linux/drivers/gpu/drm/i915/i915_request.h

/*
 * Copyright © 2008-2018 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 */

#ifndef I915_REQUEST_H
#define I915_REQUEST_H

#include <linux/dma-fence.h>
#include <linux/hrtimer.h>
#include <linux/irq_work.h>
#include <linux/llist.h>
#include <linux/lockdep.h>

#include "gem/i915_gem_context_types.h"
#include "gt/intel_context_types.h"
#include "gt/intel_engine_types.h"
#include "gt/intel_timeline_types.h"

#include "i915_gem.h"
#include "i915_scheduler.h"
#include "i915_selftest.h"
#include "i915_sw_fence.h"
#include "i915_vma_resource.h"

#include <uapi/drm/i915_drm.h>

struct drm_file;
struct drm_i915_gem_object;
struct drm_printer;
struct i915_deps;
struct i915_request;

#if IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR)
struct i915_capture_list {};

void i915_request_free_capture_list(struct i915_capture_list *capture);
#else
#define i915_request_free_capture_list
#endif

#define RQ_TRACE(rq, fmt, ...)

enum {};

/*
 * Request queue structure.
 *
 * The request queue allows us to note sequence numbers that have been emitted
 * and may be associated with active buffers to be retired.
 *
 * By keeping this list, we can avoid having to do questionable sequence
 * number comparisons on buffer last_read|write_seqno. It also allows an
 * emission time to be associated with the request for tracking how far ahead
 * of the GPU the submission is.
 *
 * When modifying this structure be very aware that we perform a lockless
 * RCU lookup of it that may race against reallocation of the struct
 * from the slab freelist. We intentionally do not zero the structure on
 * allocation so that the lookup can use the dangling pointers (and is
 * cogniscent that those pointers may be wrong). Instead, everything that
 * needs to be initialised must be done so explicitly.
 *
 * The requests are reference counted.
 */
struct i915_request {};

#define I915_FENCE_GFP

extern const struct dma_fence_ops i915_fence_ops;

static inline bool dma_fence_is_i915(const struct dma_fence *fence)
{}

struct kmem_cache *i915_request_slab_cache(void);

struct i915_request * __must_check
__i915_request_create(struct intel_context *ce, gfp_t gfp);
struct i915_request * __must_check
i915_request_create(struct intel_context *ce);

void __i915_request_skip(struct i915_request *rq);
bool i915_request_set_error_once(struct i915_request *rq, int error);
struct i915_request *i915_request_mark_eio(struct i915_request *rq);

struct i915_request *__i915_request_commit(struct i915_request *request);
void __i915_request_queue(struct i915_request *rq,
			  const struct i915_sched_attr *attr);
void __i915_request_queue_bh(struct i915_request *rq);

bool i915_request_retire(struct i915_request *rq);
void i915_request_retire_upto(struct i915_request *rq);

static inline struct i915_request *
to_request(struct dma_fence *fence)
{}

static inline struct i915_request *
i915_request_get(struct i915_request *rq)
{}

static inline struct i915_request *
i915_request_get_rcu(struct i915_request *rq)
{}

static inline void
i915_request_put(struct i915_request *rq)
{}

int i915_request_await_object(struct i915_request *to,
			      struct drm_i915_gem_object *obj,
			      bool write);
int i915_request_await_dma_fence(struct i915_request *rq,
				 struct dma_fence *fence);
int i915_request_await_deps(struct i915_request *rq, const struct i915_deps *deps);
int i915_request_await_execution(struct i915_request *rq,
				 struct dma_fence *fence);

void i915_request_add(struct i915_request *rq);

bool __i915_request_submit(struct i915_request *request);
void i915_request_submit(struct i915_request *request);

void __i915_request_unsubmit(struct i915_request *request);
void i915_request_unsubmit(struct i915_request *request);

void i915_request_cancel(struct i915_request *rq, int error);

long i915_request_wait_timeout(struct i915_request *rq,
			       unsigned int flags,
			       long timeout)
	__attribute__((nonnull(1)));

long i915_request_wait(struct i915_request *rq,
		       unsigned int flags,
		       long timeout)
	__attribute__((nonnull(1)));
#define I915_WAIT_INTERRUPTIBLE
#define I915_WAIT_PRIORITY
#define I915_WAIT_ALL

void i915_request_show(struct drm_printer *m,
		       const struct i915_request *rq,
		       const char *prefix,
		       int indent);

static inline bool i915_request_signaled(const struct i915_request *rq)
{}

static inline bool i915_request_is_active(const struct i915_request *rq)
{}

static inline bool i915_request_in_priority_queue(const struct i915_request *rq)
{}

static inline bool
i915_request_has_initial_breadcrumb(const struct i915_request *rq)
{}

/*
 * Returns true if seq1 is later than seq2.
 */
static inline bool i915_seqno_passed(u32 seq1, u32 seq2)
{}

static inline u32 __hwsp_seqno(const struct i915_request *rq)
{}

/**
 * hwsp_seqno - the current breadcrumb value in the HW status page
 * @rq: the request, to chase the relevant HW status page
 *
 * The emphasis in naming here is that hwsp_seqno() is not a property of the
 * request, but an indication of the current HW state (associated with this
 * request). Its value will change as the GPU executes more requests.
 *
 * Returns the current breadcrumb value in the associated HW status page (or
 * the local timeline's equivalent) for this request. The request itself
 * has the associated breadcrumb value of rq->fence.seqno, when the HW
 * status page has that breadcrumb or later, this request is complete.
 */
static inline u32 hwsp_seqno(const struct i915_request *rq)
{}

static inline bool __i915_request_has_started(const struct i915_request *rq)
{}

/**
 * i915_request_started - check if the request has begun being executed
 * @rq: the request
 *
 * If the timeline is not using initial breadcrumbs, a request is
 * considered started if the previous request on its timeline (i.e.
 * context) has been signaled.
 *
 * If the timeline is using semaphores, it will also be emitting an
 * "initial breadcrumb" after the semaphores are complete and just before
 * it began executing the user payload. A request can therefore be active
 * on the HW and not yet started as it is still busywaiting on its
 * dependencies (via HW semaphores).
 *
 * If the request has started, its dependencies will have been signaled
 * (either by fences or by semaphores) and it will have begun processing
 * the user payload.
 *
 * However, even if a request has started, it may have been preempted and
 * so no longer active, or it may have already completed.
 *
 * See also i915_request_is_active().
 *
 * Returns true if the request has begun executing the user payload, or
 * has completed:
 */
static inline bool i915_request_started(const struct i915_request *rq)
{}

/**
 * i915_request_is_running - check if the request may actually be executing
 * @rq: the request
 *
 * Returns true if the request is currently submitted to hardware, has passed
 * its start point (i.e. the context is setup and not busywaiting). Note that
 * it may no longer be running by the time the function returns!
 */
static inline bool i915_request_is_running(const struct i915_request *rq)
{}

/**
 * i915_request_is_ready - check if the request is ready for execution
 * @rq: the request
 *
 * Upon construction, the request is instructed to wait upon various
 * signals before it is ready to be executed by the HW. That is, we do
 * not want to start execution and read data before it is written. In practice,
 * this is controlled with a mixture of interrupts and semaphores. Once
 * the submit fence is completed, the backend scheduler will place the
 * request into its queue and from there submit it for execution. So we
 * can detect when a request is eligible for execution (and is under control
 * of the scheduler) by querying where it is in any of the scheduler's lists.
 *
 * Returns true if the request is ready for execution (it may be inflight),
 * false otherwise.
 */
static inline bool i915_request_is_ready(const struct i915_request *rq)
{}

static inline bool __i915_request_is_complete(const struct i915_request *rq)
{}

static inline bool i915_request_completed(const struct i915_request *rq)
{}

static inline void i915_request_mark_complete(struct i915_request *rq)
{}

static inline bool i915_request_has_waitboost(const struct i915_request *rq)
{}

static inline bool i915_request_has_nopreempt(const struct i915_request *rq)
{}

static inline bool i915_request_has_sentinel(const struct i915_request *rq)
{}

static inline bool i915_request_on_hold(const struct i915_request *rq)
{}

static inline void i915_request_set_hold(struct i915_request *rq)
{}

static inline void i915_request_clear_hold(struct i915_request *rq)
{}

static inline struct intel_timeline *
i915_request_timeline(const struct i915_request *rq)
{}

static inline struct i915_gem_context *
i915_request_gem_context(const struct i915_request *rq)
{}

static inline struct intel_timeline *
i915_request_active_timeline(const struct i915_request *rq)
{}

static inline u32
i915_request_active_seqno(const struct i915_request *rq)
{}

bool
i915_request_active_engine(struct i915_request *rq,
			   struct intel_engine_cs **active);

void i915_request_notify_execute_cb_imm(struct i915_request *rq);

enum i915_request_state {};

enum i915_request_state i915_test_request_state(struct i915_request *rq);

void i915_request_module_exit(void);
int i915_request_module_init(void);

#endif /* I915_REQUEST_H */