linux/fs/reiserfs/reiserfs.h

/* SPDX-License-Identifier: GPL-2.0 */
/*
 * Copyright 1996, 1997, 1998 Hans Reiser, see reiserfs/README for
 * licensing and copyright details
 */

#include <linux/reiserfs_fs.h>

#include <linux/slab.h>
#include <linux/interrupt.h>
#include <linux/sched.h>
#include <linux/bug.h>
#include <linux/workqueue.h>
#include <linux/unaligned.h>
#include <linux/bitops.h>
#include <linux/proc_fs.h>
#include <linux/buffer_head.h>

/* the 32 bit compat definitions with int argument */
#define REISERFS_IOC32_UNPACK
#define REISERFS_IOC32_GETVERSION
#define REISERFS_IOC32_SETVERSION

struct reiserfs_journal_list;

/* bitmasks for i_flags field in reiserfs-specific part of inode */
reiserfs_inode_flags;

struct reiserfs_inode_info {};

reiserfs_super_block_flags;

/*
 * struct reiserfs_super_block accessors/mutators since this is a disk
 * structure, it will always be in little endian format.
 */
#define sb_block_count(sbp)
#define set_sb_block_count(sbp,v)
#define sb_free_blocks(sbp)
#define set_sb_free_blocks(sbp,v)
#define sb_root_block(sbp)
#define set_sb_root_block(sbp,v)

#define sb_jp_journal_1st_block(sbp)
#define set_sb_jp_journal_1st_block(sbp,v)
#define sb_jp_journal_dev(sbp)
#define set_sb_jp_journal_dev(sbp,v)
#define sb_jp_journal_size(sbp)
#define set_sb_jp_journal_size(sbp,v)
#define sb_jp_journal_trans_max(sbp)
#define set_sb_jp_journal_trans_max(sbp,v)
#define sb_jp_journal_magic(sbp)
#define set_sb_jp_journal_magic(sbp,v)
#define sb_jp_journal_max_batch(sbp)
#define set_sb_jp_journal_max_batch(sbp,v)
#define sb_jp_jourmal_max_commit_age(sbp)
#define set_sb_jp_journal_max_commit_age(sbp,v)

#define sb_blocksize(sbp)
#define set_sb_blocksize(sbp,v)
#define sb_oid_maxsize(sbp)
#define set_sb_oid_maxsize(sbp,v)
#define sb_oid_cursize(sbp)
#define set_sb_oid_cursize(sbp,v)
#define sb_umount_state(sbp)
#define set_sb_umount_state(sbp,v)
#define sb_fs_state(sbp)
#define set_sb_fs_state(sbp,v)
#define sb_hash_function_code(sbp)
#define set_sb_hash_function_code(sbp,v)
#define sb_tree_height(sbp)
#define set_sb_tree_height(sbp,v)
#define sb_bmap_nr(sbp)
#define set_sb_bmap_nr(sbp,v)
#define sb_version(sbp)
#define set_sb_version(sbp,v)

#define sb_mnt_count(sbp)
#define set_sb_mnt_count(sbp, v)

#define sb_reserved_for_journal(sbp)
#define set_sb_reserved_for_journal(sbp,v)

/* LOGGING -- */

/*
 * These all interelate for performance.
 *
 * If the journal block count is smaller than n transactions, you lose speed.
 * I don't know what n is yet, I'm guessing 8-16.
 *
 * typical transaction size depends on the application, how often fsync is
 * called, and how many metadata blocks you dirty in a 30 second period.
 * The more small files (<16k) you use, the larger your transactions will
 * be.
 *
 * If your journal fills faster than dirty buffers get flushed to disk, it
 * must flush them before allowing the journal to wrap, which slows things
 * down.  If you need high speed meta data updates, the journal should be
 * big enough to prevent wrapping before dirty meta blocks get to disk.
 *
 * If the batch max is smaller than the transaction max, you'll waste space
 * at the end of the journal because journal_end sets the next transaction
 * to start at 0 if the next transaction has any chance of wrapping.
 *
 * The large the batch max age, the better the speed, and the more meta
 * data changes you'll lose after a crash.
 */

/* don't mess with these for a while */
/* we have a node size define somewhere in reiserfs_fs.h. -Hans */
#define JOURNAL_BLOCK_SIZE
#define JOURNAL_MAX_CNODE
#define JOURNAL_HASH_SIZE

/* number of copies of the bitmaps to have floating.  Must be >= 2 */
#define JOURNAL_NUM_BITMAPS

/*
 * One of these for every block in every transaction
 * Each one is in two hash tables.  First, a hash of the current transaction,
 * and after journal_end, a hash of all the in memory transactions.
 * next and prev are used by the current transaction (journal_hash).
 * hnext and hprev are used by journal_list_hash.  If a block is in more
 * than one transaction, the journal_list_hash links it in multiple times.
 * This allows flush_journal_list to remove just the cnode belonging to a
 * given transaction.
 */
struct reiserfs_journal_cnode {};

struct reiserfs_bitmap_node {};

struct reiserfs_list_bitmap {};

/*
 * one of these for each transaction.  The most important part here is the
 * j_realblock.  this list of cnodes is used to hash all the blocks in all
 * the commits, to mark all the real buffer heads dirty once all the commits
 * hit the disk, and to make sure every real block in a transaction is on
 * disk before allowing the log area to be overwritten
 */
struct reiserfs_journal_list {};

struct reiserfs_journal {};

enum journal_state_bits {};

/* ick.  magic string to find desc blocks in the journal */
#define JOURNAL_DESC_MAGIC

hashf_t;

struct reiserfs_bitmap_info {};

struct proc_dir_entry;

#if defined( CONFIG_PROC_FS ) && defined( CONFIG_REISERFS_PROC_INFO )
stat_cnt_t;
reiserfs_proc_info_data_t;
#else
typedef struct reiserfs_proc_info_data {
} reiserfs_proc_info_data_t;
#endif

/* Number of quota types we support */
#define REISERFS_MAXQUOTAS

/* reiserfs union of in-core super block data */
struct reiserfs_sb_info {};

/* Definitions of reiserfs on-disk properties: */
#define REISERFS_3_5
#define REISERFS_3_6
#define REISERFS_OLD_FORMAT

/* Mount options */
enum reiserfs_mount_options {};

#define reiserfs_r5_hash(s)
#define reiserfs_rupasov_hash(s)
#define reiserfs_tea_hash(s)
#define reiserfs_hash_detect(s)
#define reiserfs_no_border(s)
#define reiserfs_no_unhashed_relocation(s)
#define reiserfs_hashed_relocation(s)
#define reiserfs_test4(s)

#define have_large_tails(s)
#define have_small_tails(s)
#define replay_only(s)
#define reiserfs_attrs(s)
#define old_format_only(s)
#define convert_reiserfs(s)
#define reiserfs_data_log(s)
#define reiserfs_data_ordered(s)
#define reiserfs_data_writeback(s)
#define reiserfs_xattrs_user(s)
#define reiserfs_posixacl(s)
#define reiserfs_expose_privroot(s)
#define reiserfs_xattrs_optional(s)
#define reiserfs_barrier_none(s)
#define reiserfs_barrier_flush(s)

#define reiserfs_error_panic(s)
#define reiserfs_error_ro(s)

void reiserfs_file_buffer(struct buffer_head *bh, int list);
extern struct file_system_type reiserfs_fs_type;
int reiserfs_resize(struct super_block *, unsigned long);

#define CARRY_ON
#define SCHEDULE_OCCURRED

#define SB_BUFFER_WITH_SB(s)
#define SB_JOURNAL(s)
#define SB_JOURNAL_1st_RESERVED_BLOCK(s)
#define SB_JOURNAL_LEN_FREE(s)
#define SB_AP_BITMAP(s)

#define SB_DISK_JOURNAL_HEAD(s)

#define reiserfs_is_journal_aborted(journal)
static inline int __reiserfs_is_journal_aborted(struct reiserfs_journal
						*journal)
{}

/*
 * Locking primitives. The write lock is a per superblock
 * special mutex that has properties close to the Big Kernel Lock
 * which was used in the previous locking scheme.
 */
void reiserfs_write_lock(struct super_block *s);
void reiserfs_write_unlock(struct super_block *s);
int __must_check reiserfs_write_unlock_nested(struct super_block *s);
void reiserfs_write_lock_nested(struct super_block *s, int depth);

#ifdef CONFIG_REISERFS_CHECK
void reiserfs_lock_check_recursive(struct super_block *s);
#else
static inline void reiserfs_lock_check_recursive(struct super_block *s) { }
#endif

/*
 * Several mutexes depend on the write lock.
 * However sometimes we want to relax the write lock while we hold
 * these mutexes, according to the release/reacquire on schedule()
 * properties of the Bkl that were used.
 * Reiserfs performances and locking were based on this scheme.
 * Now that the write lock is a mutex and not the bkl anymore, doing so
 * may result in a deadlock:
 *
 * A acquire write_lock
 * A acquire j_commit_mutex
 * A release write_lock and wait for something
 * B acquire write_lock
 * B can't acquire j_commit_mutex and sleep
 * A can't acquire write lock anymore
 * deadlock
 *
 * What we do here is avoiding such deadlock by playing the same game
 * than the Bkl: if we can't acquire a mutex that depends on the write lock,
 * we release the write lock, wait a bit and then retry.
 *
 * The mutexes concerned by this hack are:
 * - The commit mutex of a journal list
 * - The flush mutex
 * - The journal lock
 * - The inode mutex
 */
static inline void reiserfs_mutex_lock_safe(struct mutex *m,
					    struct super_block *s)
{}

static inline void
reiserfs_mutex_lock_nested_safe(struct mutex *m, unsigned int subclass,
				struct super_block *s)
{}

static inline void
reiserfs_down_read_safe(struct rw_semaphore *sem, struct super_block *s)
{}

/*
 * When we schedule, we usually want to also release the write lock,
 * according to the previous bkl based locking scheme of reiserfs.
 */
static inline void reiserfs_cond_resched(struct super_block *s)
{}

struct fid;

/*
 * in reading the #defines, it may help to understand that they employ
 *  the following abbreviations:
 *
 *  B = Buffer
 *  I = Item header
 *  H = Height within the tree (should be changed to LEV)
 *  N = Number of the item in the node
 *  STAT = stat data
 *  DEH = Directory Entry Header
 *  EC = Entry Count
 *  E = Entry number
 *  UL = Unsigned Long
 *  BLKH = BLocK Header
 *  UNFM = UNForMatted node
 *  DC = Disk Child
 *  P = Path
 *
 *  These #defines are named by concatenating these abbreviations,
 *  where first comes the arguments, and last comes the return value,
 *  of the macro.
 */

#define USE_INODE_GENERATION_COUNTER

#define REISERFS_PREALLOCATE
#define DISPLACE_NEW_PACKING_LOCALITIES
#define PREALLOCATION_SIZE

/* n must be power of 2 */
#define _ROUND_UP(x,n)

/*
 * to be ok for alpha and others we have to align structures to 8 byte
 * boundary.
 * FIXME: do not change 4 by anything else: there is code which relies on that
 */
#define ROUND_UP(x)

/*
 * debug levels.  Right now, CONFIG_REISERFS_CHECK means print all debug
 * messages.
 */
#define REISERFS_DEBUG_CODE

void __reiserfs_warning(struct super_block *s, const char *id,
			 const char *func, const char *fmt, ...);
#define reiserfs_warning(s, id, fmt, args...)
/* assertions handling */

/* always check a condition and panic if it's false. */
#define __RASSERT(cond, scond, format, args...)

#define RASSERT(cond, format, args...)

#if defined( CONFIG_REISERFS_CHECK )
#define RFALSE(cond, format, args...)
#else
#define RFALSE
#endif

#define CONSTF
/*
 * Disk Data Structures
 */

/***************************************************************************
 *                             SUPER BLOCK                                 *
 ***************************************************************************/

/*
 * Structure of super block on disk, a version of which in RAM is often
 * accessed as REISERFS_SB(s)->s_rs. The version in RAM is part of a larger
 * structure containing fields never written to disk.
 */
#define UNSET_HASH
#define TEA_HASH
#define YURA_HASH
#define R5_HASH
#define DEFAULT_HASH

struct journal_params {};

/* this is the super from 3.5.X, where X >= 10 */
struct reiserfs_super_block_v1 {} __attribute__ ((packed));

#define SB_SIZE_V1

/* this is the on disk super block */
struct reiserfs_super_block {} __attribute__ ((packed));

#define SB_SIZE

#define REISERFS_VERSION_1
#define REISERFS_VERSION_2

/* on-disk super block fields converted to cpu form */
#define SB_DISK_SUPER_BLOCK(s)
#define SB_V1_DISK_SUPER_BLOCK(s)
#define SB_BLOCKSIZE(s)
#define SB_BLOCK_COUNT(s)
#define SB_FREE_BLOCKS(s)
#define SB_REISERFS_MAGIC(s)
#define SB_ROOT_BLOCK(s)
#define SB_TREE_HEIGHT(s)
#define SB_REISERFS_STATE(s)
#define SB_VERSION(s)
#define SB_BMAP_NR(s)

#define PUT_SB_BLOCK_COUNT(s, val)
#define PUT_SB_FREE_BLOCKS(s, val)
#define PUT_SB_ROOT_BLOCK(s, val)
#define PUT_SB_TREE_HEIGHT(s, val)
#define PUT_SB_REISERFS_STATE(s, val)
#define PUT_SB_VERSION(s, val)
#define PUT_SB_BMAP_NR(s, val)

#define SB_ONDISK_JP(s)
#define SB_ONDISK_JOURNAL_SIZE(s)
#define SB_ONDISK_JOURNAL_1st_BLOCK(s)
#define SB_ONDISK_JOURNAL_DEVICE(s)
#define SB_ONDISK_RESERVED_FOR_JOURNAL(s)

#define is_block_in_log_or_reserved_area(s, block)

int is_reiserfs_3_5(struct reiserfs_super_block *rs);
int is_reiserfs_3_6(struct reiserfs_super_block *rs);
int is_reiserfs_jr(struct reiserfs_super_block *rs);

/*
 * ReiserFS leaves the first 64k unused, so that partition labels have
 * enough space.  If someone wants to write a fancy bootloader that
 * needs more than 64k, let us know, and this will be increased in size.
 * This number must be larger than the largest block size on any
 * platform, or code will break.  -Hans
 */
#define REISERFS_DISK_OFFSET_IN_BYTES
#define REISERFS_FIRST_BLOCK
#define REISERFS_JOURNAL_OFFSET_IN_BYTES

/* the spot for the super in versions 3.5 - 3.5.10 (inclusive) */
#define REISERFS_OLD_DISK_OFFSET_IN_BYTES

/* reiserfs internal error code (used by search_by_key and fix_nodes)) */
#define CARRY_ON
#define REPEAT_SEARCH
#define IO_ERROR
#define NO_DISK_SPACE
#define NO_BALANCING_NEEDED
#define NO_MORE_UNUSED_CONTIGUOUS_BLOCKS
#define QUOTA_EXCEEDED

b_blocknr_t;
unp_t;

struct unfm_nodeinfo {};

/* there are two formats of keys: 3.5 and 3.6 */
#define KEY_FORMAT_3_5
#define KEY_FORMAT_3_6

/* there are two stat datas */
#define STAT_DATA_V1
#define STAT_DATA_V2

static inline struct reiserfs_inode_info *REISERFS_I(const struct inode *inode)
{}

static inline struct reiserfs_sb_info *REISERFS_SB(const struct super_block *sb)
{}

/*
 * Don't trust REISERFS_SB(sb)->s_bmap_nr, it's a u16
 * which overflows on large file systems.
 */
static inline __u32 reiserfs_bmap_count(struct super_block *sb)
{}

static inline int bmap_would_wrap(unsigned bmap_nr)
{}

extern const struct xattr_handler * const reiserfs_xattr_handlers[];

/*
 * this says about version of key of all items (but stat data) the
 * object consists of
 */
#define get_inode_item_key_version( inode )

#define set_inode_item_key_version( inode, version )

#define get_inode_sd_version(inode)

#define set_inode_sd_version(inode, version)

/*
 * This is an aggressive tail suppression policy, I am hoping it
 * improves our benchmarks. The principle behind it is that percentage
 * space saving is what matters, not absolute space saving.  This is
 * non-intuitive, but it helps to understand it if you consider that the
 * cost to access 4 blocks is not much more than the cost to access 1
 * block, if you have to do a seek and rotate.  A tail risks a
 * non-linear disk access that is significant as a percentage of total
 * time cost for a 4 block file and saves an amount of space that is
 * less significant as a percentage of space, or so goes the hypothesis.
 * -Hans
 */
#define STORE_TAIL_IN_UNFM_S1(n_file_size,n_tail_size,n_block_size)

/*
 * Another strategy for tails, this one means only create a tail if all the
 * file would fit into one DIRECT item.
 * Primary intention for this one is to increase performance by decreasing
 * seeking.
*/
#define STORE_TAIL_IN_UNFM_S2(n_file_size,n_tail_size,n_block_size)

/*
 * values for s_umount_state field
 */
#define REISERFS_VALID_FS
#define REISERFS_ERROR_FS

/*
 * there are 5 item types currently
 */
#define TYPE_STAT_DATA
#define TYPE_INDIRECT
#define TYPE_DIRECT
#define TYPE_DIRENTRY
#define TYPE_MAXTYPE
#define TYPE_ANY

/***************************************************************************
 *                       KEY & ITEM HEAD                                   *
 ***************************************************************************/

/* * directories use this key as well as old files */
struct offset_v1 {} __attribute__ ((packed));

struct offset_v2 {} __attribute__ ((packed));

static inline __u16 offset_v2_k_type(const struct offset_v2 *v2)
{}

static inline void set_offset_v2_k_type(struct offset_v2 *v2, int type)
{}

static inline loff_t offset_v2_k_offset(const struct offset_v2 *v2)
{}

static inline void set_offset_v2_k_offset(struct offset_v2 *v2, loff_t offset)
{}

/*
 * Key of an item determines its location in the S+tree, and
 * is composed of 4 components
 */
struct reiserfs_key {} __attribute__ ((packed));

struct in_core_key {};

struct cpu_key {};

/*
 * Our function for comparing keys can compare keys of different
 * lengths.  It takes as a parameter the length of the keys it is to
 * compare.  These defines are used in determining what is to be passed
 * to it as that parameter.
 */
#define REISERFS_FULL_KEY_LEN
#define REISERFS_SHORT_KEY_LEN

/* The result of the key compare */
#define FIRST_GREATER
#define SECOND_GREATER
#define KEYS_IDENTICAL
#define KEY_FOUND
#define KEY_NOT_FOUND

#define KEY_SIZE

/* return values for search_by_key and clones */
#define ITEM_FOUND
#define ITEM_NOT_FOUND
#define ENTRY_FOUND
#define ENTRY_NOT_FOUND
#define DIRECTORY_NOT_FOUND
#define REGULAR_FILE_FOUND
#define DIRECTORY_FOUND
#define BYTE_FOUND
#define BYTE_NOT_FOUND
#define FILE_NOT_FOUND

#define POSITION_FOUND
#define POSITION_NOT_FOUND

/* return values for reiserfs_find_entry and search_by_entry_key */
#define NAME_FOUND
#define NAME_NOT_FOUND
#define GOTO_PREVIOUS_ITEM
#define NAME_FOUND_INVISIBLE

/*
 * Everything in the filesystem is stored as a set of items.  The
 * item head contains the key of the item, its free space (for
 * indirect items) and specifies the location of the item itself
 * within the block.
 */

struct item_head {} __attribute__ ((packed));
/* size of item header     */
#define IH_SIZE

#define ih_free_space(ih)
#define ih_version(ih)
#define ih_entry_count(ih)
#define ih_location(ih)
#define ih_item_len(ih)

#define put_ih_free_space(ih, val)
#define put_ih_version(ih, val)
#define put_ih_entry_count(ih, val)
#define put_ih_location(ih, val)
#define put_ih_item_len(ih, val)

#define unreachable_item(ih)

#define get_ih_free_space(ih)
#define set_ih_free_space(ih,val)

/*
 * these operate on indirect items, where you've got an array of ints
 * at a possibly unaligned location.  These are a noop on ia32
 *
 * p is the array of __u32, i is the index into the array, v is the value
 * to store there.
 */
#define get_block_num(p, i)
#define put_block_num(p, i, v)

/* * in old version uniqueness field shows key type */
#define V1_SD_UNIQUENESS
#define V1_INDIRECT_UNIQUENESS
#define V1_DIRECT_UNIQUENESS
#define V1_DIRENTRY_UNIQUENESS
#define V1_ANY_UNIQUENESS

/* here are conversion routines */
static inline int uniqueness2type(__u32 uniqueness) CONSTF;
static inline int uniqueness2type(__u32 uniqueness)
{}

static inline __u32 type2uniqueness(int type) CONSTF;
static inline __u32 type2uniqueness(int type)
{}

/*
 * key is pointer to on disk key which is stored in le, result is cpu,
 * there is no way to get version of object from key, so, provide
 * version to these defines
 */
static inline loff_t le_key_k_offset(int version,
				     const struct reiserfs_key *key)
{}

static inline loff_t le_ih_k_offset(const struct item_head *ih)
{}

static inline loff_t le_key_k_type(int version, const struct reiserfs_key *key)
{}

static inline loff_t le_ih_k_type(const struct item_head *ih)
{}

static inline void set_le_key_k_offset(int version, struct reiserfs_key *key,
				       loff_t offset)
{}

static inline void add_le_key_k_offset(int version, struct reiserfs_key *key,
				       loff_t offset)
{}

static inline void add_le_ih_k_offset(struct item_head *ih, loff_t offset)
{}

static inline void set_le_ih_k_offset(struct item_head *ih, loff_t offset)
{}

static inline void set_le_key_k_type(int version, struct reiserfs_key *key,
				     int type)
{}

static inline void set_le_ih_k_type(struct item_head *ih, int type)
{}

static inline int is_direntry_le_key(int version, struct reiserfs_key *key)
{}

static inline int is_direct_le_key(int version, struct reiserfs_key *key)
{}

static inline int is_indirect_le_key(int version, struct reiserfs_key *key)
{}

static inline int is_statdata_le_key(int version, struct reiserfs_key *key)
{}

/* item header has version.  */
static inline int is_direntry_le_ih(struct item_head *ih)
{}

static inline int is_direct_le_ih(struct item_head *ih)
{}

static inline int is_indirect_le_ih(struct item_head *ih)
{}

static inline int is_statdata_le_ih(struct item_head *ih)
{}

/* key is pointer to cpu key, result is cpu */
static inline loff_t cpu_key_k_offset(const struct cpu_key *key)
{}

static inline loff_t cpu_key_k_type(const struct cpu_key *key)
{}

static inline void set_cpu_key_k_offset(struct cpu_key *key, loff_t offset)
{}

static inline void set_cpu_key_k_type(struct cpu_key *key, int type)
{}

static inline void cpu_key_k_offset_dec(struct cpu_key *key)
{}

#define is_direntry_cpu_key(key)
#define is_direct_cpu_key(key)
#define is_indirect_cpu_key(key)
#define is_statdata_cpu_key(key)

/* are these used ? */
#define is_direntry_cpu_ih(ih)
#define is_direct_cpu_ih(ih)
#define is_indirect_cpu_ih(ih)
#define is_statdata_cpu_ih(ih)

#define I_K_KEY_IN_ITEM(ih, key, n_blocksize)

/* maximal length of item */
#define MAX_ITEM_LEN(block_size)
#define MIN_ITEM_LEN

/* object identifier for root dir */
#define REISERFS_ROOT_OBJECTID
#define REISERFS_ROOT_PARENT_OBJECTID

extern struct reiserfs_key root_key;

/*
 * Picture represents a leaf of the S+tree
 *  ______________________________________________________
 * |      |  Array of     |                   |           |
 * |Block |  Object-Item  |      F r e e      |  Objects- |
 * | head |  Headers      |     S p a c e     |   Items   |
 * |______|_______________|___________________|___________|
 */

/*
 * Header of a disk block.  More precisely, header of a formatted leaf
 * or internal node, and not the header of an unformatted node.
 */
struct block_head {};

#define BLKH_SIZE
#define blkh_level(p_blkh)
#define blkh_nr_item(p_blkh)
#define blkh_free_space(p_blkh)
#define blkh_reserved(p_blkh)
#define set_blkh_level(p_blkh,val)
#define set_blkh_nr_item(p_blkh,val)
#define set_blkh_free_space(p_blkh,val)
#define set_blkh_reserved(p_blkh,val)
#define blkh_right_delim_key(p_blkh)
#define set_blkh_right_delim_key(p_blkh,val)

/* values for blk_level field of the struct block_head */

/*
 * When node gets removed from the tree its blk_level is set to FREE_LEVEL.
 * It is then  used to see whether the node is still in the tree
 */
#define FREE_LEVEL

#define DISK_LEAF_NODE_LEVEL

/*
 * Given the buffer head of a formatted node, resolve to the
 * block head of that node.
 */
#define B_BLK_HEAD(bh)
/* Number of items that are in buffer. */
#define B_NR_ITEMS(bh)
#define B_LEVEL(bh)
#define B_FREE_SPACE(bh)

#define PUT_B_NR_ITEMS(bh, val)
#define PUT_B_LEVEL(bh, val)
#define PUT_B_FREE_SPACE(bh, val)

/* Get right delimiting key. -- little endian */
#define B_PRIGHT_DELIM_KEY(bh)

/* Does the buffer contain a disk leaf. */
#define B_IS_ITEMS_LEVEL(bh)

/* Does the buffer contain a disk internal node */
#define B_IS_KEYS_LEVEL(bh)

/***************************************************************************
 *                             STAT DATA                                   *
 ***************************************************************************/

/*
 * old stat data is 32 bytes long. We are going to distinguish new one by
 * different size
*/
struct stat_data_v1 {} __attribute__ ((packed));

#define SD_V1_SIZE
#define stat_data_v1(ih)
#define sd_v1_mode(sdp)
#define set_sd_v1_mode(sdp,v)
#define sd_v1_nlink(sdp)
#define set_sd_v1_nlink(sdp,v)
#define sd_v1_uid(sdp)
#define set_sd_v1_uid(sdp,v)
#define sd_v1_gid(sdp)
#define set_sd_v1_gid(sdp,v)
#define sd_v1_size(sdp)
#define set_sd_v1_size(sdp,v)
#define sd_v1_atime(sdp)
#define set_sd_v1_atime(sdp,v)
#define sd_v1_mtime(sdp)
#define set_sd_v1_mtime(sdp,v)
#define sd_v1_ctime(sdp)
#define set_sd_v1_ctime(sdp,v)
#define sd_v1_rdev(sdp)
#define set_sd_v1_rdev(sdp,v)
#define sd_v1_blocks(sdp)
#define set_sd_v1_blocks(sdp,v)
#define sd_v1_first_direct_byte(sdp)
#define set_sd_v1_first_direct_byte(sdp,v)

/* inode flags stored in sd_attrs (nee sd_reserved) */

/*
 * we want common flags to have the same values as in ext2,
 * so chattr(1) will work without problems
 */
#define REISERFS_IMMUTABLE_FL
#define REISERFS_APPEND_FL
#define REISERFS_SYNC_FL
#define REISERFS_NOATIME_FL
#define REISERFS_NODUMP_FL
#define REISERFS_SECRM_FL
#define REISERFS_UNRM_FL
#define REISERFS_COMPR_FL
#define REISERFS_NOTAIL_FL

/* persistent flags that file inherits from the parent directory */
#define REISERFS_INHERIT_MASK

/*
 * Stat Data on disk (reiserfs version of UFS disk inode minus the
 * address blocks)
 */
struct stat_data {} __attribute__ ((packed));

/* this is 44 bytes long */
#define SD_SIZE
#define SD_V2_SIZE
#define stat_data_v2(ih)
#define sd_v2_mode(sdp)
#define set_sd_v2_mode(sdp,v)
/* sd_reserved */
/* set_sd_reserved */
#define sd_v2_nlink(sdp)
#define set_sd_v2_nlink(sdp,v)
#define sd_v2_size(sdp)
#define set_sd_v2_size(sdp,v)
#define sd_v2_uid(sdp)
#define set_sd_v2_uid(sdp,v)
#define sd_v2_gid(sdp)
#define set_sd_v2_gid(sdp,v)
#define sd_v2_atime(sdp)
#define set_sd_v2_atime(sdp,v)
#define sd_v2_mtime(sdp)
#define set_sd_v2_mtime(sdp,v)
#define sd_v2_ctime(sdp)
#define set_sd_v2_ctime(sdp,v)
#define sd_v2_blocks(sdp)
#define set_sd_v2_blocks(sdp,v)
#define sd_v2_rdev(sdp)
#define set_sd_v2_rdev(sdp,v)
#define sd_v2_generation(sdp)
#define set_sd_v2_generation(sdp,v)
#define sd_v2_attrs(sdp)
#define set_sd_v2_attrs(sdp,v)

/***************************************************************************
 *                      DIRECTORY STRUCTURE                                *
 ***************************************************************************/
/*
 * Picture represents the structure of directory items
 * ________________________________________________
 * |  Array of     |   |     |        |       |   |
 * | directory     |N-1| N-2 | ....   |   1st |0th|
 * | entry headers |   |     |        |       |   |
 * |_______________|___|_____|________|_______|___|
 *                  <----   directory entries         ------>
 *
 * First directory item has k_offset component 1. We store "." and ".."
 * in one item, always, we never split "." and ".." into differing
 * items.  This makes, among other things, the code for removing
 * directories simpler.
 */
#define SD_OFFSET
#define SD_UNIQUENESS
#define DOT_OFFSET
#define DOT_DOT_OFFSET
#define DIRENTRY_UNIQUENESS

#define FIRST_ITEM_OFFSET

/*
 * Q: How to get key of object pointed to by entry from entry?
 *
 * A: Each directory entry has its header. This header has deh_dir_id
 *    and deh_objectid fields, those are key of object, entry points to
 */

/*
 * NOT IMPLEMENTED:
 * Directory will someday contain stat data of object
 */

struct reiserfs_de_head {} __attribute__ ((packed));
#define DEH_SIZE
#define deh_offset(p_deh)
#define deh_dir_id(p_deh)
#define deh_objectid(p_deh)
#define deh_location(p_deh)
#define deh_state(p_deh)

#define put_deh_offset(p_deh,v)
#define put_deh_dir_id(p_deh,v)
#define put_deh_objectid(p_deh,v)
#define put_deh_location(p_deh,v)
#define put_deh_state(p_deh,v)

/* empty directory contains two entries "." and ".." and their headers */
#define EMPTY_DIR_SIZE

/* old format directories have this size when empty */
#define EMPTY_DIR_SIZE_V1

#define DEH_Statdata
#define DEH_Visible

/* 64 bit systems (and the S/390) need to be aligned explicitly -jdm */
#if BITS_PER_LONG == 64 || defined(__s390__) || defined(__hppa__)
#define ADDR_UNALIGNED_BITS
#endif

/*
 * These are only used to manipulate deh_state.
 * Because of this, we'll use the ext2_ bit routines,
 * since they are little endian
 */
#ifdef ADDR_UNALIGNED_BITS

#define aligned_address(addr)
#define unaligned_offset(addr)

#define set_bit_unaligned(nr, addr)
#define clear_bit_unaligned(nr, addr)
#define test_bit_unaligned(nr, addr)

#else

#define set_bit_unaligned
#define clear_bit_unaligned
#define test_bit_unaligned

#endif

#define mark_de_with_sd(deh)
#define mark_de_without_sd(deh)
#define mark_de_visible(deh)
#define mark_de_hidden(deh)

#define de_with_sd(deh)
#define de_visible(deh)
#define de_hidden(deh)

extern void make_empty_dir_item_v1(char *body, __le32 dirid, __le32 objid,
				   __le32 par_dirid, __le32 par_objid);
extern void make_empty_dir_item(char *body, __le32 dirid, __le32 objid,
				__le32 par_dirid, __le32 par_objid);

/* two entries per block (at least) */
#define REISERFS_MAX_NAME(block_size)

/*
 * this structure is used for operations on directory entries. It is
 * not a disk structure.
 *
 * When reiserfs_find_entry or search_by_entry_key find directory
 * entry, they return filled reiserfs_dir_entry structure
 */
struct reiserfs_dir_entry {};

/*
 * these defines are useful when a particular member of
 * a reiserfs_dir_entry is needed
 */

/* pointer to file name, stored in entry */
#define B_I_DEH_ENTRY_FILE_NAME(bh, ih, deh)

/* length of name */
#define I_DEH_N_ENTRY_FILE_NAME_LENGTH(ih,deh,entry_num)

/* hash value occupies bits from 7 up to 30 */
#define GET_HASH_VALUE(offset)
/* generation number occupies 7 bits starting from 0 up to 6 */
#define GET_GENERATION_NUMBER(offset)
#define MAX_GENERATION_NUMBER

#define SET_GENERATION_NUMBER(offset,gen_number)

/*
 * Picture represents an internal node of the reiserfs tree
 *  ______________________________________________________
 * |      |  Array of     |  Array of         |  Free     |
 * |block |    keys       |  pointers         | space     |
 * | head |      N        |      N+1          |           |
 * |______|_______________|___________________|___________|
 */

/***************************************************************************
 *                      DISK CHILD                                         *
 ***************************************************************************/
/*
 * Disk child pointer:
 * The pointer from an internal node of the tree to a node that is on disk.
 */
struct disk_child {};

#define DC_SIZE
#define dc_block_number(dc_p)
#define dc_size(dc_p)
#define put_dc_block_number(dc_p, val)
#define put_dc_size(dc_p, val)

/* Get disk child by buffer header and position in the tree node. */
#define B_N_CHILD(bh, n_pos)

/* Get disk child number by buffer header and position in the tree node. */
#define B_N_CHILD_NUM(bh, n_pos)
#define PUT_B_N_CHILD_NUM(bh, n_pos, val)

 /* maximal value of field child_size in structure disk_child */
 /* child size is the combined size of all items and their headers */
#define MAX_CHILD_SIZE(bh)

/* amount of used space in buffer (not including block head) */
#define B_CHILD_SIZE(cur)

/* max and min number of keys in internal node */
#define MAX_NR_KEY(bh)
#define MIN_NR_KEY(bh)

/***************************************************************************
 *                      PATH STRUCTURES AND DEFINES                        *
 ***************************************************************************/

/*
 * search_by_key fills up the path from the root to the leaf as it descends
 * the tree looking for the key.  It uses reiserfs_bread to try to find
 * buffers in the cache given their block number.  If it does not find
 * them in the cache it reads them from disk.  For each node search_by_key
 * finds using reiserfs_bread it then uses bin_search to look through that
 * node.  bin_search will find the position of the block_number of the next
 * node if it is looking through an internal node.  If it is looking through
 * a leaf node bin_search will find the position of the item which has key
 * either equal to given key, or which is the maximal key less than the
 * given key.
 */

struct path_element {};

/*
 * maximal height of a tree. don't change this without
 * changing JOURNAL_PER_BALANCE_CNT
 */
#define MAX_HEIGHT

/* Must be equals MAX_HEIGHT + FIRST_PATH_ELEMENT_OFFSET */
#define EXTENDED_MAX_HEIGHT

/* Must be equal to at least 2. */
#define FIRST_PATH_ELEMENT_OFFSET

/* Must be equal to FIRST_PATH_ELEMENT_OFFSET - 1 */
#define ILLEGAL_PATH_ELEMENT_OFFSET

/* this MUST be MAX_HEIGHT + 1. See about FEB below */
#define MAX_FEB_SIZE

/*
 * We need to keep track of who the ancestors of nodes are.  When we
 * perform a search we record which nodes were visited while
 * descending the tree looking for the node we searched for. This list
 * of nodes is called the path.  This information is used while
 * performing balancing.  Note that this path information may become
 * invalid, and this means we must check it when using it to see if it
 * is still valid. You'll need to read search_by_key and the comments
 * in it, especially about decrement_counters_in_path(), to understand
 * this structure.
 *
 * Paths make the code so much harder to work with and debug.... An
 * enormous number of bugs are due to them, and trying to write or modify
 * code that uses them just makes my head hurt.  They are based on an
 * excessive effort to avoid disturbing the precious VFS code.:-( The
 * gods only know how we are going to SMP the code that uses them.
 * znodes are the way!
 */

#define PATH_READA
#define PATH_READA_BACK

struct treepath {};

#define pos_in_item(path)

#define INITIALIZE_PATH(var)

/* Get path element by path and path position. */
#define PATH_OFFSET_PELEMENT(path, n_offset)

/* Get buffer header at the path by path and path position. */
#define PATH_OFFSET_PBUFFER(path, n_offset)

/* Get position in the element at the path by path and path position. */
#define PATH_OFFSET_POSITION(path, n_offset)

#define PATH_PLAST_BUFFER(path)

/*
 * you know, to the person who didn't write this the macro name does not
 * at first suggest what it does.  Maybe POSITION_FROM_PATH_END? Or
 * maybe we should just focus on dumping paths... -Hans
 */
#define PATH_LAST_POSITION(path)

/*
 * in do_balance leaf has h == 0 in contrast with path structure,
 * where root has level == 0. That is why we need these defines
 */

/* tb->S[h] */
#define PATH_H_PBUFFER(path, h)

/* tb->F[h] or tb->S[0]->b_parent */
#define PATH_H_PPARENT(path, h)

#define PATH_H_POSITION(path, h)

/* tb->S[h]->b_item_order */
#define PATH_H_B_ITEM_ORDER(path, h)

#define PATH_H_PATH_OFFSET(path, n_h)

static inline void *reiserfs_node_data(const struct buffer_head *bh)
{}

/* get key from internal node */
static inline struct reiserfs_key *internal_key(struct buffer_head *bh,
						int item_num)
{}

/* get the item header from leaf node */
static inline struct item_head *item_head(const struct buffer_head *bh,
					  int item_num)
{}

/* get the key from leaf node */
static inline struct reiserfs_key *leaf_key(const struct buffer_head *bh,
					    int item_num)
{}

static inline void *ih_item_body(const struct buffer_head *bh,
				 const struct item_head *ih)
{}

/* get item body from leaf node */
static inline void *item_body(const struct buffer_head *bh, int item_num)
{}

static inline struct item_head *tp_item_head(const struct treepath *path)
{}

static inline void *tp_item_body(const struct treepath *path)
{}

#define get_last_bh(path)
#define get_item_pos(path)
#define item_moved(ih,path)
#define path_changed(ih,path)

/* array of the entry headers */
 /* get item body */
#define B_I_DEH(bh, ih)

/*
 * length of the directory entry in directory item. This define
 * calculates length of i-th directory entry using directory entry
 * locations from dir entry head. When it calculates length of 0-th
 * directory entry, it uses length of whole item in place of entry
 * location of the non-existent following entry in the calculation.
 * See picture above.
 */
static inline int entry_length(const struct buffer_head *bh,
			       const struct item_head *ih, int pos_in_item)
{}

/***************************************************************************
 *                       MISC                                              *
 ***************************************************************************/

/* Size of pointer to the unformatted node. */
#define UNFM_P_SIZE
#define UNFM_P_SHIFT

/* in in-core inode key is stored on le form */
#define INODE_PKEY(inode)

#define MAX_UL_INT
#define MAX_INT
#define MAX_US_INT

// reiserfs version 2 has max offset 60 bits. Version 1 - 32 bit offset
static inline loff_t max_reiserfs_offset(struct inode *inode)
{}

#define MAX_KEY_OBJECTID

#define MAX_B_NUM
#define MAX_FC_NUM

/* the purpose is to detect overflow of an unsigned short */
#define REISERFS_LINK_MAX

/*
 * The following defines are used in reiserfs_insert_item
 * and reiserfs_append_item
 */
#define REISERFS_KERNEL_MEM
#define REISERFS_USER_MEM

#define fs_generation(s)
#define get_generation(s)
#define FILESYSTEM_CHANGED_TB(tb)
#define __fs_changed(gen,s)
#define fs_changed(gen,s)

/***************************************************************************
 *                  FIXATE NODES                                           *
 ***************************************************************************/

#define VI_TYPE_LEFT_MERGEABLE
#define VI_TYPE_RIGHT_MERGEABLE

/*
 * To make any changes in the tree we always first find node, that
 * contains item to be changed/deleted or place to insert a new
 * item. We call this node S. To do balancing we need to decide what
 * we will shift to left/right neighbor, or to a new node, where new
 * item will be etc. To make this analysis simpler we build virtual
 * node. Virtual node is an array of items, that will replace items of
 * node S. (For instance if we are going to delete an item, virtual
 * node does not contain it). Virtual node keeps information about
 * item sizes and types, mergeability of first and last items, sizes
 * of all entries in directory item. We use this array of items when
 * calculating what we can shift to neighbors and how many nodes we
 * have to have if we do not any shiftings, if we shift to left/right
 * neighbor or to both.
 */
struct virtual_item {};

struct virtual_node {};

/* used by directory items when creating virtual nodes */
struct direntry_uarea {} __attribute__ ((packed));

/***************************************************************************
 *                  TREE BALANCE                                           *
 ***************************************************************************/

/*
 * This temporary structure is used in tree balance algorithms, and
 * constructed as we go to the extent that its various parts are
 * needed.  It contains arrays of nodes that can potentially be
 * involved in the balancing of node S, and parameters that define how
 * each of the nodes must be balanced.  Note that in these algorithms
 * for balancing the worst case is to need to balance the current node
 * S and the left and right neighbors and all of their parents plus
 * create a new node.  We implement S1 balancing for the leaf nodes
 * and S0 balancing for the internal nodes (S1 and S0 are defined in
 * our papers.)
 */

/* size of the array of buffers to free at end of do_balance */
#define MAX_FREE_BLOCK

/* maximum number of FEB blocknrs on a single level */
#define MAX_AMOUNT_NEEDED

/* someday somebody will prefix every field in this struct with tb_ */
struct tree_balance {};

/* These are modes of balancing */

/* When inserting an item. */
#define M_INSERT
/*
 * When inserting into (directories only) or appending onto an already
 * existent item.
 */
#define M_PASTE
/* When deleting an item. */
#define M_DELETE
/* When truncating an item or removing an entry from a (directory) item. */
#define M_CUT

/* used when balancing on leaf level skipped (in reiserfsck) */
#define M_INTERNAL

/*
 * When further balancing is not needed, then do_balance does not need
 * to be called.
 */
#define M_SKIP_BALANCING
#define M_CONVERT

/* modes of leaf_move_items */
#define LEAF_FROM_S_TO_L
#define LEAF_FROM_S_TO_R
#define LEAF_FROM_R_TO_L
#define LEAF_FROM_L_TO_R
#define LEAF_FROM_S_TO_SNEW

#define FIRST_TO_LAST
#define LAST_TO_FIRST

/*
 * used in do_balance for passing parent of node information that has
 * been gotten from tb struct
 */
struct buffer_info {};

static inline struct super_block *sb_from_tb(struct tree_balance *tb)
{}

static inline struct super_block *sb_from_bi(struct buffer_info *bi)
{}

/*
 * there are 4 types of items: stat data, directory item, indirect, direct.
 * +-------------------+------------+--------------+------------+
 * |                   |  k_offset  | k_uniqueness | mergeable? |
 * +-------------------+------------+--------------+------------+
 * |     stat data     |     0      |      0       |   no       |
 * +-------------------+------------+--------------+------------+
 * | 1st directory item| DOT_OFFSET | DIRENTRY_ .. |   no       |
 * | non 1st directory | hash value | UNIQUENESS   |   yes      |
 * |     item          |            |              |            |
 * +-------------------+------------+--------------+------------+
 * | indirect item     | offset + 1 |TYPE_INDIRECT |    [1]	|
 * +-------------------+------------+--------------+------------+
 * | direct item       | offset + 1 |TYPE_DIRECT   |    [2]     |
 * +-------------------+------------+--------------+------------+
 *
 * [1] if this is not the first indirect item of the object
 * [2] if this is not the first direct item of the object
*/

struct item_operations {};

extern struct item_operations *item_ops[TYPE_ANY + 1];

#define op_bytes_number(ih,bsize)
#define op_is_left_mergeable(key,bsize)
#define op_print_item(ih,item)
#define op_check_item(ih,item)
#define op_create_vi(vn,vi,is_affected,insert_size)
#define op_check_left(vi,free,start_skip,end_skip)
#define op_check_right(vi,free)
#define op_part_size(vi,from,to)
#define op_unit_num(vi)
#define op_print_vi(vi)

#define COMP_SHORT_KEYS

/* number of blocks pointed to by the indirect item */
#define I_UNFM_NUM(ih)

/*
 * the used space within the unformatted node corresponding
 * to pos within the item pointed to by ih
 */
#define I_POS_UNFM_SIZE(ih,pos,size)

/*
 * number of bytes contained by the direct item or the
 * unformatted nodes the indirect item points to
 */

/* following defines use reiserfs buffer header and item header */

/* get stat-data */
#define B_I_STAT_DATA(bh, ih)

/* this is 3976 for size==4096 */
#define MAX_DIRECT_ITEM_LEN(size)

/*
 * indirect items consist of entries which contain blocknrs, pos
 * indicates which entry, and B_I_POS_UNFM_POINTER resolves to the
 * blocknr contained by the entry pos points to
 */
#define B_I_POS_UNFM_POINTER(bh, ih, pos)
#define PUT_B_I_POS_UNFM_POINTER(bh, ih, pos, val)

struct reiserfs_iget_args {};

/***************************************************************************
 *                    FUNCTION DECLARATIONS                                *
 ***************************************************************************/

#define get_journal_desc_magic(bh)

#define journal_trans_half(blocksize)

/* journal.c see journal.c for all the comments here */

/* first block written in a commit.  */
struct reiserfs_journal_desc {};

#define get_desc_trans_id(d)
#define get_desc_trans_len(d)
#define get_desc_mount_id(d)

#define set_desc_trans_id(d,val)
#define set_desc_trans_len(d,val)
#define set_desc_mount_id(d,val)

/* last block written in a commit */
struct reiserfs_journal_commit {};

#define get_commit_trans_id(c)
#define get_commit_trans_len(c)
#define get_commit_mount_id(c)

#define set_commit_trans_id(c,val)
#define set_commit_trans_len(c,val)

/*
 * this header block gets written whenever a transaction is considered
 * fully flushed, and is more recent than the last fully flushed transaction.
 * fully flushed means all the log blocks and all the real blocks are on
 * disk, and this transaction does not need to be replayed.
 */
struct reiserfs_journal_header {};

/* biggest tunable defines are right here */
#define JOURNAL_BLOCK_COUNT

/* biggest possible single transaction, don't change for now (8/3/99) */
#define JOURNAL_TRANS_MAX_DEFAULT
#define JOURNAL_TRANS_MIN_DEFAULT

/*
 * max blocks to batch into one transaction,
 * don't make this any bigger than 900
 */
#define JOURNAL_MAX_BATCH_DEFAULT
#define JOURNAL_MIN_RATIO
#define JOURNAL_MAX_COMMIT_AGE
#define JOURNAL_MAX_TRANS_AGE
#define JOURNAL_PER_BALANCE_CNT
#define JOURNAL_BLOCKS_PER_OBJECT(sb)

#ifdef CONFIG_QUOTA
#define REISERFS_QUOTA_OPTS
/* We need to update data and inode (atime) */
#define REISERFS_QUOTA_TRANS_BLOCKS(s)
/* 1 balancing, 1 bitmap, 1 data per write + stat data update */
#define REISERFS_QUOTA_INIT_BLOCKS(s)
/* same as with INIT */
#define REISERFS_QUOTA_DEL_BLOCKS(s)
#else
#define REISERFS_QUOTA_TRANS_BLOCKS
#define REISERFS_QUOTA_INIT_BLOCKS
#define REISERFS_QUOTA_DEL_BLOCKS
#endif

/*
 * both of these can be as low as 1, or as high as you want.  The min is the
 * number of 4k bitmap nodes preallocated on mount. New nodes are allocated
 * as needed, and released when transactions are committed.  On release, if
 * the current number of nodes is > max, the node is freed, otherwise,
 * it is put on a free list for faster use later.
*/
#define REISERFS_MIN_BITMAP_NODES
#define REISERFS_MAX_BITMAP_NODES

/* these are based on journal hash size of 8192 */
#define JBH_HASH_SHIFT
#define JBH_HASH_MASK

#define _jhashfn(sb,block)
#define journal_hash(t,sb,block)

/* We need these to make journal.c code more readable */
#define journal_find_get_block(s, block)
#define journal_getblk(s, block)
#define journal_bread(s, block)

enum reiserfs_bh_state_bits {};

BUFFER_FNS(JDirty, journaled);
TAS_BUFFER_FNS(JDirty, journaled);
BUFFER_FNS(JDirty_wait, journal_dirty);
TAS_BUFFER_FNS(JDirty_wait, journal_dirty);
BUFFER_FNS(JNew, journal_new);
TAS_BUFFER_FNS(JNew, journal_new);
BUFFER_FNS(JPrepared, journal_prepared);
TAS_BUFFER_FNS(JPrepared, journal_prepared);
BUFFER_FNS(JRestore_dirty, journal_restore_dirty);
TAS_BUFFER_FNS(JRestore_dirty, journal_restore_dirty);
BUFFER_FNS(JTest, journal_test);
TAS_BUFFER_FNS(JTest, journal_test);

/* transaction handle which is passed around for all journal calls */
struct reiserfs_transaction_handle {};

/*
 * used to keep track of ordered and tail writes, attached to the buffer
 * head through b_journal_head.
 */
struct reiserfs_jh {};

void reiserfs_free_jh(struct buffer_head *bh);
int reiserfs_add_tail_list(struct inode *inode, struct buffer_head *bh);
int reiserfs_add_ordered_list(struct inode *inode, struct buffer_head *bh);
int journal_mark_dirty(struct reiserfs_transaction_handle *,
		       struct buffer_head *bh);

static inline int reiserfs_file_data_log(struct inode *inode)
{}

static inline int reiserfs_transaction_running(struct super_block *s)
{}

static inline int reiserfs_transaction_free_space(struct reiserfs_transaction_handle *th)
{}

struct reiserfs_transaction_handle *reiserfs_persistent_transaction(struct
								    super_block
								    *,
								    int count);
int reiserfs_end_persistent_transaction(struct reiserfs_transaction_handle *);
void reiserfs_vfs_truncate_file(struct inode *inode);
int reiserfs_commit_page(struct inode *inode, struct page *page,
			 unsigned from, unsigned to);
void reiserfs_flush_old_commits(struct super_block *);
int reiserfs_commit_for_inode(struct inode *);
int reiserfs_inode_needs_commit(struct inode *);
void reiserfs_update_inode_transaction(struct inode *);
void reiserfs_wait_on_write_block(struct super_block *s);
void reiserfs_block_writes(struct reiserfs_transaction_handle *th);
void reiserfs_allow_writes(struct super_block *s);
void reiserfs_check_lock_depth(struct super_block *s, char *caller);
int reiserfs_prepare_for_journal(struct super_block *, struct buffer_head *bh,
				 int wait);
void reiserfs_restore_prepared_buffer(struct super_block *,
				      struct buffer_head *bh);
int journal_init(struct super_block *, const char *j_dev_name, int old_format,
		 unsigned int);
int journal_release(struct reiserfs_transaction_handle *, struct super_block *);
int journal_release_error(struct reiserfs_transaction_handle *,
			  struct super_block *);
int journal_end(struct reiserfs_transaction_handle *);
int journal_end_sync(struct reiserfs_transaction_handle *);
int journal_mark_freed(struct reiserfs_transaction_handle *,
		       struct super_block *, b_blocknr_t blocknr);
int journal_transaction_should_end(struct reiserfs_transaction_handle *, int);
int reiserfs_in_journal(struct super_block *sb, unsigned int bmap_nr,
			 int bit_nr, int searchall, b_blocknr_t *next);
int journal_begin(struct reiserfs_transaction_handle *,
		  struct super_block *sb, unsigned long);
int journal_join_abort(struct reiserfs_transaction_handle *,
		       struct super_block *sb);
void reiserfs_abort_journal(struct super_block *sb, int errno);
void reiserfs_abort(struct super_block *sb, int errno, const char *fmt, ...);
int reiserfs_allocate_list_bitmaps(struct super_block *s,
				   struct reiserfs_list_bitmap *, unsigned int);

void reiserfs_schedule_old_flush(struct super_block *s);
void reiserfs_cancel_old_flush(struct super_block *s);
void add_save_link(struct reiserfs_transaction_handle *th,
		   struct inode *inode, int truncate);
int remove_save_link(struct inode *inode, int truncate);

/* objectid.c */
__u32 reiserfs_get_unused_objectid(struct reiserfs_transaction_handle *th);
void reiserfs_release_objectid(struct reiserfs_transaction_handle *th,
			       __u32 objectid_to_release);
int reiserfs_convert_objectid_map_v1(struct super_block *);

/* stree.c */
int B_IS_IN_TREE(const struct buffer_head *);
extern void copy_item_head(struct item_head *to,
			   const struct item_head *from);

/* first key is in cpu form, second - le */
extern int comp_short_keys(const struct reiserfs_key *le_key,
			   const struct cpu_key *cpu_key);
extern void le_key2cpu_key(struct cpu_key *to, const struct reiserfs_key *from);

/* both are in le form */
extern int comp_le_keys(const struct reiserfs_key *,
			const struct reiserfs_key *);
extern int comp_short_le_keys(const struct reiserfs_key *,
			      const struct reiserfs_key *);

/* * get key version from on disk key - kludge */
static inline int le_key_version(const struct reiserfs_key *key)
{}

static inline void copy_key(struct reiserfs_key *to,
			    const struct reiserfs_key *from)
{}

int comp_items(const struct item_head *stored_ih, const struct treepath *path);
const struct reiserfs_key *get_rkey(const struct treepath *chk_path,
				    const struct super_block *sb);
int search_by_key(struct super_block *, const struct cpu_key *,
		  struct treepath *, int);
#define search_item(s,key,path)
int search_for_position_by_key(struct super_block *sb,
			       const struct cpu_key *cpu_key,
			       struct treepath *search_path);
extern void decrement_bcount(struct buffer_head *bh);
void decrement_counters_in_path(struct treepath *search_path);
void pathrelse(struct treepath *search_path);
int reiserfs_check_path(struct treepath *p);
void pathrelse_and_restore(struct super_block *s, struct treepath *search_path);

int reiserfs_insert_item(struct reiserfs_transaction_handle *th,
			 struct treepath *path,
			 const struct cpu_key *key,
			 struct item_head *ih,
			 struct inode *inode, const char *body);

int reiserfs_paste_into_item(struct reiserfs_transaction_handle *th,
			     struct treepath *path,
			     const struct cpu_key *key,
			     struct inode *inode,
			     const char *body, int paste_size);

int reiserfs_cut_from_item(struct reiserfs_transaction_handle *th,
			   struct treepath *path,
			   struct cpu_key *key,
			   struct inode *inode,
			   struct page *page, loff_t new_file_size);

int reiserfs_delete_item(struct reiserfs_transaction_handle *th,
			 struct treepath *path,
			 const struct cpu_key *key,
			 struct inode *inode, struct buffer_head *un_bh);

void reiserfs_delete_solid_item(struct reiserfs_transaction_handle *th,
				struct inode *inode, struct reiserfs_key *key);
int reiserfs_delete_object(struct reiserfs_transaction_handle *th,
			   struct inode *inode);
int reiserfs_do_truncate(struct reiserfs_transaction_handle *th,
			 struct inode *inode, struct page *,
			 int update_timestamps);

#define i_block_size(inode)
#define file_size(inode)
#define tail_size(inode)

#define tail_has_to_be_packed(inode)

void padd_item(char *item, int total_length, int length);

/* inode.c */
/* args for the create parameter of reiserfs_get_block */
#define GET_BLOCK_NO_CREATE
#define GET_BLOCK_CREATE
#define GET_BLOCK_NO_HOLE
#define GET_BLOCK_READ_DIRECT
#define GET_BLOCK_NO_IMUX
#define GET_BLOCK_NO_DANGLE

void reiserfs_read_locked_inode(struct inode *inode,
				struct reiserfs_iget_args *args);
int reiserfs_find_actor(struct inode *inode, void *p);
int reiserfs_init_locked_inode(struct inode *inode, void *p);
void reiserfs_evict_inode(struct inode *inode);
int reiserfs_write_inode(struct inode *inode, struct writeback_control *wbc);
int reiserfs_get_block(struct inode *inode, sector_t block,
		       struct buffer_head *bh_result, int create);
struct dentry *reiserfs_fh_to_dentry(struct super_block *sb, struct fid *fid,
				     int fh_len, int fh_type);
struct dentry *reiserfs_fh_to_parent(struct super_block *sb, struct fid *fid,
				     int fh_len, int fh_type);
int reiserfs_encode_fh(struct inode *inode, __u32 * data, int *lenp,
		       struct inode *parent);

int reiserfs_truncate_file(struct inode *, int update_timestamps);
void make_cpu_key(struct cpu_key *cpu_key, struct inode *inode, loff_t offset,
		  int type, int key_length);
void make_le_item_head(struct item_head *ih, const struct cpu_key *key,
		       int version,
		       loff_t offset, int type, int length, int entry_count);
struct inode *reiserfs_iget(struct super_block *s, const struct cpu_key *key);

struct reiserfs_security_handle;
int reiserfs_new_inode(struct reiserfs_transaction_handle *th,
		       struct inode *dir, umode_t mode,
		       const char *symname, loff_t i_size,
		       struct dentry *dentry, struct inode *inode,
		       struct reiserfs_security_handle *security);

void reiserfs_update_sd_size(struct reiserfs_transaction_handle *th,
			     struct inode *inode, loff_t size);

static inline void reiserfs_update_sd(struct reiserfs_transaction_handle *th,
				      struct inode *inode)
{}

void sd_attrs_to_i_attrs(__u16 sd_attrs, struct inode *inode);
int reiserfs_setattr(struct mnt_idmap *idmap, struct dentry *dentry,
		     struct iattr *attr);

int __reiserfs_write_begin(struct page *page, unsigned from, unsigned len);

/* namei.c */
void reiserfs_init_priv_inode(struct inode *inode);
void set_de_name_and_namelen(struct reiserfs_dir_entry *de);
int search_by_entry_key(struct super_block *sb, const struct cpu_key *key,
			struct treepath *path, struct reiserfs_dir_entry *de);
struct dentry *reiserfs_get_parent(struct dentry *);

#ifdef CONFIG_REISERFS_PROC_INFO
int reiserfs_proc_info_init(struct super_block *sb);
int reiserfs_proc_info_done(struct super_block *sb);
int reiserfs_proc_info_global_init(void);
int reiserfs_proc_info_global_done(void);

#define PROC_EXP( e )

#define __PINFO( sb )
#define PROC_INFO_MAX( sb, field, value )
#define PROC_INFO_INC( sb, field )
#define PROC_INFO_ADD( sb, field, val )
#define PROC_INFO_BH_STAT( sb, bh, level )
#else
static inline int reiserfs_proc_info_init(struct super_block *sb)
{
	return 0;
}

static inline int reiserfs_proc_info_done(struct super_block *sb)
{
	return 0;
}

static inline int reiserfs_proc_info_global_init(void)
{
	return 0;
}

static inline int reiserfs_proc_info_global_done(void)
{
	return 0;
}

#define PROC_EXP
#define VOID_V
#define PROC_INFO_MAX
#define PROC_INFO_INC
#define PROC_INFO_ADD
#define PROC_INFO_BH_STAT
#endif

/* dir.c */
extern const struct inode_operations reiserfs_dir_inode_operations;
extern const struct inode_operations reiserfs_symlink_inode_operations;
extern const struct inode_operations reiserfs_special_inode_operations;
extern const struct file_operations reiserfs_dir_operations;
int reiserfs_readdir_inode(struct inode *, struct dir_context *);

/* tail_conversion.c */
int direct2indirect(struct reiserfs_transaction_handle *, struct inode *,
		    struct treepath *, struct buffer_head *, loff_t);
int indirect2direct(struct reiserfs_transaction_handle *, struct inode *,
		    struct page *, struct treepath *, const struct cpu_key *,
		    loff_t, char *);
void reiserfs_unmap_buffer(struct buffer_head *);

/* file.c */
extern const struct inode_operations reiserfs_file_inode_operations;
extern const struct inode_operations reiserfs_priv_file_inode_operations;
extern const struct file_operations reiserfs_file_operations;
extern const struct address_space_operations reiserfs_address_space_operations;

/* fix_nodes.c */

int fix_nodes(int n_op_mode, struct tree_balance *tb,
	      struct item_head *ins_ih, const void *);
void unfix_nodes(struct tree_balance *);

/* prints.c */
void __reiserfs_panic(struct super_block *s, const char *id,
		      const char *function, const char *fmt, ...)
    __attribute__ ((noreturn));
#define reiserfs_panic(s, id, fmt, args...)
void __reiserfs_error(struct super_block *s, const char *id,
		      const char *function, const char *fmt, ...);
#define reiserfs_error(s, id, fmt, args...)
void reiserfs_info(struct super_block *s, const char *fmt, ...);
void reiserfs_debug(struct super_block *s, int level, const char *fmt, ...);
void print_indirect_item(struct buffer_head *bh, int item_num);
void store_print_tb(struct tree_balance *tb);
void print_cur_tb(char *mes);
void print_de(struct reiserfs_dir_entry *de);
void print_bi(struct buffer_info *bi, char *mes);
#define PRINT_LEAF_ITEMS
#define PRINT_DIRECTORY_ITEMS
#define PRINT_DIRECT_ITEMS
void print_block(struct buffer_head *bh, ...);
void print_bmap(struct super_block *s, int silent);
void print_bmap_block(int i, char *data, int size, int silent);
/*void print_super_block (struct super_block * s, char * mes);*/
void print_objectid_map(struct super_block *s);
void print_block_head(struct buffer_head *bh, char *mes);
void check_leaf(struct buffer_head *bh);
void check_internal(struct buffer_head *bh);
void print_statistics(struct super_block *s);
char *reiserfs_hashname(int code);

/* lbalance.c */
int leaf_move_items(int shift_mode, struct tree_balance *tb, int mov_num,
		    int mov_bytes, struct buffer_head *Snew);
int leaf_shift_left(struct tree_balance *tb, int shift_num, int shift_bytes);
int leaf_shift_right(struct tree_balance *tb, int shift_num, int shift_bytes);
void leaf_delete_items(struct buffer_info *cur_bi, int last_first, int first,
		       int del_num, int del_bytes);
void leaf_insert_into_buf(struct buffer_info *bi, int before,
			  struct item_head * const inserted_item_ih,
			  const char * const inserted_item_body,
			  int zeros_number);
void leaf_paste_in_buffer(struct buffer_info *bi, int pasted_item_num,
			  int pos_in_item, int paste_size,
			  const char * const body, int zeros_number);
void leaf_cut_from_buffer(struct buffer_info *bi, int cut_item_num,
			  int pos_in_item, int cut_size);
void leaf_paste_entries(struct buffer_info *bi, int item_num, int before,
			int new_entry_count, struct reiserfs_de_head *new_dehs,
			const char *records, int paste_size);
/* ibalance.c */
int balance_internal(struct tree_balance *, int, int, struct item_head *,
		     struct buffer_head **);

/* do_balance.c */
void do_balance_mark_leaf_dirty(struct tree_balance *tb,
				struct buffer_head *bh, int flag);
#define do_balance_mark_internal_dirty
#define do_balance_mark_sb_dirty

void do_balance(struct tree_balance *tb, struct item_head *ih,
		const char *body, int flag);
void reiserfs_invalidate_buffer(struct tree_balance *tb,
				struct buffer_head *bh);

int get_left_neighbor_position(struct tree_balance *tb, int h);
int get_right_neighbor_position(struct tree_balance *tb, int h);
void replace_key(struct tree_balance *tb, struct buffer_head *, int,
		 struct buffer_head *, int);
void make_empty_node(struct buffer_info *);
struct buffer_head *get_FEB(struct tree_balance *);

/* bitmap.c */

/*
 * structure contains hints for block allocator, and it is a container for
 * arguments, such as node, search path, transaction_handle, etc.
 */
struct __reiserfs_blocknr_hint {};

reiserfs_blocknr_hint_t;

int reiserfs_parse_alloc_options(struct super_block *, char *);
void reiserfs_init_alloc_options(struct super_block *s);

/*
 * given a directory, this will tell you what packing locality
 * to use for a new object underneat it.  The locality is returned
 * in disk byte order (le).
 */
__le32 reiserfs_choose_packing(struct inode *dir);

void show_alloc_options(struct seq_file *seq, struct super_block *s);
int reiserfs_init_bitmap_cache(struct super_block *sb);
void reiserfs_free_bitmap_cache(struct super_block *sb);
void reiserfs_cache_bitmap_metadata(struct super_block *sb, struct buffer_head *bh, struct reiserfs_bitmap_info *info);
struct buffer_head *reiserfs_read_bitmap_block(struct super_block *sb, unsigned int bitmap);
int is_reusable(struct super_block *s, b_blocknr_t block, int bit_value);
void reiserfs_free_block(struct reiserfs_transaction_handle *th, struct inode *,
			 b_blocknr_t, int for_unformatted);
int reiserfs_allocate_blocknrs(reiserfs_blocknr_hint_t *, b_blocknr_t *, int,
			       int);
static inline int reiserfs_new_form_blocknrs(struct tree_balance *tb,
					     b_blocknr_t * new_blocknrs,
					     int amount_needed)
{}

static inline int reiserfs_new_unf_blocknrs(struct reiserfs_transaction_handle
					    *th, struct inode *inode,
					    b_blocknr_t * new_blocknrs,
					    struct treepath *path,
					    sector_t block)
{}

#ifdef REISERFS_PREALLOCATE
static inline int reiserfs_new_unf_blocknrs2(struct reiserfs_transaction_handle
					     *th, struct inode *inode,
					     b_blocknr_t * new_blocknrs,
					     struct treepath *path,
					     sector_t block)
{}

void reiserfs_discard_prealloc(struct reiserfs_transaction_handle *th,
			       struct inode *inode);
void reiserfs_discard_all_prealloc(struct reiserfs_transaction_handle *th);
#endif

/* hashes.c */
__u32 keyed_hash(const signed char *msg, int len);
__u32 yura_hash(const signed char *msg, int len);
__u32 r5_hash(const signed char *msg, int len);

#define reiserfs_set_le_bit
#define reiserfs_test_and_set_le_bit
#define reiserfs_clear_le_bit
#define reiserfs_test_and_clear_le_bit
#define reiserfs_test_le_bit
#define reiserfs_find_next_zero_le_bit

/*
 * sometimes reiserfs_truncate may require to allocate few new blocks
 * to perform indirect2direct conversion. People probably used to
 * think, that truncate should work without problems on a filesystem
 * without free disk space. They may complain that they can not
 * truncate due to lack of free disk space. This spare space allows us
 * to not worry about it. 500 is probably too much, but it should be
 * absolutely safe
 */
#define SPARE_SPACE

/* prototypes from ioctl.c */
int reiserfs_fileattr_get(struct dentry *dentry, struct fileattr *fa);
int reiserfs_fileattr_set(struct mnt_idmap *idmap,
			  struct dentry *dentry, struct fileattr *fa);
long reiserfs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg);
long reiserfs_compat_ioctl(struct file *filp,
		   unsigned int cmd, unsigned long arg);
int reiserfs_unpack(struct inode *inode);