/* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_CLEANUP_H #define _LINUX_CLEANUP_H #include <linux/compiler.h> /** * DOC: scope-based cleanup helpers * * The "goto error" pattern is notorious for introducing subtle resource * leaks. It is tedious and error prone to add new resource acquisition * constraints into code paths that already have several unwind * conditions. The "cleanup" helpers enable the compiler to help with * this tedium and can aid in maintaining LIFO (last in first out) * unwind ordering to avoid unintentional leaks. * * As drivers make up the majority of the kernel code base, here is an * example of using these helpers to clean up PCI drivers. The target of * the cleanups are occasions where a goto is used to unwind a device * reference (pci_dev_put()), or unlock the device (pci_dev_unlock()) * before returning. * * The DEFINE_FREE() macro can arrange for PCI device references to be * dropped when the associated variable goes out of scope:: * * DEFINE_FREE(pci_dev_put, struct pci_dev *, if (_T) pci_dev_put(_T)) * ... * struct pci_dev *dev __free(pci_dev_put) = * pci_get_slot(parent, PCI_DEVFN(0, 0)); * * The above will automatically call pci_dev_put() if @dev is non-NULL * when @dev goes out of scope (automatic variable scope). If a function * wants to invoke pci_dev_put() on error, but return @dev (i.e. without * freeing it) on success, it can do:: * * return no_free_ptr(dev); * * ...or:: * * return_ptr(dev); * * The DEFINE_GUARD() macro can arrange for the PCI device lock to be * dropped when the scope where guard() is invoked ends:: * * DEFINE_GUARD(pci_dev, struct pci_dev *, pci_dev_lock(_T), pci_dev_unlock(_T)) * ... * guard(pci_dev)(dev); * * The lifetime of the lock obtained by the guard() helper follows the * scope of automatic variable declaration. Take the following example:: * * func(...) * { * if (...) { * ... * guard(pci_dev)(dev); // pci_dev_lock() invoked here * ... * } // <- implied pci_dev_unlock() triggered here * } * * Observe the lock is held for the remainder of the "if ()" block not * the remainder of "func()". * * Now, when a function uses both __free() and guard(), or multiple * instances of __free(), the LIFO order of variable definition order * matters. GCC documentation says: * * "When multiple variables in the same scope have cleanup attributes, * at exit from the scope their associated cleanup functions are run in * reverse order of definition (last defined, first cleanup)." * * When the unwind order matters it requires that variables be defined * mid-function scope rather than at the top of the file. Take the * following example and notice the bug highlighted by "!!":: * * LIST_HEAD(list); * DEFINE_MUTEX(lock); * * struct object { * struct list_head node; * }; * * static struct object *alloc_add(void) * { * struct object *obj; * * lockdep_assert_held(&lock); * obj = kzalloc(sizeof(*obj), GFP_KERNEL); * if (obj) { * LIST_HEAD_INIT(&obj->node); * list_add(obj->node, &list): * } * return obj; * } * * static void remove_free(struct object *obj) * { * lockdep_assert_held(&lock); * list_del(&obj->node); * kfree(obj); * } * * DEFINE_FREE(remove_free, struct object *, if (_T) remove_free(_T)) * static int init(void) * { * struct object *obj __free(remove_free) = NULL; * int err; * * guard(mutex)(&lock); * obj = alloc_add(); * * if (!obj) * return -ENOMEM; * * err = other_init(obj); * if (err) * return err; // remove_free() called without the lock!! * * no_free_ptr(obj); * return 0; * } * * That bug is fixed by changing init() to call guard() and define + * initialize @obj in this order:: * * guard(mutex)(&lock); * struct object *obj __free(remove_free) = alloc_add(); * * Given that the "__free(...) = NULL" pattern for variables defined at * the top of the function poses this potential interdependency problem * the recommendation is to always define and assign variables in one * statement and not group variable definitions at the top of the * function when __free() is used. * * Lastly, given that the benefit of cleanup helpers is removal of * "goto", and that the "goto" statement can jump between scopes, the * expectation is that usage of "goto" and cleanup helpers is never * mixed in the same function. I.e. for a given routine, convert all * resources that need a "goto" cleanup to scope-based cleanup, or * convert none of them. */ /* * DEFINE_FREE(name, type, free): * simple helper macro that defines the required wrapper for a __free() * based cleanup function. @free is an expression using '_T' to access the * variable. @free should typically include a NULL test before calling a * function, see the example below. * * __free(name): * variable attribute to add a scoped based cleanup to the variable. * * no_free_ptr(var): * like a non-atomic xchg(var, NULL), such that the cleanup function will * be inhibited -- provided it sanely deals with a NULL value. * * NOTE: this has __must_check semantics so that it is harder to accidentally * leak the resource. * * return_ptr(p): * returns p while inhibiting the __free(). * * Ex. * * DEFINE_FREE(kfree, void *, if (_T) kfree(_T)) * * void *alloc_obj(...) * { * struct obj *p __free(kfree) = kmalloc(...); * if (!p) * return NULL; * * if (!init_obj(p)) * return NULL; * * return_ptr(p); * } * * NOTE: the DEFINE_FREE()'s @free expression includes a NULL test even though * kfree() is fine to be called with a NULL value. This is on purpose. This way * the compiler sees the end of our alloc_obj() function as: * * tmp = p; * p = NULL; * if (p) * kfree(p); * return tmp; * * And through the magic of value-propagation and dead-code-elimination, it * eliminates the actual cleanup call and compiles into: * * return p; * * Without the NULL test it turns into a mess and the compiler can't help us. */ #define DEFINE_FREE(_name, _type, _free) … #define __free(_name) … #define __get_and_null(p, nullvalue) … static inline __must_check const volatile void * __must_check_fn(const volatile void *val) { … } #define no_free_ptr(p) … #define return_ptr(p) … /* * DEFINE_CLASS(name, type, exit, init, init_args...): * helper to define the destructor and constructor for a type. * @exit is an expression using '_T' -- similar to FREE above. * @init is an expression in @init_args resulting in @type * * EXTEND_CLASS(name, ext, init, init_args...): * extends class @name to @name@ext with the new constructor * * CLASS(name, var)(args...): * declare the variable @var as an instance of the named class * * Ex. * * DEFINE_CLASS(fdget, struct fd, fdput(_T), fdget(fd), int fd) * * CLASS(fdget, f)(fd); * if (!fd_file(f)) * return -EBADF; * * // use 'f' without concern */ #define DEFINE_CLASS(_name, _type, _exit, _init, _init_args...) … #define EXTEND_CLASS(_name, ext, _init, _init_args...) … #define CLASS(_name, var) … /* * DEFINE_GUARD(name, type, lock, unlock): * trivial wrapper around DEFINE_CLASS() above specifically * for locks. * * DEFINE_GUARD_COND(name, ext, condlock) * wrapper around EXTEND_CLASS above to add conditional lock * variants to a base class, eg. mutex_trylock() or * mutex_lock_interruptible(). * * guard(name): * an anonymous instance of the (guard) class, not recommended for * conditional locks. * * scoped_guard (name, args...) { }: * similar to CLASS(name, scope)(args), except the variable (with the * explicit name 'scope') is declard in a for-loop such that its scope is * bound to the next (compound) statement. * * for conditional locks the loop body is skipped when the lock is not * acquired. * * scoped_cond_guard (name, fail, args...) { }: * similar to scoped_guard(), except it does fail when the lock * acquire fails. * */ #define DEFINE_GUARD(_name, _type, _lock, _unlock) … #define DEFINE_GUARD_COND(_name, _ext, _condlock) … #define guard(_name) … #define __guard_ptr(_name) … #define scoped_guard(_name, args...) … #define scoped_cond_guard(_name, _fail, args...) … /* * Additional helper macros for generating lock guards with types, either for * locks that don't have a native type (eg. RCU, preempt) or those that need a * 'fat' pointer (eg. spin_lock_irqsave). * * DEFINE_LOCK_GUARD_0(name, lock, unlock, ...) * DEFINE_LOCK_GUARD_1(name, type, lock, unlock, ...) * DEFINE_LOCK_GUARD_1_COND(name, ext, condlock) * * will result in the following type: * * typedef struct { * type *lock; // 'type := void' for the _0 variant * __VA_ARGS__; * } class_##name##_t; * * As above, both _lock and _unlock are statements, except this time '_T' will * be a pointer to the above struct. */ #define __DEFINE_UNLOCK_GUARD(_name, _type, _unlock, ...) … #define __DEFINE_LOCK_GUARD_1(_name, _type, _lock) … #define __DEFINE_LOCK_GUARD_0(_name, _lock) … #define DEFINE_LOCK_GUARD_1(_name, _type, _lock, _unlock, ...) … #define DEFINE_LOCK_GUARD_0(_name, _lock, _unlock, ...) … #define DEFINE_LOCK_GUARD_1_COND(_name, _ext, _condlock) … #endif /* _LINUX_CLEANUP_H */