// SPDX-License-Identifier: GPL-2.0-or-later /* * Copyright (C) 2019-2023 Oracle. All Rights Reserved. * Author: Darrick J. Wong <[email protected]> */ #include "xfs.h" #include "xfs_fs.h" #include "xfs_shared.h" #include "xfs_format.h" #include "xfs_trans_resv.h" #include "xfs_log_format.h" #include "xfs_trans.h" #include "xfs_mount.h" #include "xfs_alloc.h" #include "xfs_ialloc.h" #include "xfs_health.h" #include "xfs_btree.h" #include "xfs_ag.h" #include "xfs_rtbitmap.h" #include "xfs_inode.h" #include "xfs_icache.h" #include "scrub/scrub.h" #include "scrub/common.h" #include "scrub/trace.h" #include "scrub/fscounters.h" /* * FS Summary Counters * =================== * * The basics of filesystem summary counter checking are that we iterate the * AGs counting the number of free blocks, free space btree blocks, per-AG * reservations, inodes, delayed allocation reservations, and free inodes. * Then we compare what we computed against the in-core counters. * * However, the reality is that summary counters are a tricky beast to check. * While we /could/ freeze the filesystem and scramble around the AGs counting * the free blocks, in practice we prefer not do that for a scan because * freezing is costly. To get around this, we added a per-cpu counter of the * delalloc reservations so that we can rotor around the AGs relatively * quickly, and we allow the counts to be slightly off because we're not taking * any locks while we do this. * * So the first thing we do is warm up the buffer cache in the setup routine by * walking all the AGs to make sure the incore per-AG structure has been * initialized. The expected value calculation then iterates the incore per-AG * structures as quickly as it can. We snapshot the percpu counters before and * after this operation and use the difference in counter values to guess at * our tolerance for mismatch between expected and actual counter values. */ /* * Since the expected value computation is lockless but only browses incore * values, the percpu counters should be fairly close to each other. However, * we'll allow ourselves to be off by at least this (arbitrary) amount. */ #define XCHK_FSCOUNT_MIN_VARIANCE … /* * Make sure the per-AG structure has been initialized from the on-disk header * contents and trust that the incore counters match the ondisk counters. (The * AGF and AGI scrubbers check them, and a normal xfs_scrub run checks the * summary counters after checking all AG headers). Do this from the setup * function so that the inner AG aggregation loop runs as quickly as possible. * * This function runs during the setup phase /before/ we start checking any * metadata. */ STATIC int xchk_fscount_warmup( struct xfs_scrub *sc) { … } static inline int xchk_fsfreeze( struct xfs_scrub *sc) { … } static inline int xchk_fsthaw( struct xfs_scrub *sc) { … } /* * We couldn't stabilize the filesystem long enough to sample all the variables * that comprise the summary counters and compare them to the percpu counters. * We need to disable all writer threads, which means taking the first two * freeze levels to put userspace to sleep, and the third freeze level to * prevent background threads from starting new transactions. Take one level * more to prevent other callers from unfreezing the filesystem while we run. */ STATIC int xchk_fscounters_freeze( struct xfs_scrub *sc) { … } /* Thaw the filesystem after checking or repairing fscounters. */ STATIC void xchk_fscounters_cleanup( void *buf) { … } int xchk_setup_fscounters( struct xfs_scrub *sc) { … } /* * Part 1: Collecting filesystem summary counts. For each AG, we add its * summary counts (total inodes, free inodes, free data blocks) to an incore * copy of the overall filesystem summary counts. * * To avoid false corruption reports in part 2, any failure in this part must * set the INCOMPLETE flag even when a negative errno is returned. This care * must be taken with certain errno values (i.e. EFSBADCRC, EFSCORRUPTED, * ECANCELED) that are absorbed into a scrub state flag update by * xchk_*_process_error. Scrub and repair share the same incore data * structures, so the INCOMPLETE flag is critical to prevent a repair based on * insufficient information. */ /* Count free space btree blocks manually for pre-lazysbcount filesystems. */ static int xchk_fscount_btreeblks( struct xfs_scrub *sc, struct xchk_fscounters *fsc, xfs_agnumber_t agno) { … } /* * Calculate what the global in-core counters ought to be from the incore * per-AG structure. Callers can compare this to the actual in-core counters * to estimate by how much both in-core and on-disk counters need to be * adjusted. */ STATIC int xchk_fscount_aggregate_agcounts( struct xfs_scrub *sc, struct xchk_fscounters *fsc) { … } #ifdef CONFIG_XFS_RT STATIC int xchk_fscount_add_frextent( struct xfs_mount *mp, struct xfs_trans *tp, const struct xfs_rtalloc_rec *rec, void *priv) { … } /* Calculate the number of free realtime extents from the realtime bitmap. */ STATIC int xchk_fscount_count_frextents( struct xfs_scrub *sc, struct xchk_fscounters *fsc) { … } #else STATIC int xchk_fscount_count_frextents( struct xfs_scrub *sc, struct xchk_fscounters *fsc) { fsc->frextents = 0; fsc->frextents_delayed = 0; return 0; } #endif /* CONFIG_XFS_RT */ /* * Part 2: Comparing filesystem summary counters. All we have to do here is * sum the percpu counters and compare them to what we've observed. */ /* * Is the @counter reasonably close to the @expected value? * * We neither locked nor froze anything in the filesystem while aggregating the * per-AG data to compute the @expected value, which means that the counter * could have changed. We know the @old_value of the summation of the counter * before the aggregation, and we re-sum the counter now. If the expected * value falls between the two summations, we're ok. * * Otherwise, we /might/ have a problem. If the change in the summations is * more than we want to tolerate, the filesystem is probably busy and we should * just send back INCOMPLETE and see if userspace will try again. * * If we're repairing then we require an exact match. */ static inline bool xchk_fscount_within_range( struct xfs_scrub *sc, const int64_t old_value, struct percpu_counter *counter, uint64_t expected) { … } /* Check the superblock counters. */ int xchk_fscounters( struct xfs_scrub *sc) { … }