG_MEMCG

void lru_gen_online_memcg(struct mem_cgroup *memcg)
{}

void lru_gen_offline_memcg(struct mem_cgroup *memcg)
{}

void lru_gen_release_memcg(struct mem_cgroup *memcg)
{}

void lru_gen_soft_reclaim(struct mem_cgroup *memcg, int nid)
{}

#endif /* CONFIG_MEMCG */

/******************************************************************************
 *                          the eviction
 ******************************************************************************/

static bool sort_folio(struct lruvec *lruvec, struct folio *folio, struct scan_control *sc,
		       int tier_idx)
{}

static bool isolate_folio(struct lruvec *lruvec, struct folio *folio, struct scan_control *sc)
{}

static int scan_folios(struct lruvec *lruvec, struct scan_control *sc,
		       int type, int tier, struct list_head *list)
{}

static int get_tier_idx(struct lruvec *lruvec, int type)
{}

static int get_type_to_scan(struct lruvec *lruvec, int swappiness, int *tier_idx)
{}

static int isolate_folios(struct lruvec *lruvec, struct scan_control *sc, int swappiness,
			  int *type_scanned, struct list_head *list)
{}

static int evict_folios(struct lruvec *lruvec, struct scan_control *sc, int swappiness)
{}

static bool should_run_aging(struct lruvec *lruvec, unsigned long max_seq,
			     bool can_swap, unsigned long *nr_to_scan)
{}

/*
 * For future optimizations:
 * 1. Defer try_to_inc_max_seq() to workqueues to reduce latency for memcg
 *    reclaim.
 */
static long get_nr_to_scan(struct lruvec *lruvec, struct scan_control *sc, bool can_swap)
{}

static bool should_abort_scan(struct lruvec *lruvec, struct scan_control *sc)
{}

static bool try_to_shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
{}

static int shrink_one(struct lruvec *lruvec, struct scan_control *sc)
{}

static void shrink_many(struct pglist_data *pgdat, struct scan_control *sc)
{}

static void lru_gen_shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
{}

static void lru_gen_shrink_node(struct pglist_data *pgdat, struct scan_control *sc)
{}

/******************************************************************************
 *                          state change
 ******************************************************************************/

static bool __maybe_unused state_is_valid(struct lruvec *lruvec)
{}

static bool fill_evictable(struct lruvec *lruvec)
{}

static bool drain_evictable(struct lruvec *lruvec)
{}

static void lru_gen_change_state(bool enabled)
{}

/******************************************************************************
 *                          sysfs interface
 ******************************************************************************/

static ssize_t min_ttl_ms_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf)
{}

/* see Documentation/admin-guide/mm/multigen_lru.rst for details */
static ssize_t min_ttl_ms_store(struct kobject *kobj, struct kobj_attribute *attr,
				const char *buf, size_t len)
{}

static struct kobj_attribute lru_gen_min_ttl_attr =;

static ssize_t enabled_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf)
{}

/* see Documentation/admin-guide/mm/multigen_lru.rst for details */
static ssize_t enabled_store(struct kobject *kobj, struct kobj_attribute *attr,
			     const char *buf, size_t len)
{}

static struct kobj_attribute lru_gen_enabled_attr =;

static struct attribute *lru_gen_attrs[] =;

static const struct attribute_group lru_gen_attr_group =;

/******************************************************************************
 *                          debugfs interface
 ******************************************************************************/

static void *lru_gen_seq_start(struct seq_file *m, loff_t *pos)
{}

static void lru_gen_seq_stop(struct seq_file *m, void *v)
{}

static void *lru_gen_seq_next(struct seq_file *m, void *v, loff_t *pos)
{}

static void lru_gen_seq_show_full(struct seq_file *m, struct lruvec *lruvec,
				  unsigned long max_seq, unsigned long *min_seq,
				  unsigned long seq)
{}

/* see Documentation/admin-guide/mm/multigen_lru.rst for details */
static int lru_gen_seq_show(struct seq_file *m, void *v)
{}

static const struct seq_operations lru_gen_seq_ops =;

static int run_aging(struct lruvec *lruvec, unsigned long seq,
		     bool can_swap, bool force_scan)
{}

static int run_eviction(struct lruvec *lruvec, unsigned long seq, struct scan_control *sc,
			int swappiness, unsigned long nr_to_reclaim)
{}

static int run_cmd(char cmd, int memcg_id, int nid, unsigned long seq,
		   struct scan_control *sc, int swappiness, unsigned long opt)
{}

/* see Documentation/admin-guide/mm/multigen_lru.rst for details */
static ssize_t lru_gen_seq_write(struct file *file, const char __user *src,
				 size_t len, loff_t *pos)
{}

static int lru_gen_seq_open(struct inode *inode, struct file *file)
{}

static const struct file_operations lru_gen_rw_fops =;

static const struct file_operations lru_gen_ro_fops =;

/******************************************************************************
 *                          initialization
 ******************************************************************************/

void lru_gen_init_pgdat(struct pglist_data *pgdat)
{}

void lru_gen_init_lruvec(struct lruvec *lruvec)
{}

#ifdef CONFIG_MEMCG

void lru_gen_init_memcg(struct mem_cgroup *memcg)
{}

void lru_gen_exit_memcg(struct mem_cgroup *memcg)
{}

#endif /* CONFIG_MEMCG */

static int __init init_lru_gen(void)
{
	BUILD_BUG_ON(MIN_NR_GENS + 1 >= MAX_NR_GENS);
	BUILD_BUG_ON(BIT(LRU_GEN_WIDTH) <= MAX_NR_GENS);

	if (sysfs_create_group(mm_kobj, &lru_gen_attr_group))
		pr_err("lru_gen: failed to create sysfs group\n");

	debugfs_create_file("lru_gen", 0644, NULL, NULL, &lru_gen_rw_fops);
	debugfs_create_file("lru_gen_full", 0444, NULL, NULL, &lru_gen_ro_fops);

	return 0;
};
late_initcall(init_lru_gen);

#else /* !CONFIG_LRU_GEN */

static void lru_gen_age_node(struct pglist_data *pgdat, struct scan_control *sc)
{
	BUILD_BUG();
}

static void lru_gen_shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
{
	BUILD_BUG();
}

static void lru_gen_shrink_node(struct pglist_data *pgdat, struct scan_control *sc)
{
	BUILD_BUG();
}

#endif /* CONFIG_LRU_GEN */

static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
{}

/* Use reclaim/compaction for costly allocs or under memory pressure */
static bool in_reclaim_compaction(struct scan_control *sc)
{}

/*
 * Reclaim/compaction is used for high-order allocation requests. It reclaims
 * order-0 pages before compacting the zone. should_continue_reclaim() returns
 * true if more pages should be reclaimed such that when the page allocator
 * calls try_to_compact_pages() that it will have enough free pages to succeed.
 * It will give up earlier than that if there is difficulty reclaiming pages.
 */
static inline bool should_continue_reclaim(struct pglist_data *pgdat,
					unsigned long nr_reclaimed,
					struct scan_control *sc)
{}

static void shrink_node_memcgs(pg_data_t *pgdat, struct scan_control *sc)
{}

static void shrink_node(pg_data_t *pgdat, struct scan_control *sc)
{}

/*
 * Returns true if compaction should go ahead for a costly-order request, or
 * the allocation would already succeed without compaction. Return false if we
 * should reclaim first.
 */
static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
{}

static void consider_reclaim_throttle(pg_data_t *pgdat, struct scan_control *sc)
{}

/*
 * This is the direct reclaim path, for page-allocating processes.  We only
 * try to reclaim pages from zones which will satisfy the caller's allocation
 * request.
 *
 * If a zone is deemed to be full of pinned pages then just give it a light
 * scan then give up on it.
 */
static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
{}

static void snapshot_refaults(struct mem_cgroup *target_memcg, pg_data_t *pgdat)
{}

/*
 * This is the main entry point to direct page reclaim.
 *
 * If a full scan of the inactive list fails to free enough memory then we
 * are "out of memory" and something needs to be killed.
 *
 * If the caller is !__GFP_FS then the probability of a failure is reasonably
 * high - the zone may be full of dirty or under-writeback pages, which this
 * caller can't do much about.  We kick the writeback threads and take explicit
 * naps in the hope that some of these pages can be written.  But if the
 * allocating task holds filesystem locks which prevent writeout this might not
 * work, and the allocation attempt will fail.
 *
 * returns:	0, if no pages reclaimed
 * 		else, the number of pages reclaimed
 */
static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
					  struct scan_control *sc)
{}

static bool allow_direct_reclaim(pg_data_t *pgdat)
{}

/*
 * Throttle direct reclaimers if backing storage is backed by the network
 * and the PFMEMALLOC reserve for the preferred node is getting dangerously
 * depleted. kswapd will continue to make progress and wake the processes
 * when the low watermark is reached.
 *
 * Returns true if a fatal signal was delivered during throttling. If this
 * happens, the page allocator should not consider triggering the OOM killer.
 */
static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
					nodemask_t *nodemask)
{}

unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
				gfp_t gfp_mask, nodemask_t *nodemask)
{}

#ifdef CONFIG_MEMCG

/* Only used by soft limit reclaim. Do not reuse for anything else. */
unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg,
						gfp_t gfp_mask, bool noswap,
						pg_data_t *pgdat,
						unsigned long *nr_scanned)
{}

unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
					   unsigned long nr_pages,
					   gfp_t gfp_mask,
					   unsigned int reclaim_options,
					   int *swappiness)
{}
#endif

static void kswapd_age_node(struct pglist_data *pgdat, struct scan_control *sc)
{}

static bool pgdat_watermark_boosted(pg_data_t *pgdat, int highest_zoneidx)
{}

/*
 * Returns true if there is an eligible zone balanced for the request order
 * and highest_zoneidx
 */
static bool pgdat_balanced(pg_data_t *pgdat, int order, int highest_zoneidx)
{}

/* Clear pgdat state for congested, dirty or under writeback. */
static void clear_pgdat_congested(pg_data_t *pgdat)
{}

/*
 * Prepare kswapd for sleeping. This verifies that there are no processes
 * waiting in throttle_direct_reclaim() and that watermarks have been met.
 *
 * Returns true if kswapd is ready to sleep
 */
static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order,
				int highest_zoneidx)
{}

/*
 * kswapd shrinks a node of pages that are at or below the highest usable
 * zone that is currently unbalanced.
 *
 * Returns true if kswapd scanned at least the requested number of pages to
 * reclaim or if the lack of progress was due to pages under writeback.
 * This is used to determine if the scanning priority needs to be raised.
 */
static bool kswapd_shrink_node(pg_data_t *pgdat,
			       struct scan_control *sc)
{}

/* Page allocator PCP high watermark is lowered if reclaim is active. */
static inline void
update_reclaim_active(pg_data_t *pgdat, int highest_zoneidx, bool active)
{}

static inline void
set_reclaim_active(pg_data_t *pgdat, int highest_zoneidx)
{}

static inline void
clear_reclaim_active(pg_data_t *pgdat, int highest_zoneidx)
{}

/*
 * For kswapd, balance_pgdat() will reclaim pages across a node from zones
 * that are eligible for use by the caller until at least one zone is
 * balanced.
 *
 * Returns the order kswapd finished reclaiming at.
 *
 * kswapd scans the zones in the highmem->normal->dma direction.  It skips
 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
 * found to have free_pages <= high_wmark_pages(zone), any page in that zone
 * or lower is eligible for reclaim until at least one usable zone is
 * balanced.
 */
static int balance_pgdat(pg_data_t *pgdat, int order, int highest_zoneidx)
{}

/*
 * The pgdat->kswapd_highest_zoneidx is used to pass the highest zone index to
 * be reclaimed by kswapd from the waker. If the value is MAX_NR_ZONES which is
 * not a valid index then either kswapd runs for first time or kswapd couldn't
 * sleep after previous reclaim attempt (node is still unbalanced). In that
 * case return the zone index of the previous kswapd reclaim cycle.
 */
static enum zone_type kswapd_highest_zoneidx(pg_data_t *pgdat,
					   enum zone_type prev_highest_zoneidx)
{}

static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order,
				unsigned int highest_zoneidx)
{}

/*
 * The background pageout daemon, started as a kernel thread
 * from the init process.
 *
 * This basically trickles out pages so that we have _some_
 * free memory available even if there is no other activity
 * that frees anything up. This is needed for things like routing
 * etc, where we otherwise might have all activity going on in
 * asynchronous contexts that cannot page things out.
 *
 * If there are applications that are active memory-allocators
 * (most normal use), this basically shouldn't matter.
 */
static int kswapd(void *p)
{}

/*
 * A zone is low on free memory or too fragmented for high-order memory.  If
 * kswapd should reclaim (direct reclaim is deferred), wake it up for the zone's
 * pgdat.  It will wake up kcompactd after reclaiming memory.  If kswapd reclaim
 * has failed or is not needed, still wake up kcompactd if only compaction is
 * needed.
 */
void wakeup_kswapd(struct zone *zone, gfp_t gfp_flags, int order,
		   enum zone_type highest_zoneidx)
{}

#ifdef CONFIG_HIBERNATION
/*
 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
 * freed pages.
 *
 * Rather than trying to age LRUs the aim is to preserve the overall
 * LRU order by reclaiming preferentially
 * inactive > active > active referenced > active mapped
 */
unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
{}
#endif /* CONFIG_HIBERNATION */

/*
 * This kswapd start function will be called by init and node-hot-add.
 */
void __meminit kswapd_run(int nid)
{}

/*
 * Called by memory hotplug when all memory in a node is offlined.  Caller must
 * be holding mem_hotplug_begin/done().
 */
void __meminit kswapd_stop(int nid)
{}

static int __init kswapd_init(void)
{}

module_init()

#ifdef CONFIG_NUMA
/*
 * Node reclaim mode
 *
 * If non-zero call node_reclaim when the number of free pages falls below
 * the watermarks.
 */
int node_reclaim_mode __read_mostly;

/*
 * Priority for NODE_RECLAIM. This determines the fraction of pages
 * of a node considered for each zone_reclaim. 4 scans 1/16th of
 * a zone.
 */
#define NODE_RECLAIM_PRIORITY

/*
 * Percentage of pages in a zone that must be unmapped for node_reclaim to
 * occur.
 */
int sysctl_min_unmapped_ratio =;

/*
 * If the number of slab pages in a zone grows beyond this percentage then
 * slab reclaim needs to occur.
 */
int sysctl_min_slab_ratio =;

static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat)
{}

/* Work out how many page cache pages we can reclaim in this reclaim_mode */
static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat)
{}

/*
 * Try to free up some pages from this node through reclaim.
 */
static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
{}

int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
{}
#endif

/**
 * check_move_unevictable_folios - Move evictable folios to appropriate zone
 * lru list
 * @fbatch: Batch of lru folios to check.
 *
 * Checks folios for evictability, if an evictable folio is in the unevictable
 * lru list, moves it to the appropriate evictable lru list. This function
 * should be only used for lru folios.
 */
void check_move_unevictable_folios(struct folio_batch *fbatch)
{}
EXPORT_SYMBOL_GPL();