/* SPDX-License-Identifier: GPL-2.0 */
/*
* A simple five-level FIFO queue scheduler.
*
* There are five FIFOs implemented using BPF_MAP_TYPE_QUEUE. A task gets
* assigned to one depending on its compound weight. Each CPU round robins
* through the FIFOs and dispatches more from FIFOs with higher indices - 1 from
* queue0, 2 from queue1, 4 from queue2 and so on.
*
* This scheduler demonstrates:
*
* - BPF-side queueing using PIDs.
* - Sleepable per-task storage allocation using ops.prep_enable().
* - Using ops.cpu_release() to handle a higher priority scheduling class taking
* the CPU away.
* - Core-sched support.
*
* This scheduler is primarily for demonstration and testing of sched_ext
* features and unlikely to be useful for actual workloads.
*
* Copyright (c) 2022 Meta Platforms, Inc. and affiliates.
* Copyright (c) 2022 Tejun Heo <[email protected]>
* Copyright (c) 2022 David Vernet <[email protected]>
*/
#include <scx/common.bpf.h>
enum consts {
ONE_SEC_IN_NS = 1000000000,
SHARED_DSQ = 0,
HIGHPRI_DSQ = 1,
HIGHPRI_WEIGHT = 8668, /* this is what -20 maps to */
};
char _license[] SEC("license") = "GPL";
const volatile u64 slice_ns = SCX_SLICE_DFL;
const volatile u32 stall_user_nth;
const volatile u32 stall_kernel_nth;
const volatile u32 dsp_inf_loop_after;
const volatile u32 dsp_batch;
const volatile bool highpri_boosting;
const volatile bool print_shared_dsq;
const volatile s32 disallow_tgid;
const volatile bool suppress_dump;
u64 nr_highpri_queued;
u32 test_error_cnt;
UEI_DEFINE(uei);
struct qmap {
__uint(type, BPF_MAP_TYPE_QUEUE);
__uint(max_entries, 4096);
__type(value, u32);
} queue0 SEC(".maps"),
queue1 SEC(".maps"),
queue2 SEC(".maps"),
queue3 SEC(".maps"),
queue4 SEC(".maps");
struct {
__uint(type, BPF_MAP_TYPE_ARRAY_OF_MAPS);
__uint(max_entries, 5);
__type(key, int);
__array(values, struct qmap);
} queue_arr SEC(".maps") = {
.values = {
[0] = &queue0,
[1] = &queue1,
[2] = &queue2,
[3] = &queue3,
[4] = &queue4,
},
};
/*
* If enabled, CPU performance target is set according to the queue index
* according to the following table.
*/
static const u32 qidx_to_cpuperf_target[] = {
[0] = SCX_CPUPERF_ONE * 0 / 4,
[1] = SCX_CPUPERF_ONE * 1 / 4,
[2] = SCX_CPUPERF_ONE * 2 / 4,
[3] = SCX_CPUPERF_ONE * 3 / 4,
[4] = SCX_CPUPERF_ONE * 4 / 4,
};
/*
* Per-queue sequence numbers to implement core-sched ordering.
*
* Tail seq is assigned to each queued task and incremented. Head seq tracks the
* sequence number of the latest dispatched task. The distance between the a
* task's seq and the associated queue's head seq is called the queue distance
* and used when comparing two tasks for ordering. See qmap_core_sched_before().
*/
static u64 core_sched_head_seqs[5];
static u64 core_sched_tail_seqs[5];
/* Per-task scheduling context */
struct task_ctx {
bool force_local; /* Dispatch directly to local_dsq */
bool highpri;
u64 core_sched_seq;
};
struct {
__uint(type, BPF_MAP_TYPE_TASK_STORAGE);
__uint(map_flags, BPF_F_NO_PREALLOC);
__type(key, int);
__type(value, struct task_ctx);
} task_ctx_stor SEC(".maps");
struct cpu_ctx {
u64 dsp_idx; /* dispatch index */
u64 dsp_cnt; /* remaining count */
u32 avg_weight;
u32 cpuperf_target;
};
struct {
__uint(type, BPF_MAP_TYPE_PERCPU_ARRAY);
__uint(max_entries, 1);
__type(key, u32);
__type(value, struct cpu_ctx);
} cpu_ctx_stor SEC(".maps");
/* Statistics */
u64 nr_enqueued, nr_dispatched, nr_reenqueued, nr_dequeued, nr_ddsp_from_enq;
u64 nr_core_sched_execed;
u64 nr_expedited_local, nr_expedited_remote, nr_expedited_lost, nr_expedited_from_timer;
u32 cpuperf_min, cpuperf_avg, cpuperf_max;
u32 cpuperf_target_min, cpuperf_target_avg, cpuperf_target_max;
static s32 pick_direct_dispatch_cpu(struct task_struct *p, s32 prev_cpu)
{
s32 cpu;
if (p->nr_cpus_allowed == 1 ||
scx_bpf_test_and_clear_cpu_idle(prev_cpu))
return prev_cpu;
cpu = scx_bpf_pick_idle_cpu(p->cpus_ptr, 0);
if (cpu >= 0)
return cpu;
return -1;
}
static struct task_ctx *lookup_task_ctx(struct task_struct *p)
{
struct task_ctx *tctx;
if (!(tctx = bpf_task_storage_get(&task_ctx_stor, p, 0, 0))) {
scx_bpf_error("task_ctx lookup failed");
return NULL;
}
return tctx;
}
s32 BPF_STRUCT_OPS(qmap_select_cpu, struct task_struct *p,
s32 prev_cpu, u64 wake_flags)
{
struct task_ctx *tctx;
s32 cpu;
if (!(tctx = lookup_task_ctx(p)))
return -ESRCH;
cpu = pick_direct_dispatch_cpu(p, prev_cpu);
if (cpu >= 0) {
tctx->force_local = true;
return cpu;
} else {
return prev_cpu;
}
}
static int weight_to_idx(u32 weight)
{
/* Coarsely map the compound weight to a FIFO. */
if (weight <= 25)
return 0;
else if (weight <= 50)
return 1;
else if (weight < 200)
return 2;
else if (weight < 400)
return 3;
else
return 4;
}
void BPF_STRUCT_OPS(qmap_enqueue, struct task_struct *p, u64 enq_flags)
{
static u32 user_cnt, kernel_cnt;
struct task_ctx *tctx;
u32 pid = p->pid;
int idx = weight_to_idx(p->scx.weight);
void *ring;
s32 cpu;
if (p->flags & PF_KTHREAD) {
if (stall_kernel_nth && !(++kernel_cnt % stall_kernel_nth))
return;
} else {
if (stall_user_nth && !(++user_cnt % stall_user_nth))
return;
}
if (test_error_cnt && !--test_error_cnt)
scx_bpf_error("test triggering error");
if (!(tctx = lookup_task_ctx(p)))
return;
/*
* All enqueued tasks must have their core_sched_seq updated for correct
* core-sched ordering. Also, take a look at the end of qmap_dispatch().
*/
tctx->core_sched_seq = core_sched_tail_seqs[idx]++;
/*
* If qmap_select_cpu() is telling us to or this is the last runnable
* task on the CPU, enqueue locally.
*/
if (tctx->force_local) {
tctx->force_local = false;
scx_bpf_dispatch(p, SCX_DSQ_LOCAL, slice_ns, enq_flags);
return;
}
/* if select_cpu() wasn't called, try direct dispatch */
if (!(enq_flags & SCX_ENQ_CPU_SELECTED) &&
(cpu = pick_direct_dispatch_cpu(p, scx_bpf_task_cpu(p))) >= 0) {
__sync_fetch_and_add(&nr_ddsp_from_enq, 1);
scx_bpf_dispatch(p, SCX_DSQ_LOCAL_ON | cpu, slice_ns, enq_flags);
return;
}
/*
* If the task was re-enqueued due to the CPU being preempted by a
* higher priority scheduling class, just re-enqueue the task directly
* on the global DSQ. As we want another CPU to pick it up, find and
* kick an idle CPU.
*/
if (enq_flags & SCX_ENQ_REENQ) {
s32 cpu;
scx_bpf_dispatch(p, SHARED_DSQ, 0, enq_flags);
cpu = scx_bpf_pick_idle_cpu(p->cpus_ptr, 0);
if (cpu >= 0)
scx_bpf_kick_cpu(cpu, SCX_KICK_IDLE);
return;
}
ring = bpf_map_lookup_elem(&queue_arr, &idx);
if (!ring) {
scx_bpf_error("failed to find ring %d", idx);
return;
}
/* Queue on the selected FIFO. If the FIFO overflows, punt to global. */
if (bpf_map_push_elem(ring, &pid, 0)) {
scx_bpf_dispatch(p, SHARED_DSQ, slice_ns, enq_flags);
return;
}
if (highpri_boosting && p->scx.weight >= HIGHPRI_WEIGHT) {
tctx->highpri = true;
__sync_fetch_and_add(&nr_highpri_queued, 1);
}
__sync_fetch_and_add(&nr_enqueued, 1);
}
/*
* The BPF queue map doesn't support removal and sched_ext can handle spurious
* dispatches. qmap_dequeue() is only used to collect statistics.
*/
void BPF_STRUCT_OPS(qmap_dequeue, struct task_struct *p, u64 deq_flags)
{
__sync_fetch_and_add(&nr_dequeued, 1);
if (deq_flags & SCX_DEQ_CORE_SCHED_EXEC)
__sync_fetch_and_add(&nr_core_sched_execed, 1);
}
static void update_core_sched_head_seq(struct task_struct *p)
{
int idx = weight_to_idx(p->scx.weight);
struct task_ctx *tctx;
if ((tctx = lookup_task_ctx(p)))
core_sched_head_seqs[idx] = tctx->core_sched_seq;
}
/*
* To demonstrate the use of scx_bpf_dispatch_from_dsq(), implement silly
* selective priority boosting mechanism by scanning SHARED_DSQ looking for
* highpri tasks, moving them to HIGHPRI_DSQ and then consuming them first. This
* makes minor difference only when dsp_batch is larger than 1.
*
* scx_bpf_dispatch[_vtime]_from_dsq() are allowed both from ops.dispatch() and
* non-rq-lock holding BPF programs. As demonstration, this function is called
* from qmap_dispatch() and monitor_timerfn().
*/
static bool dispatch_highpri(bool from_timer)
{
struct task_struct *p;
s32 this_cpu = bpf_get_smp_processor_id();
/* scan SHARED_DSQ and move highpri tasks to HIGHPRI_DSQ */
bpf_for_each(scx_dsq, p, SHARED_DSQ, 0) {
static u64 highpri_seq;
struct task_ctx *tctx;
if (!(tctx = lookup_task_ctx(p)))
return false;
if (tctx->highpri) {
/* exercise the set_*() and vtime interface too */
__COMPAT_scx_bpf_dispatch_from_dsq_set_slice(
BPF_FOR_EACH_ITER, slice_ns * 2);
__COMPAT_scx_bpf_dispatch_from_dsq_set_vtime(
BPF_FOR_EACH_ITER, highpri_seq++);
__COMPAT_scx_bpf_dispatch_vtime_from_dsq(
BPF_FOR_EACH_ITER, p, HIGHPRI_DSQ, 0);
}
}
/*
* Scan HIGHPRI_DSQ and dispatch until a task that can run on this CPU
* is found.
*/
bpf_for_each(scx_dsq, p, HIGHPRI_DSQ, 0) {
bool dispatched = false;
s32 cpu;
if (bpf_cpumask_test_cpu(this_cpu, p->cpus_ptr))
cpu = this_cpu;
else
cpu = scx_bpf_pick_any_cpu(p->cpus_ptr, 0);
if (__COMPAT_scx_bpf_dispatch_from_dsq(BPF_FOR_EACH_ITER, p,
SCX_DSQ_LOCAL_ON | cpu,
SCX_ENQ_PREEMPT)) {
if (cpu == this_cpu) {
dispatched = true;
__sync_fetch_and_add(&nr_expedited_local, 1);
} else {
__sync_fetch_and_add(&nr_expedited_remote, 1);
}
if (from_timer)
__sync_fetch_and_add(&nr_expedited_from_timer, 1);
} else {
__sync_fetch_and_add(&nr_expedited_lost, 1);
}
if (dispatched)
return true;
}
return false;
}
void BPF_STRUCT_OPS(qmap_dispatch, s32 cpu, struct task_struct *prev)
{
struct task_struct *p;
struct cpu_ctx *cpuc;
struct task_ctx *tctx;
u32 zero = 0, batch = dsp_batch ?: 1;
void *fifo;
s32 i, pid;
if (dispatch_highpri(false))
return;
if (!nr_highpri_queued && scx_bpf_consume(SHARED_DSQ))
return;
if (dsp_inf_loop_after && nr_dispatched > dsp_inf_loop_after) {
/*
* PID 2 should be kthreadd which should mostly be idle and off
* the scheduler. Let's keep dispatching it to force the kernel
* to call this function over and over again.
*/
p = bpf_task_from_pid(2);
if (p) {
scx_bpf_dispatch(p, SCX_DSQ_LOCAL, slice_ns, 0);
bpf_task_release(p);
return;
}
}
if (!(cpuc = bpf_map_lookup_elem(&cpu_ctx_stor, &zero))) {
scx_bpf_error("failed to look up cpu_ctx");
return;
}
for (i = 0; i < 5; i++) {
/* Advance the dispatch cursor and pick the fifo. */
if (!cpuc->dsp_cnt) {
cpuc->dsp_idx = (cpuc->dsp_idx + 1) % 5;
cpuc->dsp_cnt = 1 << cpuc->dsp_idx;
}
fifo = bpf_map_lookup_elem(&queue_arr, &cpuc->dsp_idx);
if (!fifo) {
scx_bpf_error("failed to find ring %llu", cpuc->dsp_idx);
return;
}
/* Dispatch or advance. */
bpf_repeat(BPF_MAX_LOOPS) {
struct task_ctx *tctx;
if (bpf_map_pop_elem(fifo, &pid))
break;
p = bpf_task_from_pid(pid);
if (!p)
continue;
if (!(tctx = lookup_task_ctx(p))) {
bpf_task_release(p);
return;
}
if (tctx->highpri)
__sync_fetch_and_sub(&nr_highpri_queued, 1);
update_core_sched_head_seq(p);
__sync_fetch_and_add(&nr_dispatched, 1);
scx_bpf_dispatch(p, SHARED_DSQ, slice_ns, 0);
bpf_task_release(p);
batch--;
cpuc->dsp_cnt--;
if (!batch || !scx_bpf_dispatch_nr_slots()) {
if (dispatch_highpri(false))
return;
scx_bpf_consume(SHARED_DSQ);
return;
}
if (!cpuc->dsp_cnt)
break;
}
cpuc->dsp_cnt = 0;
}
/*
* No other tasks. @prev will keep running. Update its core_sched_seq as
* if the task were enqueued and dispatched immediately.
*/
if (prev) {
tctx = bpf_task_storage_get(&task_ctx_stor, prev, 0, 0);
if (!tctx) {
scx_bpf_error("task_ctx lookup failed");
return;
}
tctx->core_sched_seq =
core_sched_tail_seqs[weight_to_idx(prev->scx.weight)]++;
}
}
void BPF_STRUCT_OPS(qmap_tick, struct task_struct *p)
{
struct cpu_ctx *cpuc;
u32 zero = 0;
int idx;
if (!(cpuc = bpf_map_lookup_elem(&cpu_ctx_stor, &zero))) {
scx_bpf_error("failed to look up cpu_ctx");
return;
}
/*
* Use the running avg of weights to select the target cpuperf level.
* This is a demonstration of the cpuperf feature rather than a
* practical strategy to regulate CPU frequency.
*/
cpuc->avg_weight = cpuc->avg_weight * 3 / 4 + p->scx.weight / 4;
idx = weight_to_idx(cpuc->avg_weight);
cpuc->cpuperf_target = qidx_to_cpuperf_target[idx];
scx_bpf_cpuperf_set(scx_bpf_task_cpu(p), cpuc->cpuperf_target);
}
/*
* The distance from the head of the queue scaled by the weight of the queue.
* The lower the number, the older the task and the higher the priority.
*/
static s64 task_qdist(struct task_struct *p)
{
int idx = weight_to_idx(p->scx.weight);
struct task_ctx *tctx;
s64 qdist;
tctx = bpf_task_storage_get(&task_ctx_stor, p, 0, 0);
if (!tctx) {
scx_bpf_error("task_ctx lookup failed");
return 0;
}
qdist = tctx->core_sched_seq - core_sched_head_seqs[idx];
/*
* As queue index increments, the priority doubles. The queue w/ index 3
* is dispatched twice more frequently than 2. Reflect the difference by
* scaling qdists accordingly. Note that the shift amount needs to be
* flipped depending on the sign to avoid flipping priority direction.
*/
if (qdist >= 0)
return qdist << (4 - idx);
else
return qdist << idx;
}
/*
* This is called to determine the task ordering when core-sched is picking
* tasks to execute on SMT siblings and should encode about the same ordering as
* the regular scheduling path. Use the priority-scaled distances from the head
* of the queues to compare the two tasks which should be consistent with the
* dispatch path behavior.
*/
bool BPF_STRUCT_OPS(qmap_core_sched_before,
struct task_struct *a, struct task_struct *b)
{
return task_qdist(a) > task_qdist(b);
}
void BPF_STRUCT_OPS(qmap_cpu_release, s32 cpu, struct scx_cpu_release_args *args)
{
u32 cnt;
/*
* Called when @cpu is taken by a higher priority scheduling class. This
* makes @cpu no longer available for executing sched_ext tasks. As we
* don't want the tasks in @cpu's local dsq to sit there until @cpu
* becomes available again, re-enqueue them into the global dsq. See
* %SCX_ENQ_REENQ handling in qmap_enqueue().
*/
cnt = scx_bpf_reenqueue_local();
if (cnt)
__sync_fetch_and_add(&nr_reenqueued, cnt);
}
s32 BPF_STRUCT_OPS(qmap_init_task, struct task_struct *p,
struct scx_init_task_args *args)
{
if (p->tgid == disallow_tgid)
p->scx.disallow = true;
/*
* @p is new. Let's ensure that its task_ctx is available. We can sleep
* in this function and the following will automatically use GFP_KERNEL.
*/
if (bpf_task_storage_get(&task_ctx_stor, p, 0,
BPF_LOCAL_STORAGE_GET_F_CREATE))
return 0;
else
return -ENOMEM;
}
void BPF_STRUCT_OPS(qmap_dump, struct scx_dump_ctx *dctx)
{
s32 i, pid;
if (suppress_dump)
return;
bpf_for(i, 0, 5) {
void *fifo;
if (!(fifo = bpf_map_lookup_elem(&queue_arr, &i)))
return;
scx_bpf_dump("QMAP FIFO[%d]:", i);
bpf_repeat(4096) {
if (bpf_map_pop_elem(fifo, &pid))
break;
scx_bpf_dump(" %d", pid);
}
scx_bpf_dump("\n");
}
}
void BPF_STRUCT_OPS(qmap_dump_cpu, struct scx_dump_ctx *dctx, s32 cpu, bool idle)
{
u32 zero = 0;
struct cpu_ctx *cpuc;
if (suppress_dump || idle)
return;
if (!(cpuc = bpf_map_lookup_percpu_elem(&cpu_ctx_stor, &zero, cpu)))
return;
scx_bpf_dump("QMAP: dsp_idx=%llu dsp_cnt=%llu avg_weight=%u cpuperf_target=%u",
cpuc->dsp_idx, cpuc->dsp_cnt, cpuc->avg_weight,
cpuc->cpuperf_target);
}
void BPF_STRUCT_OPS(qmap_dump_task, struct scx_dump_ctx *dctx, struct task_struct *p)
{
struct task_ctx *taskc;
if (suppress_dump)
return;
if (!(taskc = bpf_task_storage_get(&task_ctx_stor, p, 0, 0)))
return;
scx_bpf_dump("QMAP: force_local=%d core_sched_seq=%llu",
taskc->force_local, taskc->core_sched_seq);
}
/*
* Print out the online and possible CPU map using bpf_printk() as a
* demonstration of using the cpumask kfuncs and ops.cpu_on/offline().
*/
static void print_cpus(void)
{
const struct cpumask *possible, *online;
s32 cpu;
char buf[128] = "", *p;
int idx;
possible = scx_bpf_get_possible_cpumask();
online = scx_bpf_get_online_cpumask();
idx = 0;
bpf_for(cpu, 0, scx_bpf_nr_cpu_ids()) {
if (!(p = MEMBER_VPTR(buf, [idx++])))
break;
if (bpf_cpumask_test_cpu(cpu, online))
*p++ = 'O';
else if (bpf_cpumask_test_cpu(cpu, possible))
*p++ = 'X';
else
*p++ = ' ';
if ((cpu & 7) == 7) {
if (!(p = MEMBER_VPTR(buf, [idx++])))
break;
*p++ = '|';
}
}
buf[sizeof(buf) - 1] = '\0';
scx_bpf_put_cpumask(online);
scx_bpf_put_cpumask(possible);
bpf_printk("CPUS: |%s", buf);
}
void BPF_STRUCT_OPS(qmap_cpu_online, s32 cpu)
{
bpf_printk("CPU %d coming online", cpu);
/* @cpu is already online at this point */
print_cpus();
}
void BPF_STRUCT_OPS(qmap_cpu_offline, s32 cpu)
{
bpf_printk("CPU %d going offline", cpu);
/* @cpu is still online at this point */
print_cpus();
}
struct monitor_timer {
struct bpf_timer timer;
};
struct {
__uint(type, BPF_MAP_TYPE_ARRAY);
__uint(max_entries, 1);
__type(key, u32);
__type(value, struct monitor_timer);
} monitor_timer SEC(".maps");
/*
* Print out the min, avg and max performance levels of CPUs every second to
* demonstrate the cpuperf interface.
*/
static void monitor_cpuperf(void)
{
u32 zero = 0, nr_cpu_ids;
u64 cap_sum = 0, cur_sum = 0, cur_min = SCX_CPUPERF_ONE, cur_max = 0;
u64 target_sum = 0, target_min = SCX_CPUPERF_ONE, target_max = 0;
const struct cpumask *online;
int i, nr_online_cpus = 0;
nr_cpu_ids = scx_bpf_nr_cpu_ids();
online = scx_bpf_get_online_cpumask();
bpf_for(i, 0, nr_cpu_ids) {
struct cpu_ctx *cpuc;
u32 cap, cur;
if (!bpf_cpumask_test_cpu(i, online))
continue;
nr_online_cpus++;
/* collect the capacity and current cpuperf */
cap = scx_bpf_cpuperf_cap(i);
cur = scx_bpf_cpuperf_cur(i);
cur_min = cur < cur_min ? cur : cur_min;
cur_max = cur > cur_max ? cur : cur_max;
/*
* $cur is relative to $cap. Scale it down accordingly so that
* it's in the same scale as other CPUs and $cur_sum/$cap_sum
* makes sense.
*/
cur_sum += cur * cap / SCX_CPUPERF_ONE;
cap_sum += cap;
if (!(cpuc = bpf_map_lookup_percpu_elem(&cpu_ctx_stor, &zero, i))) {
scx_bpf_error("failed to look up cpu_ctx");
goto out;
}
/* collect target */
cur = cpuc->cpuperf_target;
target_sum += cur;
target_min = cur < target_min ? cur : target_min;
target_max = cur > target_max ? cur : target_max;
}
cpuperf_min = cur_min;
cpuperf_avg = cur_sum * SCX_CPUPERF_ONE / cap_sum;
cpuperf_max = cur_max;
cpuperf_target_min = target_min;
cpuperf_target_avg = target_sum / nr_online_cpus;
cpuperf_target_max = target_max;
out:
scx_bpf_put_cpumask(online);
}
/*
* Dump the currently queued tasks in the shared DSQ to demonstrate the usage of
* scx_bpf_dsq_nr_queued() and DSQ iterator. Raise the dispatch batch count to
* see meaningful dumps in the trace pipe.
*/
static void dump_shared_dsq(void)
{
struct task_struct *p;
s32 nr;
if (!(nr = scx_bpf_dsq_nr_queued(SHARED_DSQ)))
return;
bpf_printk("Dumping %d tasks in SHARED_DSQ in reverse order", nr);
bpf_rcu_read_lock();
bpf_for_each(scx_dsq, p, SHARED_DSQ, SCX_DSQ_ITER_REV)
bpf_printk("%s[%d]", p->comm, p->pid);
bpf_rcu_read_unlock();
}
static int monitor_timerfn(void *map, int *key, struct bpf_timer *timer)
{
bpf_rcu_read_lock();
dispatch_highpri(true);
bpf_rcu_read_unlock();
monitor_cpuperf();
if (print_shared_dsq)
dump_shared_dsq();
bpf_timer_start(timer, ONE_SEC_IN_NS, 0);
return 0;
}
s32 BPF_STRUCT_OPS_SLEEPABLE(qmap_init)
{
u32 key = 0;
struct bpf_timer *timer;
s32 ret;
print_cpus();
ret = scx_bpf_create_dsq(SHARED_DSQ, -1);
if (ret)
return ret;
ret = scx_bpf_create_dsq(HIGHPRI_DSQ, -1);
if (ret)
return ret;
timer = bpf_map_lookup_elem(&monitor_timer, &key);
if (!timer)
return -ESRCH;
bpf_timer_init(timer, &monitor_timer, CLOCK_MONOTONIC);
bpf_timer_set_callback(timer, monitor_timerfn);
return bpf_timer_start(timer, ONE_SEC_IN_NS, 0);
}
void BPF_STRUCT_OPS(qmap_exit, struct scx_exit_info *ei)
{
UEI_RECORD(uei, ei);
}
SCX_OPS_DEFINE(qmap_ops,
.select_cpu = (void *)qmap_select_cpu,
.enqueue = (void *)qmap_enqueue,
.dequeue = (void *)qmap_dequeue,
.dispatch = (void *)qmap_dispatch,
.tick = (void *)qmap_tick,
.core_sched_before = (void *)qmap_core_sched_before,
.cpu_release = (void *)qmap_cpu_release,
.init_task = (void *)qmap_init_task,
.dump = (void *)qmap_dump,
.dump_cpu = (void *)qmap_dump_cpu,
.dump_task = (void *)qmap_dump_task,
.cpu_online = (void *)qmap_cpu_online,
.cpu_offline = (void *)qmap_cpu_offline,
.init = (void *)qmap_init,
.exit = (void *)qmap_exit,
.timeout_ms = 5000U,
.name = "qmap");