linux/lib/maple_tree.c

// SPDX-License-Identifier: GPL-2.0+
/*
 * Maple Tree implementation
 * Copyright (c) 2018-2022 Oracle Corporation
 * Authors: Liam R. Howlett <[email protected]>
 *	    Matthew Wilcox <[email protected]>
 * Copyright (c) 2023 ByteDance
 * Author: Peng Zhang <[email protected]>
 */

/*
 * DOC: Interesting implementation details of the Maple Tree
 *
 * Each node type has a number of slots for entries and a number of slots for
 * pivots.  In the case of dense nodes, the pivots are implied by the position
 * and are simply the slot index + the minimum of the node.
 *
 * In regular B-Tree terms, pivots are called keys.  The term pivot is used to
 * indicate that the tree is specifying ranges.  Pivots may appear in the
 * subtree with an entry attached to the value whereas keys are unique to a
 * specific position of a B-tree.  Pivot values are inclusive of the slot with
 * the same index.
 *
 *
 * The following illustrates the layout of a range64 nodes slots and pivots.
 *
 *
 *  Slots -> | 0 | 1 | 2 | ... | 12 | 13 | 14 | 15 |
 *           ┬   ┬   ┬   ┬     ┬    ┬    ┬    ┬    ┬
 *           │   │   │   │     │    │    │    │    └─ Implied maximum
 *           │   │   │   │     │    │    │    └─ Pivot 14
 *           │   │   │   │     │    │    └─ Pivot 13
 *           │   │   │   │     │    └─ Pivot 12
 *           │   │   │   │     └─ Pivot 11
 *           │   │   │   └─ Pivot 2
 *           │   │   └─ Pivot 1
 *           │   └─ Pivot 0
 *           └─  Implied minimum
 *
 * Slot contents:
 *  Internal (non-leaf) nodes contain pointers to other nodes.
 *  Leaf nodes contain entries.
 *
 * The location of interest is often referred to as an offset.  All offsets have
 * a slot, but the last offset has an implied pivot from the node above (or
 * UINT_MAX for the root node.
 *
 * Ranges complicate certain write activities.  When modifying any of
 * the B-tree variants, it is known that one entry will either be added or
 * deleted.  When modifying the Maple Tree, one store operation may overwrite
 * the entire data set, or one half of the tree, or the middle half of the tree.
 *
 */


#include <linux/maple_tree.h>
#include <linux/xarray.h>
#include <linux/types.h>
#include <linux/export.h>
#include <linux/slab.h>
#include <linux/limits.h>
#include <asm/barrier.h>

#define CREATE_TRACE_POINTS
#include <trace/events/maple_tree.h>

#define MA_ROOT_PARENT

/*
 * Maple state flags
 * * MA_STATE_BULK		- Bulk insert mode
 * * MA_STATE_REBALANCE		- Indicate a rebalance during bulk insert
 * * MA_STATE_PREALLOC		- Preallocated nodes, WARN_ON allocation
 */
#define MA_STATE_BULK
#define MA_STATE_REBALANCE
#define MA_STATE_PREALLOC

#define ma_parent_ptr(x)
#define mas_tree_parent(x)
#define ma_mnode_ptr(x)
#define ma_enode_ptr(x)
static struct kmem_cache *maple_node_cache;

#ifdef CONFIG_DEBUG_MAPLE_TREE
static const unsigned long mt_max[] =;
#define mt_node_max(x)
#endif

static const unsigned char mt_slots[] =;
#define mt_slot_count(x)

static const unsigned char mt_pivots[] =;
#define mt_pivot_count(x)

static const unsigned char mt_min_slots[] =;
#define mt_min_slot_count(x)

#define MAPLE_BIG_NODE_SLOTS
#define MAPLE_BIG_NODE_GAPS

struct maple_big_node {};

/*
 * The maple_subtree_state is used to build a tree to replace a segment of an
 * existing tree in a more atomic way.  Any walkers of the older tree will hit a
 * dead node and restart on updates.
 */
struct maple_subtree_state {};

#ifdef CONFIG_KASAN_STACK
/* Prevent mas_wr_bnode() from exceeding the stack frame limit */
#define noinline_for_kasan
#else
#define noinline_for_kasan
#endif

/* Functions */
static inline struct maple_node *mt_alloc_one(gfp_t gfp)
{}

static inline int mt_alloc_bulk(gfp_t gfp, size_t size, void **nodes)
{}

static inline void mt_free_one(struct maple_node *node)
{}

static inline void mt_free_bulk(size_t size, void __rcu **nodes)
{}

static void mt_free_rcu(struct rcu_head *head)
{}

/*
 * ma_free_rcu() - Use rcu callback to free a maple node
 * @node: The node to free
 *
 * The maple tree uses the parent pointer to indicate this node is no longer in
 * use and will be freed.
 */
static void ma_free_rcu(struct maple_node *node)
{}

static void mas_set_height(struct ma_state *mas)
{}

static unsigned int mas_mt_height(struct ma_state *mas)
{}

static inline unsigned int mt_attr(struct maple_tree *mt)
{}

static __always_inline enum maple_type mte_node_type(
		const struct maple_enode *entry)
{}

static __always_inline bool ma_is_dense(const enum maple_type type)
{}

static __always_inline bool ma_is_leaf(const enum maple_type type)
{}

static __always_inline bool mte_is_leaf(const struct maple_enode *entry)
{}

/*
 * We also reserve values with the bottom two bits set to '10' which are
 * below 4096
 */
static __always_inline bool mt_is_reserved(const void *entry)
{}

static __always_inline void mas_set_err(struct ma_state *mas, long err)
{}

static __always_inline bool mas_is_ptr(const struct ma_state *mas)
{}

static __always_inline bool mas_is_start(const struct ma_state *mas)
{}

static __always_inline bool mas_is_none(const struct ma_state *mas)
{}

static __always_inline bool mas_is_paused(const struct ma_state *mas)
{}

static __always_inline bool mas_is_overflow(struct ma_state *mas)
{}

static inline bool mas_is_underflow(struct ma_state *mas)
{}

static __always_inline struct maple_node *mte_to_node(
		const struct maple_enode *entry)
{}

/*
 * mte_to_mat() - Convert a maple encoded node to a maple topiary node.
 * @entry: The maple encoded node
 *
 * Return: a maple topiary pointer
 */
static inline struct maple_topiary *mte_to_mat(const struct maple_enode *entry)
{}

/*
 * mas_mn() - Get the maple state node.
 * @mas: The maple state
 *
 * Return: the maple node (not encoded - bare pointer).
 */
static inline struct maple_node *mas_mn(const struct ma_state *mas)
{}

/*
 * mte_set_node_dead() - Set a maple encoded node as dead.
 * @mn: The maple encoded node.
 */
static inline void mte_set_node_dead(struct maple_enode *mn)
{}

/* Bit 1 indicates the root is a node */
#define MAPLE_ROOT_NODE
/* maple_type stored bit 3-6 */
#define MAPLE_ENODE_TYPE_SHIFT
/* Bit 2 means a NULL somewhere below */
#define MAPLE_ENODE_NULL

static inline struct maple_enode *mt_mk_node(const struct maple_node *node,
					     enum maple_type type)
{}

static inline void *mte_mk_root(const struct maple_enode *node)
{}

static inline void *mte_safe_root(const struct maple_enode *node)
{}

static inline void __maybe_unused *mte_set_full(const struct maple_enode *node)
{}

static inline void __maybe_unused *mte_clear_full(const struct maple_enode *node)
{}

static inline bool __maybe_unused mte_has_null(const struct maple_enode *node)
{}

static __always_inline bool ma_is_root(struct maple_node *node)
{}

static __always_inline bool mte_is_root(const struct maple_enode *node)
{}

static inline bool mas_is_root_limits(const struct ma_state *mas)
{}

static __always_inline bool mt_is_alloc(struct maple_tree *mt)
{}

/*
 * The Parent Pointer
 * Excluding root, the parent pointer is 256B aligned like all other tree nodes.
 * When storing a 32 or 64 bit values, the offset can fit into 5 bits.  The 16
 * bit values need an extra bit to store the offset.  This extra bit comes from
 * a reuse of the last bit in the node type.  This is possible by using bit 1 to
 * indicate if bit 2 is part of the type or the slot.
 *
 * Note types:
 *  0x??1 = Root
 *  0x?00 = 16 bit nodes
 *  0x010 = 32 bit nodes
 *  0x110 = 64 bit nodes
 *
 * Slot size and alignment
 *  0b??1 : Root
 *  0b?00 : 16 bit values, type in 0-1, slot in 2-7
 *  0b010 : 32 bit values, type in 0-2, slot in 3-7
 *  0b110 : 64 bit values, type in 0-2, slot in 3-7
 */

#define MAPLE_PARENT_ROOT

#define MAPLE_PARENT_SLOT_SHIFT
#define MAPLE_PARENT_SLOT_MASK

#define MAPLE_PARENT_16B_SLOT_SHIFT
#define MAPLE_PARENT_16B_SLOT_MASK

#define MAPLE_PARENT_RANGE64
#define MAPLE_PARENT_RANGE32
#define MAPLE_PARENT_NOT_RANGE16

/*
 * mte_parent_shift() - Get the parent shift for the slot storage.
 * @parent: The parent pointer cast as an unsigned long
 * Return: The shift into that pointer to the star to of the slot
 */
static inline unsigned long mte_parent_shift(unsigned long parent)
{}

/*
 * mte_parent_slot_mask() - Get the slot mask for the parent.
 * @parent: The parent pointer cast as an unsigned long.
 * Return: The slot mask for that parent.
 */
static inline unsigned long mte_parent_slot_mask(unsigned long parent)
{}

/*
 * mas_parent_type() - Return the maple_type of the parent from the stored
 * parent type.
 * @mas: The maple state
 * @enode: The maple_enode to extract the parent's enum
 * Return: The node->parent maple_type
 */
static inline
enum maple_type mas_parent_type(struct ma_state *mas, struct maple_enode *enode)
{}

/*
 * mas_set_parent() - Set the parent node and encode the slot
 * @mas: The maple state
 * @enode: The encoded maple node.
 * @parent: The encoded maple node that is the parent of @enode.
 * @slot: The slot that @enode resides in @parent.
 *
 * Slot number is encoded in the enode->parent bit 3-6 or 2-6, depending on the
 * parent type.
 */
static inline
void mas_set_parent(struct ma_state *mas, struct maple_enode *enode,
		    const struct maple_enode *parent, unsigned char slot)
{}

/*
 * mte_parent_slot() - get the parent slot of @enode.
 * @enode: The encoded maple node.
 *
 * Return: The slot in the parent node where @enode resides.
 */
static __always_inline
unsigned int mte_parent_slot(const struct maple_enode *enode)
{}

/*
 * mte_parent() - Get the parent of @node.
 * @enode: The encoded maple node.
 *
 * Return: The parent maple node.
 */
static __always_inline
struct maple_node *mte_parent(const struct maple_enode *enode)
{}

/*
 * ma_dead_node() - check if the @enode is dead.
 * @enode: The encoded maple node
 *
 * Return: true if dead, false otherwise.
 */
static __always_inline bool ma_dead_node(const struct maple_node *node)
{}

/*
 * mte_dead_node() - check if the @enode is dead.
 * @enode: The encoded maple node
 *
 * Return: true if dead, false otherwise.
 */
static __always_inline bool mte_dead_node(const struct maple_enode *enode)
{}

/*
 * mas_allocated() - Get the number of nodes allocated in a maple state.
 * @mas: The maple state
 *
 * The ma_state alloc member is overloaded to hold a pointer to the first
 * allocated node or to the number of requested nodes to allocate.  If bit 0 is
 * set, then the alloc contains the number of requested nodes.  If there is an
 * allocated node, then the total allocated nodes is in that node.
 *
 * Return: The total number of nodes allocated
 */
static inline unsigned long mas_allocated(const struct ma_state *mas)
{}

/*
 * mas_set_alloc_req() - Set the requested number of allocations.
 * @mas: the maple state
 * @count: the number of allocations.
 *
 * The requested number of allocations is either in the first allocated node,
 * located in @mas->alloc->request_count, or directly in @mas->alloc if there is
 * no allocated node.  Set the request either in the node or do the necessary
 * encoding to store in @mas->alloc directly.
 */
static inline void mas_set_alloc_req(struct ma_state *mas, unsigned long count)
{}

/*
 * mas_alloc_req() - get the requested number of allocations.
 * @mas: The maple state
 *
 * The alloc count is either stored directly in @mas, or in
 * @mas->alloc->request_count if there is at least one node allocated.  Decode
 * the request count if it's stored directly in @mas->alloc.
 *
 * Return: The allocation request count.
 */
static inline unsigned int mas_alloc_req(const struct ma_state *mas)
{}

/*
 * ma_pivots() - Get a pointer to the maple node pivots.
 * @node: the maple node
 * @type: the node type
 *
 * In the event of a dead node, this array may be %NULL
 *
 * Return: A pointer to the maple node pivots
 */
static inline unsigned long *ma_pivots(struct maple_node *node,
					   enum maple_type type)
{}

/*
 * ma_gaps() - Get a pointer to the maple node gaps.
 * @node: the maple node
 * @type: the node type
 *
 * Return: A pointer to the maple node gaps
 */
static inline unsigned long *ma_gaps(struct maple_node *node,
				     enum maple_type type)
{}

/*
 * mas_safe_pivot() - get the pivot at @piv or mas->max.
 * @mas: The maple state
 * @pivots: The pointer to the maple node pivots
 * @piv: The pivot to fetch
 * @type: The maple node type
 *
 * Return: The pivot at @piv within the limit of the @pivots array, @mas->max
 * otherwise.
 */
static __always_inline unsigned long
mas_safe_pivot(const struct ma_state *mas, unsigned long *pivots,
	       unsigned char piv, enum maple_type type)
{}

/*
 * mas_safe_min() - Return the minimum for a given offset.
 * @mas: The maple state
 * @pivots: The pointer to the maple node pivots
 * @offset: The offset into the pivot array
 *
 * Return: The minimum range value that is contained in @offset.
 */
static inline unsigned long
mas_safe_min(struct ma_state *mas, unsigned long *pivots, unsigned char offset)
{}

/*
 * mte_set_pivot() - Set a pivot to a value in an encoded maple node.
 * @mn: The encoded maple node
 * @piv: The pivot offset
 * @val: The value of the pivot
 */
static inline void mte_set_pivot(struct maple_enode *mn, unsigned char piv,
				unsigned long val)
{}

/*
 * ma_slots() - Get a pointer to the maple node slots.
 * @mn: The maple node
 * @mt: The maple node type
 *
 * Return: A pointer to the maple node slots
 */
static inline void __rcu **ma_slots(struct maple_node *mn, enum maple_type mt)
{}

static inline bool mt_write_locked(const struct maple_tree *mt)
{}

static __always_inline bool mt_locked(const struct maple_tree *mt)
{}

static __always_inline void *mt_slot(const struct maple_tree *mt,
		void __rcu **slots, unsigned char offset)
{}

static __always_inline void *mt_slot_locked(struct maple_tree *mt,
		void __rcu **slots, unsigned char offset)
{}
/*
 * mas_slot_locked() - Get the slot value when holding the maple tree lock.
 * @mas: The maple state
 * @slots: The pointer to the slots
 * @offset: The offset into the slots array to fetch
 *
 * Return: The entry stored in @slots at the @offset.
 */
static __always_inline void *mas_slot_locked(struct ma_state *mas,
		void __rcu **slots, unsigned char offset)
{}

/*
 * mas_slot() - Get the slot value when not holding the maple tree lock.
 * @mas: The maple state
 * @slots: The pointer to the slots
 * @offset: The offset into the slots array to fetch
 *
 * Return: The entry stored in @slots at the @offset
 */
static __always_inline void *mas_slot(struct ma_state *mas, void __rcu **slots,
		unsigned char offset)
{}

/*
 * mas_root() - Get the maple tree root.
 * @mas: The maple state.
 *
 * Return: The pointer to the root of the tree
 */
static __always_inline void *mas_root(struct ma_state *mas)
{}

static inline void *mt_root_locked(struct maple_tree *mt)
{}

/*
 * mas_root_locked() - Get the maple tree root when holding the maple tree lock.
 * @mas: The maple state.
 *
 * Return: The pointer to the root of the tree
 */
static inline void *mas_root_locked(struct ma_state *mas)
{}

static inline struct maple_metadata *ma_meta(struct maple_node *mn,
					     enum maple_type mt)
{}

/*
 * ma_set_meta() - Set the metadata information of a node.
 * @mn: The maple node
 * @mt: The maple node type
 * @offset: The offset of the highest sub-gap in this node.
 * @end: The end of the data in this node.
 */
static inline void ma_set_meta(struct maple_node *mn, enum maple_type mt,
			       unsigned char offset, unsigned char end)
{}

/*
 * mt_clear_meta() - clear the metadata information of a node, if it exists
 * @mt: The maple tree
 * @mn: The maple node
 * @type: The maple node type
 */
static inline void mt_clear_meta(struct maple_tree *mt, struct maple_node *mn,
				  enum maple_type type)
{}

/*
 * ma_meta_end() - Get the data end of a node from the metadata
 * @mn: The maple node
 * @mt: The maple node type
 */
static inline unsigned char ma_meta_end(struct maple_node *mn,
					enum maple_type mt)
{}

/*
 * ma_meta_gap() - Get the largest gap location of a node from the metadata
 * @mn: The maple node
 */
static inline unsigned char ma_meta_gap(struct maple_node *mn)
{}

/*
 * ma_set_meta_gap() - Set the largest gap location in a nodes metadata
 * @mn: The maple node
 * @mt: The maple node type
 * @offset: The location of the largest gap.
 */
static inline void ma_set_meta_gap(struct maple_node *mn, enum maple_type mt,
				   unsigned char offset)
{}

/*
 * mat_add() - Add a @dead_enode to the ma_topiary of a list of dead nodes.
 * @mat: the ma_topiary, a linked list of dead nodes.
 * @dead_enode: the node to be marked as dead and added to the tail of the list
 *
 * Add the @dead_enode to the linked list in @mat.
 */
static inline void mat_add(struct ma_topiary *mat,
			   struct maple_enode *dead_enode)
{}

static void mt_free_walk(struct rcu_head *head);
static void mt_destroy_walk(struct maple_enode *enode, struct maple_tree *mt,
			    bool free);
/*
 * mas_mat_destroy() - Free all nodes and subtrees in a dead list.
 * @mas: the maple state
 * @mat: the ma_topiary linked list of dead nodes to free.
 *
 * Destroy walk a dead list.
 */
static void mas_mat_destroy(struct ma_state *mas, struct ma_topiary *mat)
{}
/*
 * mas_descend() - Descend into the slot stored in the ma_state.
 * @mas: the maple state.
 *
 * Note: Not RCU safe, only use in write side or debug code.
 */
static inline void mas_descend(struct ma_state *mas)
{}

/*
 * mte_set_gap() - Set a maple node gap.
 * @mn: The encoded maple node
 * @gap: The offset of the gap to set
 * @val: The gap value
 */
static inline void mte_set_gap(const struct maple_enode *mn,
				 unsigned char gap, unsigned long val)
{}

/*
 * mas_ascend() - Walk up a level of the tree.
 * @mas: The maple state
 *
 * Sets the @mas->max and @mas->min to the correct values when walking up.  This
 * may cause several levels of walking up to find the correct min and max.
 * May find a dead node which will cause a premature return.
 * Return: 1 on dead node, 0 otherwise
 */
static int mas_ascend(struct ma_state *mas)
{}

/*
 * mas_pop_node() - Get a previously allocated maple node from the maple state.
 * @mas: The maple state
 *
 * Return: A pointer to a maple node.
 */
static inline struct maple_node *mas_pop_node(struct ma_state *mas)
{}

/*
 * mas_push_node() - Push a node back on the maple state allocation.
 * @mas: The maple state
 * @used: The used maple node
 *
 * Stores the maple node back into @mas->alloc for reuse.  Updates allocated and
 * requested node count as necessary.
 */
static inline void mas_push_node(struct ma_state *mas, struct maple_node *used)
{}

/*
 * mas_alloc_nodes() - Allocate nodes into a maple state
 * @mas: The maple state
 * @gfp: The GFP Flags
 */
static inline void mas_alloc_nodes(struct ma_state *mas, gfp_t gfp)
{}

/*
 * mas_free() - Free an encoded maple node
 * @mas: The maple state
 * @used: The encoded maple node to free.
 *
 * Uses rcu free if necessary, pushes @used back on the maple state allocations
 * otherwise.
 */
static inline void mas_free(struct ma_state *mas, struct maple_enode *used)
{}

/*
 * mas_node_count_gfp() - Check if enough nodes are allocated and request more
 * if there is not enough nodes.
 * @mas: The maple state
 * @count: The number of nodes needed
 * @gfp: the gfp flags
 */
static void mas_node_count_gfp(struct ma_state *mas, int count, gfp_t gfp)
{}

/*
 * mas_node_count() - Check if enough nodes are allocated and request more if
 * there is not enough nodes.
 * @mas: The maple state
 * @count: The number of nodes needed
 *
 * Note: Uses GFP_NOWAIT | __GFP_NOWARN for gfp flags.
 */
static void mas_node_count(struct ma_state *mas, int count)
{}

/*
 * mas_start() - Sets up maple state for operations.
 * @mas: The maple state.
 *
 * If mas->status == mas_start, then set the min, max and depth to
 * defaults.
 *
 * Return:
 * - If mas->node is an error or not mas_start, return NULL.
 * - If it's an empty tree:     NULL & mas->status == ma_none
 * - If it's a single entry:    The entry & mas->status == ma_root
 * - If it's a tree:            NULL & mas->status == ma_active
 */
static inline struct maple_enode *mas_start(struct ma_state *mas)
{}

/*
 * ma_data_end() - Find the end of the data in a node.
 * @node: The maple node
 * @type: The maple node type
 * @pivots: The array of pivots in the node
 * @max: The maximum value in the node
 *
 * Uses metadata to find the end of the data when possible.
 * Return: The zero indexed last slot with data (may be null).
 */
static __always_inline unsigned char ma_data_end(struct maple_node *node,
		enum maple_type type, unsigned long *pivots, unsigned long max)
{}

/*
 * mas_data_end() - Find the end of the data (slot).
 * @mas: the maple state
 *
 * This method is optimized to check the metadata of a node if the node type
 * supports data end metadata.
 *
 * Return: The zero indexed last slot with data (may be null).
 */
static inline unsigned char mas_data_end(struct ma_state *mas)
{}

/*
 * mas_leaf_max_gap() - Returns the largest gap in a leaf node
 * @mas: the maple state
 *
 * Return: The maximum gap in the leaf.
 */
static unsigned long mas_leaf_max_gap(struct ma_state *mas)
{}

/*
 * ma_max_gap() - Get the maximum gap in a maple node (non-leaf)
 * @node: The maple node
 * @gaps: The pointer to the gaps
 * @mt: The maple node type
 * @off: Pointer to store the offset location of the gap.
 *
 * Uses the metadata data end to scan backwards across set gaps.
 *
 * Return: The maximum gap value
 */
static inline unsigned long
ma_max_gap(struct maple_node *node, unsigned long *gaps, enum maple_type mt,
	    unsigned char *off)
{}

/*
 * mas_max_gap() - find the largest gap in a non-leaf node and set the slot.
 * @mas: The maple state.
 *
 * Return: The gap value.
 */
static inline unsigned long mas_max_gap(struct ma_state *mas)
{}

/*
 * mas_parent_gap() - Set the parent gap and any gaps above, as needed
 * @mas: The maple state
 * @offset: The gap offset in the parent to set
 * @new: The new gap value.
 *
 * Set the parent gap then continue to set the gap upwards, using the metadata
 * of the parent to see if it is necessary to check the node above.
 */
static inline void mas_parent_gap(struct ma_state *mas, unsigned char offset,
		unsigned long new)
{}

/*
 * mas_update_gap() - Update a nodes gaps and propagate up if necessary.
 * @mas: the maple state.
 */
static inline void mas_update_gap(struct ma_state *mas)
{}

/*
 * mas_adopt_children() - Set the parent pointer of all nodes in @parent to
 * @parent with the slot encoded.
 * @mas: the maple state (for the tree)
 * @parent: the maple encoded node containing the children.
 */
static inline void mas_adopt_children(struct ma_state *mas,
		struct maple_enode *parent)
{}

/*
 * mas_put_in_tree() - Put a new node in the tree, smp_wmb(), and mark the old
 * node as dead.
 * @mas: the maple state with the new node
 * @old_enode: The old maple encoded node to replace.
 */
static inline void mas_put_in_tree(struct ma_state *mas,
		struct maple_enode *old_enode)
	__must_hold(mas->tree->ma_lock)
{}

/*
 * mas_replace_node() - Replace a node by putting it in the tree, marking it
 * dead, and freeing it.
 * the parent encoding to locate the maple node in the tree.
 * @mas: the ma_state with @mas->node pointing to the new node.
 * @old_enode: The old maple encoded node.
 */
static inline void mas_replace_node(struct ma_state *mas,
		struct maple_enode *old_enode)
	__must_hold(mas->tree->ma_lock)
{}

/*
 * mas_find_child() - Find a child who has the parent @mas->node.
 * @mas: the maple state with the parent.
 * @child: the maple state to store the child.
 */
static inline bool mas_find_child(struct ma_state *mas, struct ma_state *child)
	__must_hold(mas->tree->ma_lock)
{}

/*
 * mab_shift_right() - Shift the data in mab right. Note, does not clean out the
 * old data or set b_node->b_end.
 * @b_node: the maple_big_node
 * @shift: the shift count
 */
static inline void mab_shift_right(struct maple_big_node *b_node,
				 unsigned char shift)
{}

/*
 * mab_middle_node() - Check if a middle node is needed (unlikely)
 * @b_node: the maple_big_node that contains the data.
 * @split: the potential split location
 * @slot_count: the size that can be stored in a single node being considered.
 *
 * Return: true if a middle node is required.
 */
static inline bool mab_middle_node(struct maple_big_node *b_node, int split,
				   unsigned char slot_count)
{}

/*
 * mab_no_null_split() - ensure the split doesn't fall on a NULL
 * @b_node: the maple_big_node with the data
 * @split: the suggested split location
 * @slot_count: the number of slots in the node being considered.
 *
 * Return: the split location.
 */
static inline int mab_no_null_split(struct maple_big_node *b_node,
				    unsigned char split, unsigned char slot_count)
{}

/*
 * mab_calc_split() - Calculate the split location and if there needs to be two
 * splits.
 * @mas: The maple state
 * @bn: The maple_big_node with the data
 * @mid_split: The second split, if required.  0 otherwise.
 *
 * Return: The first split location.  The middle split is set in @mid_split.
 */
static inline int mab_calc_split(struct ma_state *mas,
	 struct maple_big_node *bn, unsigned char *mid_split, unsigned long min)
{}

/*
 * mas_mab_cp() - Copy data from a maple state inclusively to a maple_big_node
 * and set @b_node->b_end to the next free slot.
 * @mas: The maple state
 * @mas_start: The starting slot to copy
 * @mas_end: The end slot to copy (inclusively)
 * @b_node: The maple_big_node to place the data
 * @mab_start: The starting location in maple_big_node to store the data.
 */
static inline void mas_mab_cp(struct ma_state *mas, unsigned char mas_start,
			unsigned char mas_end, struct maple_big_node *b_node,
			unsigned char mab_start)
{}

/*
 * mas_leaf_set_meta() - Set the metadata of a leaf if possible.
 * @node: The maple node
 * @mt: The maple type
 * @end: The node end
 */
static inline void mas_leaf_set_meta(struct maple_node *node,
		enum maple_type mt, unsigned char end)
{}

/*
 * mab_mas_cp() - Copy data from maple_big_node to a maple encoded node.
 * @b_node: the maple_big_node that has the data
 * @mab_start: the start location in @b_node.
 * @mab_end: The end location in @b_node (inclusively)
 * @mas: The maple state with the maple encoded node.
 */
static inline void mab_mas_cp(struct maple_big_node *b_node,
			      unsigned char mab_start, unsigned char mab_end,
			      struct ma_state *mas, bool new_max)
{}

/*
 * mas_bulk_rebalance() - Rebalance the end of a tree after a bulk insert.
 * @mas: The maple state
 * @end: The maple node end
 * @mt: The maple node type
 */
static inline void mas_bulk_rebalance(struct ma_state *mas, unsigned char end,
				      enum maple_type mt)
{}

/*
 * mas_store_b_node() - Store an @entry into the b_node while also copying the
 * data from a maple encoded node.
 * @wr_mas: the maple write state
 * @b_node: the maple_big_node to fill with data
 * @offset_end: the offset to end copying
 *
 * Return: The actual end of the data stored in @b_node
 */
static noinline_for_kasan void mas_store_b_node(struct ma_wr_state *wr_mas,
		struct maple_big_node *b_node, unsigned char offset_end)
{}

/*
 * mas_prev_sibling() - Find the previous node with the same parent.
 * @mas: the maple state
 *
 * Return: True if there is a previous sibling, false otherwise.
 */
static inline bool mas_prev_sibling(struct ma_state *mas)
{}

/*
 * mas_next_sibling() - Find the next node with the same parent.
 * @mas: the maple state
 *
 * Return: true if there is a next sibling, false otherwise.
 */
static inline bool mas_next_sibling(struct ma_state *mas)
{}

/*
 * mas_node_or_none() - Set the enode and state.
 * @mas: the maple state
 * @enode: The encoded maple node.
 *
 * Set the node to the enode and the status.
 */
static inline void mas_node_or_none(struct ma_state *mas,
		struct maple_enode *enode)
{}

/*
 * mas_wr_node_walk() - Find the correct offset for the index in the @mas.
 *                      If @mas->index cannot be found within the containing
 *                      node, we traverse to the last entry in the node.
 * @wr_mas: The maple write state
 *
 * Uses mas_slot_locked() and does not need to worry about dead nodes.
 */
static inline void mas_wr_node_walk(struct ma_wr_state *wr_mas)
{}

/*
 * mast_rebalance_next() - Rebalance against the next node
 * @mast: The maple subtree state
 */
static inline void mast_rebalance_next(struct maple_subtree_state *mast)
{}

/*
 * mast_rebalance_prev() - Rebalance against the previous node
 * @mast: The maple subtree state
 */
static inline void mast_rebalance_prev(struct maple_subtree_state *mast)
{}

/*
 * mast_spanning_rebalance() - Rebalance nodes with nearest neighbour favouring
 * the node to the right.  Checking the nodes to the right then the left at each
 * level upwards until root is reached.
 * Data is copied into the @mast->bn.
 * @mast: The maple_subtree_state.
 */
static inline
bool mast_spanning_rebalance(struct maple_subtree_state *mast)
{}

/*
 * mast_ascend() - Ascend the original left and right maple states.
 * @mast: the maple subtree state.
 *
 * Ascend the original left and right sides.  Set the offsets to point to the
 * data already in the new tree (@mast->l and @mast->r).
 */
static inline void mast_ascend(struct maple_subtree_state *mast)
{}

/*
 * mas_new_ma_node() - Create and return a new maple node.  Helper function.
 * @mas: the maple state with the allocations.
 * @b_node: the maple_big_node with the type encoding.
 *
 * Use the node type from the maple_big_node to allocate a new node from the
 * ma_state.  This function exists mainly for code readability.
 *
 * Return: A new maple encoded node
 */
static inline struct maple_enode
*mas_new_ma_node(struct ma_state *mas, struct maple_big_node *b_node)
{}

/*
 * mas_mab_to_node() - Set up right and middle nodes
 *
 * @mas: the maple state that contains the allocations.
 * @b_node: the node which contains the data.
 * @left: The pointer which will have the left node
 * @right: The pointer which may have the right node
 * @middle: the pointer which may have the middle node (rare)
 * @mid_split: the split location for the middle node
 *
 * Return: the split of left.
 */
static inline unsigned char mas_mab_to_node(struct ma_state *mas,
	struct maple_big_node *b_node, struct maple_enode **left,
	struct maple_enode **right, struct maple_enode **middle,
	unsigned char *mid_split, unsigned long min)
{}

/*
 * mab_set_b_end() - Add entry to b_node at b_node->b_end and increment the end
 * pointer.
 * @b_node: the big node to add the entry
 * @mas: the maple state to get the pivot (mas->max)
 * @entry: the entry to add, if NULL nothing happens.
 */
static inline void mab_set_b_end(struct maple_big_node *b_node,
				 struct ma_state *mas,
				 void *entry)
{}

/*
 * mas_set_split_parent() - combine_then_separate helper function.  Sets the parent
 * of @mas->node to either @left or @right, depending on @slot and @split
 *
 * @mas: the maple state with the node that needs a parent
 * @left: possible parent 1
 * @right: possible parent 2
 * @slot: the slot the mas->node was placed
 * @split: the split location between @left and @right
 */
static inline void mas_set_split_parent(struct ma_state *mas,
					struct maple_enode *left,
					struct maple_enode *right,
					unsigned char *slot, unsigned char split)
{}

/*
 * mte_mid_split_check() - Check if the next node passes the mid-split
 * @l: Pointer to left encoded maple node.
 * @m: Pointer to middle encoded maple node.
 * @r: Pointer to right encoded maple node.
 * @slot: The offset
 * @split: The split location.
 * @mid_split: The middle split.
 */
static inline void mte_mid_split_check(struct maple_enode **l,
				       struct maple_enode **r,
				       struct maple_enode *right,
				       unsigned char slot,
				       unsigned char *split,
				       unsigned char mid_split)
{}

/*
 * mast_set_split_parents() - Helper function to set three nodes parents.  Slot
 * is taken from @mast->l.
 * @mast: the maple subtree state
 * @left: the left node
 * @right: the right node
 * @split: the split location.
 */
static inline void mast_set_split_parents(struct maple_subtree_state *mast,
					  struct maple_enode *left,
					  struct maple_enode *middle,
					  struct maple_enode *right,
					  unsigned char split,
					  unsigned char mid_split)
{}

/*
 * mas_topiary_node() - Dispose of a single node
 * @mas: The maple state for pushing nodes
 * @in_rcu: If the tree is in rcu mode
 *
 * The node will either be RCU freed or pushed back on the maple state.
 */
static inline void mas_topiary_node(struct ma_state *mas,
		struct ma_state *tmp_mas, bool in_rcu)
{}

/*
 * mas_topiary_replace() - Replace the data with new data, then repair the
 * parent links within the new tree.  Iterate over the dead sub-tree and collect
 * the dead subtrees and topiary the nodes that are no longer of use.
 *
 * The new tree will have up to three children with the correct parent.  Keep
 * track of the new entries as they need to be followed to find the next level
 * of new entries.
 *
 * The old tree will have up to three children with the old parent.  Keep track
 * of the old entries as they may have more nodes below replaced.  Nodes within
 * [index, last] are dead subtrees, others need to be freed and followed.
 *
 * @mas: The maple state pointing at the new data
 * @old_enode: The maple encoded node being replaced
 *
 */
static inline void mas_topiary_replace(struct ma_state *mas,
		struct maple_enode *old_enode)
{}

/*
 * mas_wmb_replace() - Write memory barrier and replace
 * @mas: The maple state
 * @old_enode: The old maple encoded node that is being replaced.
 *
 * Updates gap as necessary.
 */
static inline void mas_wmb_replace(struct ma_state *mas,
		struct maple_enode *old_enode)
{}

/*
 * mast_cp_to_nodes() - Copy data out to nodes.
 * @mast: The maple subtree state
 * @left: The left encoded maple node
 * @middle: The middle encoded maple node
 * @right: The right encoded maple node
 * @split: The location to split between left and (middle ? middle : right)
 * @mid_split: The location to split between middle and right.
 */
static inline void mast_cp_to_nodes(struct maple_subtree_state *mast,
	struct maple_enode *left, struct maple_enode *middle,
	struct maple_enode *right, unsigned char split, unsigned char mid_split)
{}

/*
 * mast_combine_cp_left - Copy in the original left side of the tree into the
 * combined data set in the maple subtree state big node.
 * @mast: The maple subtree state
 */
static inline void mast_combine_cp_left(struct maple_subtree_state *mast)
{}

/*
 * mast_combine_cp_right: Copy in the original right side of the tree into the
 * combined data set in the maple subtree state big node.
 * @mast: The maple subtree state
 */
static inline void mast_combine_cp_right(struct maple_subtree_state *mast)
{}

/*
 * mast_sufficient: Check if the maple subtree state has enough data in the big
 * node to create at least one sufficient node
 * @mast: the maple subtree state
 */
static inline bool mast_sufficient(struct maple_subtree_state *mast)
{}

/*
 * mast_overflow: Check if there is too much data in the subtree state for a
 * single node.
 * @mast: The maple subtree state
 */
static inline bool mast_overflow(struct maple_subtree_state *mast)
{}

static inline void *mtree_range_walk(struct ma_state *mas)
{}

/*
 * mas_spanning_rebalance() - Rebalance across two nodes which may not be peers.
 * @mas: The starting maple state
 * @mast: The maple_subtree_state, keeps track of 4 maple states.
 * @count: The estimated count of iterations needed.
 *
 * Follow the tree upwards from @l_mas and @r_mas for @count, or until the root
 * is hit.  First @b_node is split into two entries which are inserted into the
 * next iteration of the loop.  @b_node is returned populated with the final
 * iteration. @mas is used to obtain allocations.  orig_l_mas keeps track of the
 * nodes that will remain active by using orig_l_mas->index and orig_l_mas->last
 * to account of what has been copied into the new sub-tree.  The update of
 * orig_l_mas->last is used in mas_consume to find the slots that will need to
 * be either freed or destroyed.  orig_l_mas->depth keeps track of the height of
 * the new sub-tree in case the sub-tree becomes the full tree.
 */
static void mas_spanning_rebalance(struct ma_state *mas,
		struct maple_subtree_state *mast, unsigned char count)
{}

/*
 * mas_rebalance() - Rebalance a given node.
 * @mas: The maple state
 * @b_node: The big maple node.
 *
 * Rebalance two nodes into a single node or two new nodes that are sufficient.
 * Continue upwards until tree is sufficient.
 */
static inline void mas_rebalance(struct ma_state *mas,
				struct maple_big_node *b_node)
{}

/*
 * mas_destroy_rebalance() - Rebalance left-most node while destroying the maple
 * state.
 * @mas: The maple state
 * @end: The end of the left-most node.
 *
 * During a mass-insert event (such as forking), it may be necessary to
 * rebalance the left-most node when it is not sufficient.
 */
static inline void mas_destroy_rebalance(struct ma_state *mas, unsigned char end)
{}

/*
 * mas_split_final_node() - Split the final node in a subtree operation.
 * @mast: the maple subtree state
 * @mas: The maple state
 * @height: The height of the tree in case it's a new root.
 */
static inline void mas_split_final_node(struct maple_subtree_state *mast,
					struct ma_state *mas, int height)
{}

/*
 * mast_fill_bnode() - Copy data into the big node in the subtree state
 * @mast: The maple subtree state
 * @mas: the maple state
 * @skip: The number of entries to skip for new nodes insertion.
 */
static inline void mast_fill_bnode(struct maple_subtree_state *mast,
					 struct ma_state *mas,
					 unsigned char skip)
{}

/*
 * mast_split_data() - Split the data in the subtree state big node into regular
 * nodes.
 * @mast: The maple subtree state
 * @mas: The maple state
 * @split: The location to split the big node
 */
static inline void mast_split_data(struct maple_subtree_state *mast,
	   struct ma_state *mas, unsigned char split)
{}

/*
 * mas_push_data() - Instead of splitting a node, it is beneficial to push the
 * data to the right or left node if there is room.
 * @mas: The maple state
 * @height: The current height of the maple state
 * @mast: The maple subtree state
 * @left: Push left or not.
 *
 * Keeping the height of the tree low means faster lookups.
 *
 * Return: True if pushed, false otherwise.
 */
static inline bool mas_push_data(struct ma_state *mas, int height,
				 struct maple_subtree_state *mast, bool left)
{}

/*
 * mas_split() - Split data that is too big for one node into two.
 * @mas: The maple state
 * @b_node: The maple big node
 */
static void mas_split(struct ma_state *mas, struct maple_big_node *b_node)
{}

/*
 * mas_commit_b_node() - Commit the big node into the tree.
 * @wr_mas: The maple write state
 * @b_node: The maple big node
 */
static noinline_for_kasan void mas_commit_b_node(struct ma_wr_state *wr_mas,
			    struct maple_big_node *b_node)
{}

/*
 * mas_root_expand() - Expand a root to a node
 * @mas: The maple state
 * @entry: The entry to store into the tree
 */
static inline int mas_root_expand(struct ma_state *mas, void *entry)
{}

static inline void mas_store_root(struct ma_state *mas, void *entry)
{}

/*
 * mas_is_span_wr() - Check if the write needs to be treated as a write that
 * spans the node.
 * @wr_mas: The maple write state
 *
 * Spanning writes are writes that start in one node and end in another OR if
 * the write of a %NULL will cause the node to end with a %NULL.
 *
 * Return: True if this is a spanning write, false otherwise.
 */
static bool mas_is_span_wr(struct ma_wr_state *wr_mas)
{}

static inline void mas_wr_walk_descend(struct ma_wr_state *wr_mas)
{}

static inline void mas_wr_walk_traverse(struct ma_wr_state *wr_mas)
{}
/*
 * mas_wr_walk() - Walk the tree for a write.
 * @wr_mas: The maple write state
 *
 * Uses mas_slot_locked() and does not need to worry about dead nodes.
 *
 * Return: True if it's contained in a node, false on spanning write.
 */
static bool mas_wr_walk(struct ma_wr_state *wr_mas)
{}

static void mas_wr_walk_index(struct ma_wr_state *wr_mas)
{}
/*
 * mas_extend_spanning_null() - Extend a store of a %NULL to include surrounding %NULLs.
 * @l_wr_mas: The left maple write state
 * @r_wr_mas: The right maple write state
 */
static inline void mas_extend_spanning_null(struct ma_wr_state *l_wr_mas,
					    struct ma_wr_state *r_wr_mas)
{}

static inline void *mas_state_walk(struct ma_state *mas)
{}

/*
 * mtree_lookup_walk() - Internal quick lookup that does not keep maple state up
 * to date.
 *
 * @mas: The maple state.
 *
 * Note: Leaves mas in undesirable state.
 * Return: The entry for @mas->index or %NULL on dead node.
 */
static inline void *mtree_lookup_walk(struct ma_state *mas)
{}

static void mte_destroy_walk(struct maple_enode *, struct maple_tree *);
/*
 * mas_new_root() - Create a new root node that only contains the entry passed
 * in.
 * @mas: The maple state
 * @entry: The entry to store.
 *
 * Only valid when the index == 0 and the last == ULONG_MAX
 */
static inline void mas_new_root(struct ma_state *mas, void *entry)
{}
/*
 * mas_wr_spanning_store() - Create a subtree with the store operation completed
 * and new nodes where necessary, then place the sub-tree in the actual tree.
 * Note that mas is expected to point to the node which caused the store to
 * span.
 * @wr_mas: The maple write state
 */
static noinline void mas_wr_spanning_store(struct ma_wr_state *wr_mas)
{}

/*
 * mas_wr_node_store() - Attempt to store the value in a node
 * @wr_mas: The maple write state
 *
 * Attempts to reuse the node, but may allocate.
 */
static inline void mas_wr_node_store(struct ma_wr_state *wr_mas,
				     unsigned char new_end)
{}

/*
 * mas_wr_slot_store: Attempt to store a value in a slot.
 * @wr_mas: the maple write state
 */
static inline void mas_wr_slot_store(struct ma_wr_state *wr_mas)
{}

static inline void mas_wr_extend_null(struct ma_wr_state *wr_mas)
{}

static inline void mas_wr_end_piv(struct ma_wr_state *wr_mas)
{}

static inline unsigned char mas_wr_new_end(struct ma_wr_state *wr_mas)
{}

/*
 * mas_wr_append: Attempt to append
 * @wr_mas: the maple write state
 * @new_end: The end of the node after the modification
 *
 * This is currently unsafe in rcu mode since the end of the node may be cached
 * by readers while the node contents may be updated which could result in
 * inaccurate information.
 */
static inline void mas_wr_append(struct ma_wr_state *wr_mas,
		unsigned char new_end)
{}

/*
 * mas_wr_bnode() - Slow path for a modification.
 * @wr_mas: The write maple state
 *
 * This is where split, rebalance end up.
 */
static void mas_wr_bnode(struct ma_wr_state *wr_mas)
{}

/*
 * mas_wr_store_entry() - Internal call to store a value
 * @wr_mas: The maple write state
 */
static inline void mas_wr_store_entry(struct ma_wr_state *wr_mas)
{}

static inline void mas_wr_prealloc_setup(struct ma_wr_state *wr_mas)
{}

/**
 * mas_prealloc_calc() - Calculate number of nodes needed for a
 * given store oepration
 * @mas: The maple state
 * @entry: The entry to store into the tree
 *
 * Return: Number of nodes required for preallocation.
 */
static inline int mas_prealloc_calc(struct ma_state *mas, void *entry)
{}

/*
 * mas_wr_store_type() - Set the store type for a given
 * store operation.
 * @wr_mas: The maple write state
 */
static inline void mas_wr_store_type(struct ma_wr_state *wr_mas)
{}

/**
 * mas_wr_preallocate() - Preallocate enough nodes for a store operation
 * @wr_mas: The maple write state
 * @entry: The entry that will be stored
 *
 */
static inline void mas_wr_preallocate(struct ma_wr_state *wr_mas, void *entry)
{}

/**
 * mas_insert() - Internal call to insert a value
 * @mas: The maple state
 * @entry: The entry to store
 *
 * Return: %NULL or the contents that already exists at the requested index
 * otherwise.  The maple state needs to be checked for error conditions.
 */
static inline void *mas_insert(struct ma_state *mas, void *entry)
{}

/**
 * mas_alloc_cyclic() - Internal call to find somewhere to store an entry
 * @mas: The maple state.
 * @startp: Pointer to ID.
 * @range_lo: Lower bound of range to search.
 * @range_hi: Upper bound of range to search.
 * @entry: The entry to store.
 * @next: Pointer to next ID to allocate.
 * @gfp: The GFP_FLAGS to use for allocations.
 *
 * Return: 0 if the allocation succeeded without wrapping, 1 if the
 * allocation succeeded after wrapping, or -EBUSY if there are no
 * free entries.
 */
int mas_alloc_cyclic(struct ma_state *mas, unsigned long *startp,
		void *entry, unsigned long range_lo, unsigned long range_hi,
		unsigned long *next, gfp_t gfp)
{}
EXPORT_SYMBOL();

static __always_inline void mas_rewalk(struct ma_state *mas, unsigned long index)
{}

static __always_inline bool mas_rewalk_if_dead(struct ma_state *mas,
		struct maple_node *node, const unsigned long index)
{}

/*
 * mas_prev_node() - Find the prev non-null entry at the same level in the
 * tree.  The prev value will be mas->node[mas->offset] or the status will be
 * ma_none.
 * @mas: The maple state
 * @min: The lower limit to search
 *
 * The prev node value will be mas->node[mas->offset] or the status will be
 * ma_none.
 * Return: 1 if the node is dead, 0 otherwise.
 */
static int mas_prev_node(struct ma_state *mas, unsigned long min)
{}

/*
 * mas_prev_slot() - Get the entry in the previous slot
 *
 * @mas: The maple state
 * @min: The minimum starting range
 * @empty: Can be empty
 *
 * Return: The entry in the previous slot which is possibly NULL
 */
static void *mas_prev_slot(struct ma_state *mas, unsigned long min, bool empty)
{}

/*
 * mas_next_node() - Get the next node at the same level in the tree.
 * @mas: The maple state
 * @node: The maple node
 * @max: The maximum pivot value to check.
 *
 * The next value will be mas->node[mas->offset] or the status will have
 * overflowed.
 * Return: 1 on dead node, 0 otherwise.
 */
static int mas_next_node(struct ma_state *mas, struct maple_node *node,
		unsigned long max)
{}

/*
 * mas_next_slot() - Get the entry in the next slot
 *
 * @mas: The maple state
 * @max: The maximum starting range
 * @empty: Can be empty
 *
 * Return: The entry in the next slot which is possibly NULL
 */
static void *mas_next_slot(struct ma_state *mas, unsigned long max, bool empty)
{}

/*
 * mas_next_entry() - Internal function to get the next entry.
 * @mas: The maple state
 * @limit: The maximum range start.
 *
 * Set the @mas->node to the next entry and the range_start to
 * the beginning value for the entry.  Does not check beyond @limit.
 * Sets @mas->index and @mas->last to the range, Does not update @mas->index and
 * @mas->last on overflow.
 * Restarts on dead nodes.
 *
 * Return: the next entry or %NULL.
 */
static inline void *mas_next_entry(struct ma_state *mas, unsigned long limit)
{}

/*
 * mas_rev_awalk() - Internal function.  Reverse allocation walk.  Find the
 * highest gap address of a given size in a given node and descend.
 * @mas: The maple state
 * @size: The needed size.
 *
 * Return: True if found in a leaf, false otherwise.
 *
 */
static bool mas_rev_awalk(struct ma_state *mas, unsigned long size,
		unsigned long *gap_min, unsigned long *gap_max)
{}

static inline bool mas_anode_descend(struct ma_state *mas, unsigned long size)
{}

/**
 * mas_walk() - Search for @mas->index in the tree.
 * @mas: The maple state.
 *
 * mas->index and mas->last will be set to the range if there is a value.  If
 * mas->status is ma_none, reset to ma_start
 *
 * Return: the entry at the location or %NULL.
 */
void *mas_walk(struct ma_state *mas)
{}
EXPORT_SYMBOL_GPL();

static inline bool mas_rewind_node(struct ma_state *mas)
{}

/*
 * mas_skip_node() - Internal function.  Skip over a node.
 * @mas: The maple state.
 *
 * Return: true if there is another node, false otherwise.
 */
static inline bool mas_skip_node(struct ma_state *mas)
{}

/*
 * mas_awalk() - Allocation walk.  Search from low address to high, for a gap of
 * @size
 * @mas: The maple state
 * @size: The size of the gap required
 *
 * Search between @mas->index and @mas->last for a gap of @size.
 */
static inline void mas_awalk(struct ma_state *mas, unsigned long size)
{}

/*
 * mas_sparse_area() - Internal function.  Return upper or lower limit when
 * searching for a gap in an empty tree.
 * @mas: The maple state
 * @min: the minimum range
 * @max: The maximum range
 * @size: The size of the gap
 * @fwd: Searching forward or back
 */
static inline int mas_sparse_area(struct ma_state *mas, unsigned long min,
				unsigned long max, unsigned long size, bool fwd)
{}

/*
 * mas_empty_area() - Get the lowest address within the range that is
 * sufficient for the size requested.
 * @mas: The maple state
 * @min: The lowest value of the range
 * @max: The highest value of the range
 * @size: The size needed
 */
int mas_empty_area(struct ma_state *mas, unsigned long min,
		unsigned long max, unsigned long size)
{}
EXPORT_SYMBOL_GPL();

/*
 * mas_empty_area_rev() - Get the highest address within the range that is
 * sufficient for the size requested.
 * @mas: The maple state
 * @min: The lowest value of the range
 * @max: The highest value of the range
 * @size: The size needed
 */
int mas_empty_area_rev(struct ma_state *mas, unsigned long min,
		unsigned long max, unsigned long size)
{}
EXPORT_SYMBOL_GPL();

/*
 * mte_dead_leaves() - Mark all leaves of a node as dead.
 * @enode: the encoded node
 * @mt: the maple tree
 * @slots: Pointer to the slot array
 *
 * Must hold the write lock.
 *
 * Return: The number of leaves marked as dead.
 */
static inline
unsigned char mte_dead_leaves(struct maple_enode *enode, struct maple_tree *mt,
			      void __rcu **slots)
{}

/**
 * mte_dead_walk() - Walk down a dead tree to just before the leaves
 * @enode: The maple encoded node
 * @offset: The starting offset
 *
 * Note: This can only be used from the RCU callback context.
 */
static void __rcu **mte_dead_walk(struct maple_enode **enode, unsigned char offset)
{}

/**
 * mt_free_walk() - Walk & free a tree in the RCU callback context
 * @head: The RCU head that's within the node.
 *
 * Note: This can only be used from the RCU callback context.
 */
static void mt_free_walk(struct rcu_head *head)
{}

static inline void __rcu **mte_destroy_descend(struct maple_enode **enode,
	struct maple_tree *mt, struct maple_enode *prev, unsigned char offset)
{}

static void mt_destroy_walk(struct maple_enode *enode, struct maple_tree *mt,
			    bool free)
{}

/*
 * mte_destroy_walk() - Free a tree or sub-tree.
 * @enode: the encoded maple node (maple_enode) to start
 * @mt: the tree to free - needed for node types.
 *
 * Must hold the write lock.
 */
static inline void mte_destroy_walk(struct maple_enode *enode,
				    struct maple_tree *mt)
{}
/* Interface */

/**
 * mas_store() - Store an @entry.
 * @mas: The maple state.
 * @entry: The entry to store.
 *
 * The @mas->index and @mas->last is used to set the range for the @entry.
 *
 * Return: the first entry between mas->index and mas->last or %NULL.
 */
void *mas_store(struct ma_state *mas, void *entry)
{}
EXPORT_SYMBOL_GPL();

/**
 * mas_store_gfp() - Store a value into the tree.
 * @mas: The maple state
 * @entry: The entry to store
 * @gfp: The GFP_FLAGS to use for allocations if necessary.
 *
 * Return: 0 on success, -EINVAL on invalid request, -ENOMEM if memory could not
 * be allocated.
 */
int mas_store_gfp(struct ma_state *mas, void *entry, gfp_t gfp)
{}
EXPORT_SYMBOL_GPL();

/**
 * mas_store_prealloc() - Store a value into the tree using memory
 * preallocated in the maple state.
 * @mas: The maple state
 * @entry: The entry to store.
 */
void mas_store_prealloc(struct ma_state *mas, void *entry)
{}
EXPORT_SYMBOL_GPL();

/**
 * mas_preallocate() - Preallocate enough nodes for a store operation
 * @mas: The maple state
 * @entry: The entry that will be stored
 * @gfp: The GFP_FLAGS to use for allocations.
 *
 * Return: 0 on success, -ENOMEM if memory could not be allocated.
 */
int mas_preallocate(struct ma_state *mas, void *entry, gfp_t gfp)
{}
EXPORT_SYMBOL_GPL();

/*
 * mas_destroy() - destroy a maple state.
 * @mas: The maple state
 *
 * Upon completion, check the left-most node and rebalance against the node to
 * the right if necessary.  Frees any allocated nodes associated with this maple
 * state.
 */
void mas_destroy(struct ma_state *mas)
{}
EXPORT_SYMBOL_GPL();

/*
 * mas_expected_entries() - Set the expected number of entries that will be inserted.
 * @mas: The maple state
 * @nr_entries: The number of expected entries.
 *
 * This will attempt to pre-allocate enough nodes to store the expected number
 * of entries.  The allocations will occur using the bulk allocator interface
 * for speed.  Please call mas_destroy() on the @mas after inserting the entries
 * to ensure any unused nodes are freed.
 *
 * Return: 0 on success, -ENOMEM if memory could not be allocated.
 */
int mas_expected_entries(struct ma_state *mas, unsigned long nr_entries)
{}
EXPORT_SYMBOL_GPL();

static bool mas_next_setup(struct ma_state *mas, unsigned long max,
		void **entry)
{}

/**
 * mas_next() - Get the next entry.
 * @mas: The maple state
 * @max: The maximum index to check.
 *
 * Returns the next entry after @mas->index.
 * Must hold rcu_read_lock or the write lock.
 * Can return the zero entry.
 *
 * Return: The next entry or %NULL
 */
void *mas_next(struct ma_state *mas, unsigned long max)
{}
EXPORT_SYMBOL_GPL();

/**
 * mas_next_range() - Advance the maple state to the next range
 * @mas: The maple state
 * @max: The maximum index to check.
 *
 * Sets @mas->index and @mas->last to the range.
 * Must hold rcu_read_lock or the write lock.
 * Can return the zero entry.
 *
 * Return: The next entry or %NULL
 */
void *mas_next_range(struct ma_state *mas, unsigned long max)
{}
EXPORT_SYMBOL_GPL();

/**
 * mt_next() - get the next value in the maple tree
 * @mt: The maple tree
 * @index: The start index
 * @max: The maximum index to check
 *
 * Takes RCU read lock internally to protect the search, which does not
 * protect the returned pointer after dropping RCU read lock.
 * See also: Documentation/core-api/maple_tree.rst
 *
 * Return: The entry higher than @index or %NULL if nothing is found.
 */
void *mt_next(struct maple_tree *mt, unsigned long index, unsigned long max)
{}
EXPORT_SYMBOL_GPL();

static bool mas_prev_setup(struct ma_state *mas, unsigned long min, void **entry)
{}

/**
 * mas_prev() - Get the previous entry
 * @mas: The maple state
 * @min: The minimum value to check.
 *
 * Must hold rcu_read_lock or the write lock.
 * Will reset mas to ma_start if the status is ma_none.  Will stop on not
 * searchable nodes.
 *
 * Return: the previous value or %NULL.
 */
void *mas_prev(struct ma_state *mas, unsigned long min)
{}
EXPORT_SYMBOL_GPL();

/**
 * mas_prev_range() - Advance to the previous range
 * @mas: The maple state
 * @min: The minimum value to check.
 *
 * Sets @mas->index and @mas->last to the range.
 * Must hold rcu_read_lock or the write lock.
 * Will reset mas to ma_start if the node is ma_none.  Will stop on not
 * searchable nodes.
 *
 * Return: the previous value or %NULL.
 */
void *mas_prev_range(struct ma_state *mas, unsigned long min)
{}
EXPORT_SYMBOL_GPL();

/**
 * mt_prev() - get the previous value in the maple tree
 * @mt: The maple tree
 * @index: The start index
 * @min: The minimum index to check
 *
 * Takes RCU read lock internally to protect the search, which does not
 * protect the returned pointer after dropping RCU read lock.
 * See also: Documentation/core-api/maple_tree.rst
 *
 * Return: The entry before @index or %NULL if nothing is found.
 */
void *mt_prev(struct maple_tree *mt, unsigned long index, unsigned long min)
{}
EXPORT_SYMBOL_GPL();

/**
 * mas_pause() - Pause a mas_find/mas_for_each to drop the lock.
 * @mas: The maple state to pause
 *
 * Some users need to pause a walk and drop the lock they're holding in
 * order to yield to a higher priority thread or carry out an operation
 * on an entry.  Those users should call this function before they drop
 * the lock.  It resets the @mas to be suitable for the next iteration
 * of the loop after the user has reacquired the lock.  If most entries
 * found during a walk require you to call mas_pause(), the mt_for_each()
 * iterator may be more appropriate.
 *
 */
void mas_pause(struct ma_state *mas)
{}
EXPORT_SYMBOL_GPL();

/**
 * mas_find_setup() - Internal function to set up mas_find*().
 * @mas: The maple state
 * @max: The maximum index
 * @entry: Pointer to the entry
 *
 * Returns: True if entry is the answer, false otherwise.
 */
static __always_inline bool mas_find_setup(struct ma_state *mas, unsigned long max, void **entry)
{}

/**
 * mas_find() - On the first call, find the entry at or after mas->index up to
 * %max.  Otherwise, find the entry after mas->index.
 * @mas: The maple state
 * @max: The maximum value to check.
 *
 * Must hold rcu_read_lock or the write lock.
 * If an entry exists, last and index are updated accordingly.
 * May set @mas->status to ma_overflow.
 *
 * Return: The entry or %NULL.
 */
void *mas_find(struct ma_state *mas, unsigned long max)
{}
EXPORT_SYMBOL_GPL();

/**
 * mas_find_range() - On the first call, find the entry at or after
 * mas->index up to %max.  Otherwise, advance to the next slot mas->index.
 * @mas: The maple state
 * @max: The maximum value to check.
 *
 * Must hold rcu_read_lock or the write lock.
 * If an entry exists, last and index are updated accordingly.
 * May set @mas->status to ma_overflow.
 *
 * Return: The entry or %NULL.
 */
void *mas_find_range(struct ma_state *mas, unsigned long max)
{}
EXPORT_SYMBOL_GPL();

/**
 * mas_find_rev_setup() - Internal function to set up mas_find_*_rev()
 * @mas: The maple state
 * @min: The minimum index
 * @entry: Pointer to the entry
 *
 * Returns: True if entry is the answer, false otherwise.
 */
static bool mas_find_rev_setup(struct ma_state *mas, unsigned long min,
		void **entry)
{}

/**
 * mas_find_rev: On the first call, find the first non-null entry at or below
 * mas->index down to %min.  Otherwise find the first non-null entry below
 * mas->index down to %min.
 * @mas: The maple state
 * @min: The minimum value to check.
 *
 * Must hold rcu_read_lock or the write lock.
 * If an entry exists, last and index are updated accordingly.
 * May set @mas->status to ma_underflow.
 *
 * Return: The entry or %NULL.
 */
void *mas_find_rev(struct ma_state *mas, unsigned long min)
{}
EXPORT_SYMBOL_GPL();

/**
 * mas_find_range_rev: On the first call, find the first non-null entry at or
 * below mas->index down to %min.  Otherwise advance to the previous slot after
 * mas->index down to %min.
 * @mas: The maple state
 * @min: The minimum value to check.
 *
 * Must hold rcu_read_lock or the write lock.
 * If an entry exists, last and index are updated accordingly.
 * May set @mas->status to ma_underflow.
 *
 * Return: The entry or %NULL.
 */
void *mas_find_range_rev(struct ma_state *mas, unsigned long min)
{}
EXPORT_SYMBOL_GPL();

/**
 * mas_erase() - Find the range in which index resides and erase the entire
 * range.
 * @mas: The maple state
 *
 * Must hold the write lock.
 * Searches for @mas->index, sets @mas->index and @mas->last to the range and
 * erases that range.
 *
 * Return: the entry that was erased or %NULL, @mas->index and @mas->last are updated.
 */
void *mas_erase(struct ma_state *mas)
{}
EXPORT_SYMBOL_GPL();

/**
 * mas_nomem() - Check if there was an error allocating and do the allocation
 * if necessary If there are allocations, then free them.
 * @mas: The maple state
 * @gfp: The GFP_FLAGS to use for allocations
 * Return: true on allocation, false otherwise.
 */
bool mas_nomem(struct ma_state *mas, gfp_t gfp)
	__must_hold(mas->tree->ma_lock)
{}

void __init maple_tree_init(void)
{}

/**
 * mtree_load() - Load a value stored in a maple tree
 * @mt: The maple tree
 * @index: The index to load
 *
 * Return: the entry or %NULL
 */
void *mtree_load(struct maple_tree *mt, unsigned long index)
{}
EXPORT_SYMBOL();

/**
 * mtree_store_range() - Store an entry at a given range.
 * @mt: The maple tree
 * @index: The start of the range
 * @last: The end of the range
 * @entry: The entry to store
 * @gfp: The GFP_FLAGS to use for allocations
 *
 * Return: 0 on success, -EINVAL on invalid request, -ENOMEM if memory could not
 * be allocated.
 */
int mtree_store_range(struct maple_tree *mt, unsigned long index,
		unsigned long last, void *entry, gfp_t gfp)
{}
EXPORT_SYMBOL();

/**
 * mtree_store() - Store an entry at a given index.
 * @mt: The maple tree
 * @index: The index to store the value
 * @entry: The entry to store
 * @gfp: The GFP_FLAGS to use for allocations
 *
 * Return: 0 on success, -EINVAL on invalid request, -ENOMEM if memory could not
 * be allocated.
 */
int mtree_store(struct maple_tree *mt, unsigned long index, void *entry,
		 gfp_t gfp)
{}
EXPORT_SYMBOL();

/**
 * mtree_insert_range() - Insert an entry at a given range if there is no value.
 * @mt: The maple tree
 * @first: The start of the range
 * @last: The end of the range
 * @entry: The entry to store
 * @gfp: The GFP_FLAGS to use for allocations.
 *
 * Return: 0 on success, -EEXISTS if the range is occupied, -EINVAL on invalid
 * request, -ENOMEM if memory could not be allocated.
 */
int mtree_insert_range(struct maple_tree *mt, unsigned long first,
		unsigned long last, void *entry, gfp_t gfp)
{}
EXPORT_SYMBOL();

/**
 * mtree_insert() - Insert an entry at a given index if there is no value.
 * @mt: The maple tree
 * @index : The index to store the value
 * @entry: The entry to store
 * @gfp: The GFP_FLAGS to use for allocations.
 *
 * Return: 0 on success, -EEXISTS if the range is occupied, -EINVAL on invalid
 * request, -ENOMEM if memory could not be allocated.
 */
int mtree_insert(struct maple_tree *mt, unsigned long index, void *entry,
		 gfp_t gfp)
{}
EXPORT_SYMBOL();

int mtree_alloc_range(struct maple_tree *mt, unsigned long *startp,
		void *entry, unsigned long size, unsigned long min,
		unsigned long max, gfp_t gfp)
{}
EXPORT_SYMBOL();

/**
 * mtree_alloc_cyclic() - Find somewhere to store this entry in the tree.
 * @mt: The maple tree.
 * @startp: Pointer to ID.
 * @range_lo: Lower bound of range to search.
 * @range_hi: Upper bound of range to search.
 * @entry: The entry to store.
 * @next: Pointer to next ID to allocate.
 * @gfp: The GFP_FLAGS to use for allocations.
 *
 * Finds an empty entry in @mt after @next, stores the new index into
 * the @id pointer, stores the entry at that index, then updates @next.
 *
 * @mt must be initialized with the MT_FLAGS_ALLOC_RANGE flag.
 *
 * Context: Any context.  Takes and releases the mt.lock.  May sleep if
 * the @gfp flags permit.
 *
 * Return: 0 if the allocation succeeded without wrapping, 1 if the
 * allocation succeeded after wrapping, -ENOMEM if memory could not be
 * allocated, -EINVAL if @mt cannot be used, or -EBUSY if there are no
 * free entries.
 */
int mtree_alloc_cyclic(struct maple_tree *mt, unsigned long *startp,
		void *entry, unsigned long range_lo, unsigned long range_hi,
		unsigned long *next, gfp_t gfp)
{}
EXPORT_SYMBOL();

int mtree_alloc_rrange(struct maple_tree *mt, unsigned long *startp,
		void *entry, unsigned long size, unsigned long min,
		unsigned long max, gfp_t gfp)
{}
EXPORT_SYMBOL();

/**
 * mtree_erase() - Find an index and erase the entire range.
 * @mt: The maple tree
 * @index: The index to erase
 *
 * Erasing is the same as a walk to an entry then a store of a NULL to that
 * ENTIRE range.  In fact, it is implemented as such using the advanced API.
 *
 * Return: The entry stored at the @index or %NULL
 */
void *mtree_erase(struct maple_tree *mt, unsigned long index)
{}
EXPORT_SYMBOL();

/*
 * mas_dup_free() - Free an incomplete duplication of a tree.
 * @mas: The maple state of a incomplete tree.
 *
 * The parameter @mas->node passed in indicates that the allocation failed on
 * this node. This function frees all nodes starting from @mas->node in the
 * reverse order of mas_dup_build(). There is no need to hold the source tree
 * lock at this time.
 */
static void mas_dup_free(struct ma_state *mas)
{}

/*
 * mas_copy_node() - Copy a maple node and replace the parent.
 * @mas: The maple state of source tree.
 * @new_mas: The maple state of new tree.
 * @parent: The parent of the new node.
 *
 * Copy @mas->node to @new_mas->node, set @parent to be the parent of
 * @new_mas->node. If memory allocation fails, @mas is set to -ENOMEM.
 */
static inline void mas_copy_node(struct ma_state *mas, struct ma_state *new_mas,
		struct maple_pnode *parent)
{}

/*
 * mas_dup_alloc() - Allocate child nodes for a maple node.
 * @mas: The maple state of source tree.
 * @new_mas: The maple state of new tree.
 * @gfp: The GFP_FLAGS to use for allocations.
 *
 * This function allocates child nodes for @new_mas->node during the duplication
 * process. If memory allocation fails, @mas is set to -ENOMEM.
 */
static inline void mas_dup_alloc(struct ma_state *mas, struct ma_state *new_mas,
		gfp_t gfp)
{}

/*
 * mas_dup_build() - Build a new maple tree from a source tree
 * @mas: The maple state of source tree, need to be in MAS_START state.
 * @new_mas: The maple state of new tree, need to be in MAS_START state.
 * @gfp: The GFP_FLAGS to use for allocations.
 *
 * This function builds a new tree in DFS preorder. If the memory allocation
 * fails, the error code -ENOMEM will be set in @mas, and @new_mas points to the
 * last node. mas_dup_free() will free the incomplete duplication of a tree.
 *
 * Note that the attributes of the two trees need to be exactly the same, and the
 * new tree needs to be empty, otherwise -EINVAL will be set in @mas.
 */
static inline void mas_dup_build(struct ma_state *mas, struct ma_state *new_mas,
		gfp_t gfp)
{}

/**
 * __mt_dup(): Duplicate an entire maple tree
 * @mt: The source maple tree
 * @new: The new maple tree
 * @gfp: The GFP_FLAGS to use for allocations
 *
 * This function duplicates a maple tree in Depth-First Search (DFS) pre-order
 * traversal. It uses memcpy() to copy nodes in the source tree and allocate
 * new child nodes in non-leaf nodes. The new node is exactly the same as the
 * source node except for all the addresses stored in it. It will be faster than
 * traversing all elements in the source tree and inserting them one by one into
 * the new tree.
 * The user needs to ensure that the attributes of the source tree and the new
 * tree are the same, and the new tree needs to be an empty tree, otherwise
 * -EINVAL will be returned.
 * Note that the user needs to manually lock the source tree and the new tree.
 *
 * Return: 0 on success, -ENOMEM if memory could not be allocated, -EINVAL If
 * the attributes of the two trees are different or the new tree is not an empty
 * tree.
 */
int __mt_dup(struct maple_tree *mt, struct maple_tree *new, gfp_t gfp)
{}
EXPORT_SYMBOL();

/**
 * mtree_dup(): Duplicate an entire maple tree
 * @mt: The source maple tree
 * @new: The new maple tree
 * @gfp: The GFP_FLAGS to use for allocations
 *
 * This function duplicates a maple tree in Depth-First Search (DFS) pre-order
 * traversal. It uses memcpy() to copy nodes in the source tree and allocate
 * new child nodes in non-leaf nodes. The new node is exactly the same as the
 * source node except for all the addresses stored in it. It will be faster than
 * traversing all elements in the source tree and inserting them one by one into
 * the new tree.
 * The user needs to ensure that the attributes of the source tree and the new
 * tree are the same, and the new tree needs to be an empty tree, otherwise
 * -EINVAL will be returned.
 *
 * Return: 0 on success, -ENOMEM if memory could not be allocated, -EINVAL If
 * the attributes of the two trees are different or the new tree is not an empty
 * tree.
 */
int mtree_dup(struct maple_tree *mt, struct maple_tree *new, gfp_t gfp)
{}
EXPORT_SYMBOL();

/**
 * __mt_destroy() - Walk and free all nodes of a locked maple tree.
 * @mt: The maple tree
 *
 * Note: Does not handle locking.
 */
void __mt_destroy(struct maple_tree *mt)
{}
EXPORT_SYMBOL_GPL();

/**
 * mtree_destroy() - Destroy a maple tree
 * @mt: The maple tree
 *
 * Frees all resources used by the tree.  Handles locking.
 */
void mtree_destroy(struct maple_tree *mt)
{}
EXPORT_SYMBOL();

/**
 * mt_find() - Search from the start up until an entry is found.
 * @mt: The maple tree
 * @index: Pointer which contains the start location of the search
 * @max: The maximum value of the search range
 *
 * Takes RCU read lock internally to protect the search, which does not
 * protect the returned pointer after dropping RCU read lock.
 * See also: Documentation/core-api/maple_tree.rst
 *
 * In case that an entry is found @index is updated to point to the next
 * possible entry independent whether the found entry is occupying a
 * single index or a range if indices.
 *
 * Return: The entry at or after the @index or %NULL
 */
void *mt_find(struct maple_tree *mt, unsigned long *index, unsigned long max)
{}
EXPORT_SYMBOL();

/**
 * mt_find_after() - Search from the start up until an entry is found.
 * @mt: The maple tree
 * @index: Pointer which contains the start location of the search
 * @max: The maximum value to check
 *
 * Same as mt_find() except that it checks @index for 0 before
 * searching. If @index == 0, the search is aborted. This covers a wrap
 * around of @index to 0 in an iterator loop.
 *
 * Return: The entry at or after the @index or %NULL
 */
void *mt_find_after(struct maple_tree *mt, unsigned long *index,
		    unsigned long max)
{}
EXPORT_SYMBOL();

#ifdef CONFIG_DEBUG_MAPLE_TREE
atomic_t maple_tree_tests_run;
EXPORT_SYMBOL_GPL();
atomic_t maple_tree_tests_passed;
EXPORT_SYMBOL_GPL();

#ifndef __KERNEL__
extern void kmem_cache_set_non_kernel(struct kmem_cache *, unsigned int);
void mt_set_non_kernel(unsigned int val)
{
	kmem_cache_set_non_kernel(maple_node_cache, val);
}

extern void kmem_cache_set_callback(struct kmem_cache *cachep,
		void (*callback)(void *));
void mt_set_callback(void (*callback)(void *))
{
	kmem_cache_set_callback(maple_node_cache, callback);
}

extern void kmem_cache_set_private(struct kmem_cache *cachep, void *private);
void mt_set_private(void *private)
{
	kmem_cache_set_private(maple_node_cache, private);
}

extern unsigned long kmem_cache_get_alloc(struct kmem_cache *);
unsigned long mt_get_alloc_size(void)
{
	return kmem_cache_get_alloc(maple_node_cache);
}

extern void kmem_cache_zero_nr_tallocated(struct kmem_cache *);
void mt_zero_nr_tallocated(void)
{
	kmem_cache_zero_nr_tallocated(maple_node_cache);
}

extern unsigned int kmem_cache_nr_tallocated(struct kmem_cache *);
unsigned int mt_nr_tallocated(void)
{
	return kmem_cache_nr_tallocated(maple_node_cache);
}

extern unsigned int kmem_cache_nr_allocated(struct kmem_cache *);
unsigned int mt_nr_allocated(void)
{
	return kmem_cache_nr_allocated(maple_node_cache);
}

void mt_cache_shrink(void)
{
}
#else
/*
 * mt_cache_shrink() - For testing, don't use this.
 *
 * Certain testcases can trigger an OOM when combined with other memory
 * debugging configuration options.  This function is used to reduce the
 * possibility of an out of memory even due to kmem_cache objects remaining
 * around for longer than usual.
 */
void mt_cache_shrink(void)
{}
EXPORT_SYMBOL_GPL();

#endif /* not defined __KERNEL__ */
/*
 * mas_get_slot() - Get the entry in the maple state node stored at @offset.
 * @mas: The maple state
 * @offset: The offset into the slot array to fetch.
 *
 * Return: The entry stored at @offset.
 */
static inline struct maple_enode *mas_get_slot(struct ma_state *mas,
		unsigned char offset)
{}

/* Depth first search, post-order */
static void mas_dfs_postorder(struct ma_state *mas, unsigned long max)
{}

/* Tree validations */
static void mt_dump_node(const struct maple_tree *mt, void *entry,
		unsigned long min, unsigned long max, unsigned int depth,
		enum mt_dump_format format);
static void mt_dump_range(unsigned long min, unsigned long max,
			  unsigned int depth, enum mt_dump_format format)
{}

static void mt_dump_entry(void *entry, unsigned long min, unsigned long max,
			  unsigned int depth, enum mt_dump_format format)
{}

static void mt_dump_range64(const struct maple_tree *mt, void *entry,
		unsigned long min, unsigned long max, unsigned int depth,
		enum mt_dump_format format)
{}

static void mt_dump_arange64(const struct maple_tree *mt, void *entry,
	unsigned long min, unsigned long max, unsigned int depth,
	enum mt_dump_format format)
{}

static void mt_dump_node(const struct maple_tree *mt, void *entry,
		unsigned long min, unsigned long max, unsigned int depth,
		enum mt_dump_format format)
{}

void mt_dump(const struct maple_tree *mt, enum mt_dump_format format)
{}
EXPORT_SYMBOL_GPL();

/*
 * Calculate the maximum gap in a node and check if that's what is reported in
 * the parent (unless root).
 */
static void mas_validate_gaps(struct ma_state *mas)
{}

static void mas_validate_parent_slot(struct ma_state *mas)
{}

static void mas_validate_child_slot(struct ma_state *mas)
{}

/*
 * Validate all pivots are within mas->min and mas->max, check metadata ends
 * where the maximum ends and ensure there is no slots or pivots set outside of
 * the end of the data.
 */
static void mas_validate_limits(struct ma_state *mas)
{}

static void mt_validate_nulls(struct maple_tree *mt)
{}

/*
 * validate a maple tree by checking:
 * 1. The limits (pivots are within mas->min to mas->max)
 * 2. The gap is correctly set in the parents
 */
void mt_validate(struct maple_tree *mt)
	__must_hold(mas->tree->ma_lock)
{}
EXPORT_SYMBOL_GPL();

void mas_dump(const struct ma_state *mas)
{}
EXPORT_SYMBOL_GPL();

void mas_wr_dump(const struct ma_wr_state *wr_mas)
{}
EXPORT_SYMBOL_GPL();

#endif /* CONFIG_DEBUG_MAPLE_TREE */