// SPDX-License-Identifier: GPL-2.0-only #include <linux/mm.h> #include <linux/slab.h> #include <linux/string.h> #include <linux/compiler.h> #include <linux/export.h> #include <linux/err.h> #include <linux/sched.h> #include <linux/sched/mm.h> #include <linux/sched/signal.h> #include <linux/sched/task_stack.h> #include <linux/security.h> #include <linux/swap.h> #include <linux/swapops.h> #include <linux/mman.h> #include <linux/hugetlb.h> #include <linux/vmalloc.h> #include <linux/userfaultfd_k.h> #include <linux/elf.h> #include <linux/elf-randomize.h> #include <linux/personality.h> #include <linux/random.h> #include <linux/processor.h> #include <linux/sizes.h> #include <linux/compat.h> #include <linux/uaccess.h> #include <kunit/visibility.h> #include "internal.h" #include "swap.h" /** * kfree_const - conditionally free memory * @x: pointer to the memory * * Function calls kfree only if @x is not in .rodata section. */ void kfree_const(const void *x) { … } EXPORT_SYMBOL(…); /** * kstrdup - allocate space for and copy an existing string * @s: the string to duplicate * @gfp: the GFP mask used in the kmalloc() call when allocating memory * * Return: newly allocated copy of @s or %NULL in case of error */ noinline char *kstrdup(const char *s, gfp_t gfp) { … } EXPORT_SYMBOL(…); /** * kstrdup_const - conditionally duplicate an existing const string * @s: the string to duplicate * @gfp: the GFP mask used in the kmalloc() call when allocating memory * * Note: Strings allocated by kstrdup_const should be freed by kfree_const and * must not be passed to krealloc(). * * Return: source string if it is in .rodata section otherwise * fallback to kstrdup. */ const char *kstrdup_const(const char *s, gfp_t gfp) { … } EXPORT_SYMBOL(…); /** * kstrndup - allocate space for and copy an existing string * @s: the string to duplicate * @max: read at most @max chars from @s * @gfp: the GFP mask used in the kmalloc() call when allocating memory * * Note: Use kmemdup_nul() instead if the size is known exactly. * * Return: newly allocated copy of @s or %NULL in case of error */ char *kstrndup(const char *s, size_t max, gfp_t gfp) { … } EXPORT_SYMBOL(…); /** * kmemdup - duplicate region of memory * * @src: memory region to duplicate * @len: memory region length * @gfp: GFP mask to use * * Return: newly allocated copy of @src or %NULL in case of error, * result is physically contiguous. Use kfree() to free. */ void *kmemdup_noprof(const void *src, size_t len, gfp_t gfp) { … } EXPORT_SYMBOL(…); /** * kmemdup_array - duplicate a given array. * * @src: array to duplicate. * @count: number of elements to duplicate from array. * @element_size: size of each element of array. * @gfp: GFP mask to use. * * Return: duplicated array of @src or %NULL in case of error, * result is physically contiguous. Use kfree() to free. */ void *kmemdup_array(const void *src, size_t count, size_t element_size, gfp_t gfp) { … } EXPORT_SYMBOL(…); /** * kvmemdup - duplicate region of memory * * @src: memory region to duplicate * @len: memory region length * @gfp: GFP mask to use * * Return: newly allocated copy of @src or %NULL in case of error, * result may be not physically contiguous. Use kvfree() to free. */ void *kvmemdup(const void *src, size_t len, gfp_t gfp) { … } EXPORT_SYMBOL(…); /** * kmemdup_nul - Create a NUL-terminated string from unterminated data * @s: The data to stringify * @len: The size of the data * @gfp: the GFP mask used in the kmalloc() call when allocating memory * * Return: newly allocated copy of @s with NUL-termination or %NULL in * case of error */ char *kmemdup_nul(const char *s, size_t len, gfp_t gfp) { … } EXPORT_SYMBOL(…); static kmem_buckets *user_buckets __ro_after_init; static int __init init_user_buckets(void) { … } subsys_initcall(init_user_buckets); /** * memdup_user - duplicate memory region from user space * * @src: source address in user space * @len: number of bytes to copy * * Return: an ERR_PTR() on failure. Result is physically * contiguous, to be freed by kfree(). */ void *memdup_user(const void __user *src, size_t len) { … } EXPORT_SYMBOL(…); /** * vmemdup_user - duplicate memory region from user space * * @src: source address in user space * @len: number of bytes to copy * * Return: an ERR_PTR() on failure. Result may be not * physically contiguous. Use kvfree() to free. */ void *vmemdup_user(const void __user *src, size_t len) { … } EXPORT_SYMBOL(…); /** * strndup_user - duplicate an existing string from user space * @s: The string to duplicate * @n: Maximum number of bytes to copy, including the trailing NUL. * * Return: newly allocated copy of @s or an ERR_PTR() in case of error */ char *strndup_user(const char __user *s, long n) { … } EXPORT_SYMBOL(…); /** * memdup_user_nul - duplicate memory region from user space and NUL-terminate * * @src: source address in user space * @len: number of bytes to copy * * Return: an ERR_PTR() on failure. */ void *memdup_user_nul(const void __user *src, size_t len) { … } EXPORT_SYMBOL(…); /* Check if the vma is being used as a stack by this task */ int vma_is_stack_for_current(struct vm_area_struct *vma) { … } /* * Change backing file, only valid to use during initial VMA setup. */ void vma_set_file(struct vm_area_struct *vma, struct file *file) { … } EXPORT_SYMBOL(…); #ifndef STACK_RND_MASK #define STACK_RND_MASK … #endif unsigned long randomize_stack_top(unsigned long stack_top) { … } /** * randomize_page - Generate a random, page aligned address * @start: The smallest acceptable address the caller will take. * @range: The size of the area, starting at @start, within which the * random address must fall. * * If @start + @range would overflow, @range is capped. * * NOTE: Historical use of randomize_range, which this replaces, presumed that * @start was already page aligned. We now align it regardless. * * Return: A page aligned address within [start, start + range). On error, * @start is returned. */ unsigned long randomize_page(unsigned long start, unsigned long range) { … } #ifdef CONFIG_ARCH_WANT_DEFAULT_TOPDOWN_MMAP_LAYOUT unsigned long __weak arch_randomize_brk(struct mm_struct *mm) { /* Is the current task 32bit ? */ if (!IS_ENABLED(CONFIG_64BIT) || is_compat_task()) return randomize_page(mm->brk, SZ_32M); return randomize_page(mm->brk, SZ_1G); } unsigned long arch_mmap_rnd(void) { unsigned long rnd; #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS if (is_compat_task()) rnd = get_random_long() & ((1UL << mmap_rnd_compat_bits) - 1); else #endif /* CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS */ rnd = get_random_long() & ((1UL << mmap_rnd_bits) - 1); return rnd << PAGE_SHIFT; } static int mmap_is_legacy(struct rlimit *rlim_stack) { if (current->personality & ADDR_COMPAT_LAYOUT) return 1; /* On parisc the stack always grows up - so a unlimited stack should * not be an indicator to use the legacy memory layout. */ if (rlim_stack->rlim_cur == RLIM_INFINITY && !IS_ENABLED(CONFIG_STACK_GROWSUP)) return 1; return sysctl_legacy_va_layout; } /* * Leave enough space between the mmap area and the stack to honour ulimit in * the face of randomisation. */ #define MIN_GAP … #define MAX_GAP … static unsigned long mmap_base(unsigned long rnd, struct rlimit *rlim_stack) { #ifdef CONFIG_STACK_GROWSUP /* * For an upwards growing stack the calculation is much simpler. * Memory for the maximum stack size is reserved at the top of the * task. mmap_base starts directly below the stack and grows * downwards. */ return PAGE_ALIGN_DOWN(mmap_upper_limit(rlim_stack) - rnd); #else unsigned long gap = rlim_stack->rlim_cur; unsigned long pad = stack_guard_gap; /* Account for stack randomization if necessary */ if (current->flags & PF_RANDOMIZE) pad += (STACK_RND_MASK << PAGE_SHIFT); /* Values close to RLIM_INFINITY can overflow. */ if (gap + pad > gap) gap += pad; if (gap < MIN_GAP && MIN_GAP < MAX_GAP) gap = MIN_GAP; else if (gap > MAX_GAP) gap = MAX_GAP; return PAGE_ALIGN(STACK_TOP - gap - rnd); #endif } void arch_pick_mmap_layout(struct mm_struct *mm, struct rlimit *rlim_stack) { unsigned long random_factor = 0UL; if (current->flags & PF_RANDOMIZE) random_factor = arch_mmap_rnd(); if (mmap_is_legacy(rlim_stack)) { mm->mmap_base = TASK_UNMAPPED_BASE + random_factor; clear_bit(MMF_TOPDOWN, &mm->flags); } else { mm->mmap_base = mmap_base(random_factor, rlim_stack); set_bit(MMF_TOPDOWN, &mm->flags); } } #elif defined(CONFIG_MMU) && !defined(HAVE_ARCH_PICK_MMAP_LAYOUT) void arch_pick_mmap_layout(struct mm_struct *mm, struct rlimit *rlim_stack) { mm->mmap_base = TASK_UNMAPPED_BASE; clear_bit(MMF_TOPDOWN, &mm->flags); } #endif #ifdef CONFIG_MMU EXPORT_SYMBOL_IF_KUNIT(…); #endif /** * __account_locked_vm - account locked pages to an mm's locked_vm * @mm: mm to account against * @pages: number of pages to account * @inc: %true if @pages should be considered positive, %false if not * @task: task used to check RLIMIT_MEMLOCK * @bypass_rlim: %true if checking RLIMIT_MEMLOCK should be skipped * * Assumes @task and @mm are valid (i.e. at least one reference on each), and * that mmap_lock is held as writer. * * Return: * * 0 on success * * -ENOMEM if RLIMIT_MEMLOCK would be exceeded. */ int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc, struct task_struct *task, bool bypass_rlim) { … } EXPORT_SYMBOL_GPL(…); /** * account_locked_vm - account locked pages to an mm's locked_vm * @mm: mm to account against, may be NULL * @pages: number of pages to account * @inc: %true if @pages should be considered positive, %false if not * * Assumes a non-NULL @mm is valid (i.e. at least one reference on it). * * Return: * * 0 on success, or if mm is NULL * * -ENOMEM if RLIMIT_MEMLOCK would be exceeded. */ int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc) { … } EXPORT_SYMBOL_GPL(…); unsigned long vm_mmap_pgoff(struct file *file, unsigned long addr, unsigned long len, unsigned long prot, unsigned long flag, unsigned long pgoff) { … } unsigned long vm_mmap(struct file *file, unsigned long addr, unsigned long len, unsigned long prot, unsigned long flag, unsigned long offset) { … } EXPORT_SYMBOL(…); static gfp_t kmalloc_gfp_adjust(gfp_t flags, size_t size) { … } /** * __kvmalloc_node - attempt to allocate physically contiguous memory, but upon * failure, fall back to non-contiguous (vmalloc) allocation. * @size: size of the request. * @b: which set of kmalloc buckets to allocate from. * @flags: gfp mask for the allocation - must be compatible (superset) with GFP_KERNEL. * @node: numa node to allocate from * * Uses kmalloc to get the memory but if the allocation fails then falls back * to the vmalloc allocator. Use kvfree for freeing the memory. * * GFP_NOWAIT and GFP_ATOMIC are not supported, neither is the __GFP_NORETRY modifier. * __GFP_RETRY_MAYFAIL is supported, and it should be used only if kmalloc is * preferable to the vmalloc fallback, due to visible performance drawbacks. * * Return: pointer to the allocated memory of %NULL in case of failure */ void *__kvmalloc_node_noprof(DECL_BUCKET_PARAMS(size, b), gfp_t flags, int node) { … } EXPORT_SYMBOL(…); /** * kvfree() - Free memory. * @addr: Pointer to allocated memory. * * kvfree frees memory allocated by any of vmalloc(), kmalloc() or kvmalloc(). * It is slightly more efficient to use kfree() or vfree() if you are certain * that you know which one to use. * * Context: Either preemptible task context or not-NMI interrupt. */ void kvfree(const void *addr) { … } EXPORT_SYMBOL(…); /** * kvfree_sensitive - Free a data object containing sensitive information. * @addr: address of the data object to be freed. * @len: length of the data object. * * Use the special memzero_explicit() function to clear the content of a * kvmalloc'ed object containing sensitive data to make sure that the * compiler won't optimize out the data clearing. */ void kvfree_sensitive(const void *addr, size_t len) { … } EXPORT_SYMBOL(…); /** * kvrealloc - reallocate memory; contents remain unchanged * @p: object to reallocate memory for * @size: the size to reallocate * @flags: the flags for the page level allocator * * If @p is %NULL, kvrealloc() behaves exactly like kvmalloc(). If @size is 0 * and @p is not a %NULL pointer, the object pointed to is freed. * * If __GFP_ZERO logic is requested, callers must ensure that, starting with the * initial memory allocation, every subsequent call to this API for the same * memory allocation is flagged with __GFP_ZERO. Otherwise, it is possible that * __GFP_ZERO is not fully honored by this API. * * In any case, the contents of the object pointed to are preserved up to the * lesser of the new and old sizes. * * This function must not be called concurrently with itself or kvfree() for the * same memory allocation. * * Return: pointer to the allocated memory or %NULL in case of error */ void *kvrealloc_noprof(const void *p, size_t size, gfp_t flags) { … } EXPORT_SYMBOL(…); /** * __vmalloc_array - allocate memory for a virtually contiguous array. * @n: number of elements. * @size: element size. * @flags: the type of memory to allocate (see kmalloc). */ void *__vmalloc_array_noprof(size_t n, size_t size, gfp_t flags) { … } EXPORT_SYMBOL(…); /** * vmalloc_array - allocate memory for a virtually contiguous array. * @n: number of elements. * @size: element size. */ void *vmalloc_array_noprof(size_t n, size_t size) { … } EXPORT_SYMBOL(…); /** * __vcalloc - allocate and zero memory for a virtually contiguous array. * @n: number of elements. * @size: element size. * @flags: the type of memory to allocate (see kmalloc). */ void *__vcalloc_noprof(size_t n, size_t size, gfp_t flags) { … } EXPORT_SYMBOL(…); /** * vcalloc - allocate and zero memory for a virtually contiguous array. * @n: number of elements. * @size: element size. */ void *vcalloc_noprof(size_t n, size_t size) { … } EXPORT_SYMBOL(…); struct anon_vma *folio_anon_vma(struct folio *folio) { … } /** * folio_mapping - Find the mapping where this folio is stored. * @folio: The folio. * * For folios which are in the page cache, return the mapping that this * page belongs to. Folios in the swap cache return the swap mapping * this page is stored in (which is different from the mapping for the * swap file or swap device where the data is stored). * * You can call this for folios which aren't in the swap cache or page * cache and it will return NULL. */ struct address_space *folio_mapping(struct folio *folio) { … } EXPORT_SYMBOL(…); /** * folio_copy - Copy the contents of one folio to another. * @dst: Folio to copy to. * @src: Folio to copy from. * * The bytes in the folio represented by @src are copied to @dst. * Assumes the caller has validated that @dst is at least as large as @src. * Can be called in atomic context for order-0 folios, but if the folio is * larger, it may sleep. */ void folio_copy(struct folio *dst, struct folio *src) { … } EXPORT_SYMBOL(…); int folio_mc_copy(struct folio *dst, struct folio *src) { … } EXPORT_SYMBOL(…); int sysctl_overcommit_memory __read_mostly = …; int sysctl_overcommit_ratio __read_mostly = …; unsigned long sysctl_overcommit_kbytes __read_mostly; int sysctl_max_map_count __read_mostly = …; unsigned long sysctl_user_reserve_kbytes __read_mostly = …; /* 128MB */ unsigned long sysctl_admin_reserve_kbytes __read_mostly = …; /* 8MB */ int overcommit_ratio_handler(const struct ctl_table *table, int write, void *buffer, size_t *lenp, loff_t *ppos) { … } static void sync_overcommit_as(struct work_struct *dummy) { … } int overcommit_policy_handler(const struct ctl_table *table, int write, void *buffer, size_t *lenp, loff_t *ppos) { … } int overcommit_kbytes_handler(const struct ctl_table *table, int write, void *buffer, size_t *lenp, loff_t *ppos) { … } /* * Committed memory limit enforced when OVERCOMMIT_NEVER policy is used */ unsigned long vm_commit_limit(void) { … } /* * Make sure vm_committed_as in one cacheline and not cacheline shared with * other variables. It can be updated by several CPUs frequently. */ struct percpu_counter vm_committed_as ____cacheline_aligned_in_smp; /* * The global memory commitment made in the system can be a metric * that can be used to drive ballooning decisions when Linux is hosted * as a guest. On Hyper-V, the host implements a policy engine for dynamically * balancing memory across competing virtual machines that are hosted. * Several metrics drive this policy engine including the guest reported * memory commitment. * * The time cost of this is very low for small platforms, and for big * platform like a 2S/36C/72T Skylake server, in worst case where * vm_committed_as's spinlock is under severe contention, the time cost * could be about 30~40 microseconds. */ unsigned long vm_memory_committed(void) { … } EXPORT_SYMBOL_GPL(…); /* * Check that a process has enough memory to allocate a new virtual * mapping. 0 means there is enough memory for the allocation to * succeed and -ENOMEM implies there is not. * * We currently support three overcommit policies, which are set via the * vm.overcommit_memory sysctl. See Documentation/mm/overcommit-accounting.rst * * Strict overcommit modes added 2002 Feb 26 by Alan Cox. * Additional code 2002 Jul 20 by Robert Love. * * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise. * * Note this is a helper function intended to be used by LSMs which * wish to use this logic. */ int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin) { … } /** * get_cmdline() - copy the cmdline value to a buffer. * @task: the task whose cmdline value to copy. * @buffer: the buffer to copy to. * @buflen: the length of the buffer. Larger cmdline values are truncated * to this length. * * Return: the size of the cmdline field copied. Note that the copy does * not guarantee an ending NULL byte. */ int get_cmdline(struct task_struct *task, char *buffer, int buflen) { … } int __weak memcmp_pages(struct page *page1, struct page *page2) { … } #ifdef CONFIG_PRINTK /** * mem_dump_obj - Print available provenance information * @object: object for which to find provenance information. * * This function uses pr_cont(), so that the caller is expected to have * printed out whatever preamble is appropriate. The provenance information * depends on the type of object and on how much debugging is enabled. * For example, for a slab-cache object, the slab name is printed, and, * if available, the return address and stack trace from the allocation * and last free path of that object. */ void mem_dump_obj(void *object) { … } EXPORT_SYMBOL_GPL(…); #endif /* * A driver might set a page logically offline -- PageOffline() -- and * turn the page inaccessible in the hypervisor; after that, access to page * content can be fatal. * * Some special PFN walkers -- i.e., /proc/kcore -- read content of random * pages after checking PageOffline(); however, these PFN walkers can race * with drivers that set PageOffline(). * * page_offline_freeze()/page_offline_thaw() allows for a subsystem to * synchronize with such drivers, achieving that a page cannot be set * PageOffline() while frozen. * * page_offline_begin()/page_offline_end() is used by drivers that care about * such races when setting a page PageOffline(). */ static DECLARE_RWSEM(page_offline_rwsem); void page_offline_freeze(void) { … } void page_offline_thaw(void) { … } void page_offline_begin(void) { … } EXPORT_SYMBOL(…); void page_offline_end(void) { … } EXPORT_SYMBOL(…); #ifndef flush_dcache_folio void flush_dcache_folio(struct folio *folio) { long i, nr = folio_nr_pages(folio); for (i = 0; i < nr; i++) flush_dcache_page(folio_page(folio, i)); } EXPORT_SYMBOL(flush_dcache_folio); #endif