linux/mm/page_ext.c

// SPDX-License-Identifier: GPL-2.0
#include <linux/mm.h>
#include <linux/mmzone.h>
#include <linux/memblock.h>
#include <linux/page_ext.h>
#include <linux/memory.h>
#include <linux/vmalloc.h>
#include <linux/kmemleak.h>
#include <linux/page_owner.h>
#include <linux/page_idle.h>
#include <linux/page_table_check.h>
#include <linux/rcupdate.h>
#include <linux/pgalloc_tag.h>

/*
 * struct page extension
 *
 * This is the feature to manage memory for extended data per page.
 *
 * Until now, we must modify struct page itself to store extra data per page.
 * This requires rebuilding the kernel and it is really time consuming process.
 * And, sometimes, rebuild is impossible due to third party module dependency.
 * At last, enlarging struct page could cause un-wanted system behaviour change.
 *
 * This feature is intended to overcome above mentioned problems. This feature
 * allocates memory for extended data per page in certain place rather than
 * the struct page itself. This memory can be accessed by the accessor
 * functions provided by this code. During the boot process, it checks whether
 * allocation of huge chunk of memory is needed or not. If not, it avoids
 * allocating memory at all. With this advantage, we can include this feature
 * into the kernel in default and can avoid rebuild and solve related problems.
 *
 * To help these things to work well, there are two callbacks for clients. One
 * is the need callback which is mandatory if user wants to avoid useless
 * memory allocation at boot-time. The other is optional, init callback, which
 * is used to do proper initialization after memory is allocated.
 *
 * The need callback is used to decide whether extended memory allocation is
 * needed or not. Sometimes users want to deactivate some features in this
 * boot and extra memory would be unnecessary. In this case, to avoid
 * allocating huge chunk of memory, each clients represent their need of
 * extra memory through the need callback. If one of the need callbacks
 * returns true, it means that someone needs extra memory so that
 * page extension core should allocates memory for page extension. If
 * none of need callbacks return true, memory isn't needed at all in this boot
 * and page extension core can skip to allocate memory. As result,
 * none of memory is wasted.
 *
 * When need callback returns true, page_ext checks if there is a request for
 * extra memory through size in struct page_ext_operations. If it is non-zero,
 * extra space is allocated for each page_ext entry and offset is returned to
 * user through offset in struct page_ext_operations.
 *
 * The init callback is used to do proper initialization after page extension
 * is completely initialized. In sparse memory system, extra memory is
 * allocated some time later than memmap is allocated. In other words, lifetime
 * of memory for page extension isn't same with memmap for struct page.
 * Therefore, clients can't store extra data until page extension is
 * initialized, even if pages are allocated and used freely. This could
 * cause inadequate state of extra data per page, so, to prevent it, client
 * can utilize this callback to initialize the state of it correctly.
 */

#ifdef CONFIG_SPARSEMEM
#define PAGE_EXT_INVALID
#endif

#if defined(CONFIG_PAGE_IDLE_FLAG) && !defined(CONFIG_64BIT)
static bool need_page_idle(void)
{
	return true;
}
static struct page_ext_operations page_idle_ops __initdata = {
	.need = need_page_idle,
	.need_shared_flags = true,
};
#endif

static struct page_ext_operations *page_ext_ops[] __initdata =;

unsigned long page_ext_size;

static unsigned long total_usage;

#ifdef CONFIG_MEM_ALLOC_PROFILING_DEBUG
/*
 * To ensure correct allocation tagging for pages, page_ext should be available
 * before the first page allocation. Otherwise early task stacks will be
 * allocated before page_ext initialization and missing tags will be flagged.
 */
bool early_page_ext __meminitdata = true;
#else
bool early_page_ext __meminitdata;
#endif
static int __init setup_early_page_ext(char *str)
{}
early_param();

static bool __init invoke_need_callbacks(void)
{}

static void __init invoke_init_callbacks(void)
{}

static inline struct page_ext *get_entry(void *base, unsigned long index)
{}

#ifndef CONFIG_SPARSEMEM
void __init page_ext_init_flatmem_late(void)
{
	invoke_init_callbacks();
}

void __meminit pgdat_page_ext_init(struct pglist_data *pgdat)
{
	pgdat->node_page_ext = NULL;
}

static struct page_ext *lookup_page_ext(const struct page *page)
{
	unsigned long pfn = page_to_pfn(page);
	unsigned long index;
	struct page_ext *base;

	WARN_ON_ONCE(!rcu_read_lock_held());
	base = NODE_DATA(page_to_nid(page))->node_page_ext;
	/*
	 * The sanity checks the page allocator does upon freeing a
	 * page can reach here before the page_ext arrays are
	 * allocated when feeding a range of pages to the allocator
	 * for the first time during bootup or memory hotplug.
	 */
	if (unlikely(!base))
		return NULL;
	index = pfn - round_down(node_start_pfn(page_to_nid(page)),
					MAX_ORDER_NR_PAGES);
	return get_entry(base, index);
}

static int __init alloc_node_page_ext(int nid)
{
	struct page_ext *base;
	unsigned long table_size;
	unsigned long nr_pages;

	nr_pages = NODE_DATA(nid)->node_spanned_pages;
	if (!nr_pages)
		return 0;

	/*
	 * Need extra space if node range is not aligned with
	 * MAX_ORDER_NR_PAGES. When page allocator's buddy algorithm
	 * checks buddy's status, range could be out of exact node range.
	 */
	if (!IS_ALIGNED(node_start_pfn(nid), MAX_ORDER_NR_PAGES) ||
		!IS_ALIGNED(node_end_pfn(nid), MAX_ORDER_NR_PAGES))
		nr_pages += MAX_ORDER_NR_PAGES;

	table_size = page_ext_size * nr_pages;

	base = memblock_alloc_try_nid(
			table_size, PAGE_SIZE, __pa(MAX_DMA_ADDRESS),
			MEMBLOCK_ALLOC_ACCESSIBLE, nid);
	if (!base)
		return -ENOMEM;
	NODE_DATA(nid)->node_page_ext = base;
	total_usage += table_size;
	memmap_boot_pages_add(DIV_ROUND_UP(table_size, PAGE_SIZE));
	return 0;
}

void __init page_ext_init_flatmem(void)
{

	int nid, fail;

	if (!invoke_need_callbacks())
		return;

	for_each_online_node(nid)  {
		fail = alloc_node_page_ext(nid);
		if (fail)
			goto fail;
	}
	pr_info("allocated %ld bytes of page_ext\n", total_usage);
	return;

fail:
	pr_crit("allocation of page_ext failed.\n");
	panic("Out of memory");
}

#else /* CONFIG_SPARSEMEM */
static bool page_ext_invalid(struct page_ext *page_ext)
{}

static struct page_ext *lookup_page_ext(const struct page *page)
{}

static void *__meminit alloc_page_ext(size_t size, int nid)
{}

static int __meminit init_section_page_ext(unsigned long pfn, int nid)
{}

static void free_page_ext(void *addr)
{}

static void __free_page_ext(unsigned long pfn)
{}

static void __invalidate_page_ext(unsigned long pfn)
{}

static int __meminit online_page_ext(unsigned long start_pfn,
				unsigned long nr_pages,
				int nid)
{}

static void __meminit offline_page_ext(unsigned long start_pfn,
				unsigned long nr_pages)
{}

static int __meminit page_ext_callback(struct notifier_block *self,
			       unsigned long action, void *arg)
{}

void __init page_ext_init(void)
{}

void __meminit pgdat_page_ext_init(struct pglist_data *pgdat)
{}

#endif

/**
 * page_ext_get() - Get the extended information for a page.
 * @page: The page we're interested in.
 *
 * Ensures that the page_ext will remain valid until page_ext_put()
 * is called.
 *
 * Return: NULL if no page_ext exists for this page.
 * Context: Any context.  Caller may not sleep until they have called
 * page_ext_put().
 */
struct page_ext *page_ext_get(const struct page *page)
{}

/**
 * page_ext_put() - Working with page extended information is done.
 * @page_ext: Page extended information received from page_ext_get().
 *
 * The page extended information of the page may not be valid after this
 * function is called.
 *
 * Return: None.
 * Context: Any context with corresponding page_ext_get() is called.
 */
void page_ext_put(struct page_ext *page_ext)
{}