linux/include/linux/perf_event.h

/*
 * Performance events:
 *
 *    Copyright (C) 2008-2009, Thomas Gleixner <[email protected]>
 *    Copyright (C) 2008-2011, Red Hat, Inc., Ingo Molnar
 *    Copyright (C) 2008-2011, Red Hat, Inc., Peter Zijlstra
 *
 * Data type definitions, declarations, prototypes.
 *
 *    Started by: Thomas Gleixner and Ingo Molnar
 *
 * For licencing details see kernel-base/COPYING
 */
#ifndef _LINUX_PERF_EVENT_H
#define _LINUX_PERF_EVENT_H

#include <uapi/linux/perf_event.h>
#include <uapi/linux/bpf_perf_event.h>

/*
 * Kernel-internal data types and definitions:
 */

#ifdef CONFIG_PERF_EVENTS
# include <asm/perf_event.h>
# include <asm/local64.h>
#endif

#define PERF_GUEST_ACTIVE
#define PERF_GUEST_USER

struct perf_guest_info_callbacks {};

#ifdef CONFIG_HAVE_HW_BREAKPOINT
#include <linux/rhashtable-types.h>
#include <asm/hw_breakpoint.h>
#endif

#include <linux/list.h>
#include <linux/mutex.h>
#include <linux/rculist.h>
#include <linux/rcupdate.h>
#include <linux/spinlock.h>
#include <linux/hrtimer.h>
#include <linux/fs.h>
#include <linux/pid_namespace.h>
#include <linux/workqueue.h>
#include <linux/ftrace.h>
#include <linux/cpu.h>
#include <linux/irq_work.h>
#include <linux/static_key.h>
#include <linux/jump_label_ratelimit.h>
#include <linux/atomic.h>
#include <linux/sysfs.h>
#include <linux/perf_regs.h>
#include <linux/cgroup.h>
#include <linux/refcount.h>
#include <linux/security.h>
#include <linux/static_call.h>
#include <linux/lockdep.h>
#include <asm/local.h>

struct perf_callchain_entry {};

struct perf_callchain_entry_ctx {};

perf_copy_f;

struct perf_raw_frag {} __packed;

struct perf_raw_record {};

static __always_inline bool perf_raw_frag_last(const struct perf_raw_frag *frag)
{}

/*
 * branch stack layout:
 *  nr: number of taken branches stored in entries[]
 *  hw_idx: The low level index of raw branch records
 *          for the most recent branch.
 *          -1ULL means invalid/unknown.
 *
 * Note that nr can vary from sample to sample
 * branches (to, from) are stored from most recent
 * to least recent, i.e., entries[0] contains the most
 * recent branch.
 * The entries[] is an abstraction of raw branch records,
 * which may not be stored in age order in HW, e.g. Intel LBR.
 * The hw_idx is to expose the low level index of raw
 * branch record for the most recent branch aka entries[0].
 * The hw_idx index is between -1 (unknown) and max depth,
 * which can be retrieved in /sys/devices/cpu/caps/branches.
 * For the architectures whose raw branch records are
 * already stored in age order, the hw_idx should be 0.
 */
struct perf_branch_stack {};

struct task_struct;

/*
 * extra PMU register associated with an event
 */
struct hw_perf_event_extra {};

/**
 * hw_perf_event::flag values
 *
 * PERF_EVENT_FLAG_ARCH bits are reserved for architecture-specific
 * usage.
 */
#define PERF_EVENT_FLAG_ARCH
#define PERF_EVENT_FLAG_USER_READ_CNT

static_assert();

/**
 * struct hw_perf_event - performance event hardware details:
 */
struct hw_perf_event {};

struct perf_event;
struct perf_event_pmu_context;

/*
 * Common implementation detail of pmu::{start,commit,cancel}_txn
 */
#define PERF_PMU_TXN_ADD
#define PERF_PMU_TXN_READ

/**
 * pmu::capabilities flags
 */
#define PERF_PMU_CAP_NO_INTERRUPT
#define PERF_PMU_CAP_NO_NMI
#define PERF_PMU_CAP_AUX_NO_SG
#define PERF_PMU_CAP_EXTENDED_REGS
#define PERF_PMU_CAP_EXCLUSIVE
#define PERF_PMU_CAP_ITRACE
#define PERF_PMU_CAP_NO_EXCLUDE
#define PERF_PMU_CAP_AUX_OUTPUT
#define PERF_PMU_CAP_EXTENDED_HW_TYPE

/**
 * pmu::scope
 */
enum perf_pmu_scope {};

struct perf_output_handle;

#define PMU_NULL_DEV

/**
 * struct pmu - generic performance monitoring unit
 */
struct pmu {};

enum perf_addr_filter_action_t {};

/**
 * struct perf_addr_filter - address range filter definition
 * @entry:	event's filter list linkage
 * @path:	object file's path for file-based filters
 * @offset:	filter range offset
 * @size:	filter range size (size==0 means single address trigger)
 * @action:	filter/start/stop
 *
 * This is a hardware-agnostic filter configuration as specified by the user.
 */
struct perf_addr_filter {};

/**
 * struct perf_addr_filters_head - container for address range filters
 * @list:	list of filters for this event
 * @lock:	spinlock that serializes accesses to the @list and event's
 *		(and its children's) filter generations.
 * @nr_file_filters:	number of file-based filters
 *
 * A child event will use parent's @list (and therefore @lock), so they are
 * bundled together; see perf_event_addr_filters().
 */
struct perf_addr_filters_head {};

struct perf_addr_filter_range {};

/**
 * enum perf_event_state - the states of an event:
 */
enum perf_event_state {};

struct file;
struct perf_sample_data;

perf_overflow_handler_t;

/*
 * Event capabilities. For event_caps and groups caps.
 *
 * PERF_EV_CAP_SOFTWARE: Is a software event.
 * PERF_EV_CAP_READ_ACTIVE_PKG: A CPU event (or cgroup event) that can be read
 * from any CPU in the package where it is active.
 * PERF_EV_CAP_SIBLING: An event with this flag must be a group sibling and
 * cannot be a group leader. If an event with this flag is detached from the
 * group it is scheduled out and moved into an unrecoverable ERROR state.
 * PERF_EV_CAP_READ_SCOPE: A CPU event that can be read from any CPU of the
 * PMU scope where it is active.
 */
#define PERF_EV_CAP_SOFTWARE
#define PERF_EV_CAP_READ_ACTIVE_PKG
#define PERF_EV_CAP_SIBLING
#define PERF_EV_CAP_READ_SCOPE

#define SWEVENT_HLIST_BITS
#define SWEVENT_HLIST_SIZE

struct swevent_hlist {};

#define PERF_ATTACH_CONTEXT
#define PERF_ATTACH_GROUP
#define PERF_ATTACH_TASK
#define PERF_ATTACH_TASK_DATA
#define PERF_ATTACH_ITRACE
#define PERF_ATTACH_SCHED_CB
#define PERF_ATTACH_CHILD

struct bpf_prog;
struct perf_cgroup;
struct perf_buffer;

struct pmu_event_list {};

/*
 * event->sibling_list is modified whole holding both ctx->lock and ctx->mutex
 * as such iteration must hold either lock. However, since ctx->lock is an IRQ
 * safe lock, and is only held by the CPU doing the modification, having IRQs
 * disabled is sufficient since it will hold-off the IPIs.
 */
#ifdef CONFIG_PROVE_LOCKING
#define lockdep_assert_event_ctx(event)
#else
#define lockdep_assert_event_ctx
#endif

#define for_each_sibling_event(sibling, event)

/**
 * struct perf_event - performance event kernel representation:
 */
struct perf_event {};

/*
 *           ,-----------------------[1:n]------------------------.
 *           V                                                    V
 * perf_event_context <-[1:n]-> perf_event_pmu_context <-[1:n]- perf_event
 *                                        |                       |
 *                                        `--[n:1]-> pmu <-[1:n]--'
 *
 *
 * struct perf_event_pmu_context  lifetime is refcount based and RCU freed
 * (similar to perf_event_context). Locking is as if it were a member of
 * perf_event_context; specifically:
 *
 *   modification, both: ctx->mutex && ctx->lock
 *   reading, either:    ctx->mutex || ctx->lock
 *
 * There is one exception to this; namely put_pmu_ctx() isn't always called
 * with ctx->mutex held; this means that as long as we can guarantee the epc
 * has events the above rules hold.
 *
 * Specificially, sys_perf_event_open()'s group_leader case depends on
 * ctx->mutex pinning the configuration. Since we hold a reference on
 * group_leader (through the filedesc) it can't go away, therefore it's
 * associated pmu_ctx must exist and cannot change due to ctx->mutex.
 *
 * perf_event holds a refcount on perf_event_context
 * perf_event holds a refcount on perf_event_pmu_context
 */
struct perf_event_pmu_context {};

static inline bool perf_pmu_ctx_is_active(struct perf_event_pmu_context *epc)
{}

struct perf_event_groups {};


/**
 * struct perf_event_context - event context structure
 *
 * Used as a container for task events and CPU events as well:
 */
struct perf_event_context {};

struct perf_cpu_pmu_context {};

/**
 * struct perf_event_cpu_context - per cpu event context structure
 */
struct perf_cpu_context {};

struct perf_output_handle {};

struct bpf_perf_event_data_kern {};

#ifdef CONFIG_CGROUP_PERF

/*
 * perf_cgroup_info keeps track of time_enabled for a cgroup.
 * This is a per-cpu dynamically allocated data structure.
 */
struct perf_cgroup_info {};

struct perf_cgroup {};

/*
 * Must ensure cgroup is pinned (css_get) before calling
 * this function. In other words, we cannot call this function
 * if there is no cgroup event for the current CPU context.
 */
static inline struct perf_cgroup *
perf_cgroup_from_task(struct task_struct *task, struct perf_event_context *ctx)
{}
#endif /* CONFIG_CGROUP_PERF */

#ifdef CONFIG_PERF_EVENTS

extern struct perf_event_context *perf_cpu_task_ctx(void);

extern void *perf_aux_output_begin(struct perf_output_handle *handle,
				   struct perf_event *event);
extern void perf_aux_output_end(struct perf_output_handle *handle,
				unsigned long size);
extern int perf_aux_output_skip(struct perf_output_handle *handle,
				unsigned long size);
extern void *perf_get_aux(struct perf_output_handle *handle);
extern void perf_aux_output_flag(struct perf_output_handle *handle, u64 flags);
extern void perf_event_itrace_started(struct perf_event *event);

extern int perf_pmu_register(struct pmu *pmu, const char *name, int type);
extern void perf_pmu_unregister(struct pmu *pmu);

extern void __perf_event_task_sched_in(struct task_struct *prev,
				       struct task_struct *task);
extern void __perf_event_task_sched_out(struct task_struct *prev,
					struct task_struct *next);
extern int perf_event_init_task(struct task_struct *child, u64 clone_flags);
extern void perf_event_exit_task(struct task_struct *child);
extern void perf_event_free_task(struct task_struct *task);
extern void perf_event_delayed_put(struct task_struct *task);
extern struct file *perf_event_get(unsigned int fd);
extern const struct perf_event *perf_get_event(struct file *file);
extern const struct perf_event_attr *perf_event_attrs(struct perf_event *event);
extern void perf_event_print_debug(void);
extern void perf_pmu_disable(struct pmu *pmu);
extern void perf_pmu_enable(struct pmu *pmu);
extern void perf_sched_cb_dec(struct pmu *pmu);
extern void perf_sched_cb_inc(struct pmu *pmu);
extern int perf_event_task_disable(void);
extern int perf_event_task_enable(void);

extern void perf_pmu_resched(struct pmu *pmu);

extern int perf_event_refresh(struct perf_event *event, int refresh);
extern void perf_event_update_userpage(struct perf_event *event);
extern int perf_event_release_kernel(struct perf_event *event);
extern struct perf_event *
perf_event_create_kernel_counter(struct perf_event_attr *attr,
				int cpu,
				struct task_struct *task,
				perf_overflow_handler_t callback,
				void *context);
extern void perf_pmu_migrate_context(struct pmu *pmu,
				int src_cpu, int dst_cpu);
int perf_event_read_local(struct perf_event *event, u64 *value,
			  u64 *enabled, u64 *running);
extern u64 perf_event_read_value(struct perf_event *event,
				 u64 *enabled, u64 *running);

extern struct perf_callchain_entry *perf_callchain(struct perf_event *event, struct pt_regs *regs);

static inline bool branch_sample_no_flags(const struct perf_event *event)
{}

static inline bool branch_sample_no_cycles(const struct perf_event *event)
{}

static inline bool branch_sample_type(const struct perf_event *event)
{}

static inline bool branch_sample_hw_index(const struct perf_event *event)
{}

static inline bool branch_sample_priv(const struct perf_event *event)
{}

static inline bool branch_sample_counters(const struct perf_event *event)
{}

static inline bool branch_sample_call_stack(const struct perf_event *event)
{}

struct perf_sample_data {} ____cacheline_aligned;

/* default value for data source */
#define PERF_MEM_NA

static inline void perf_sample_data_init(struct perf_sample_data *data,
					 u64 addr, u64 period)
{}

static inline void perf_sample_save_callchain(struct perf_sample_data *data,
					      struct perf_event *event,
					      struct pt_regs *regs)
{}

static inline void perf_sample_save_raw_data(struct perf_sample_data *data,
					     struct perf_raw_record *raw)
{}

static inline void perf_sample_save_brstack(struct perf_sample_data *data,
					    struct perf_event *event,
					    struct perf_branch_stack *brs,
					    u64 *brs_cntr)
{}

static inline u32 perf_sample_data_size(struct perf_sample_data *data,
					struct perf_event *event)
{}

/*
 * Clear all bitfields in the perf_branch_entry.
 * The to and from fields are not cleared because they are
 * systematically modified by caller.
 */
static inline void perf_clear_branch_entry_bitfields(struct perf_branch_entry *br)
{}

extern void perf_output_sample(struct perf_output_handle *handle,
			       struct perf_event_header *header,
			       struct perf_sample_data *data,
			       struct perf_event *event);
extern void perf_prepare_sample(struct perf_sample_data *data,
				struct perf_event *event,
				struct pt_regs *regs);
extern void perf_prepare_header(struct perf_event_header *header,
				struct perf_sample_data *data,
				struct perf_event *event,
				struct pt_regs *regs);

extern int perf_event_overflow(struct perf_event *event,
				 struct perf_sample_data *data,
				 struct pt_regs *regs);

extern void perf_event_output_forward(struct perf_event *event,
				     struct perf_sample_data *data,
				     struct pt_regs *regs);
extern void perf_event_output_backward(struct perf_event *event,
				       struct perf_sample_data *data,
				       struct pt_regs *regs);
extern int perf_event_output(struct perf_event *event,
			     struct perf_sample_data *data,
			     struct pt_regs *regs);

static inline bool
is_default_overflow_handler(struct perf_event *event)
{}

extern void
perf_event_header__init_id(struct perf_event_header *header,
			   struct perf_sample_data *data,
			   struct perf_event *event);
extern void
perf_event__output_id_sample(struct perf_event *event,
			     struct perf_output_handle *handle,
			     struct perf_sample_data *sample);

extern void
perf_log_lost_samples(struct perf_event *event, u64 lost);

static inline bool event_has_any_exclude_flag(struct perf_event *event)
{}

static inline bool is_sampling_event(struct perf_event *event)
{}

/*
 * Return 1 for a software event, 0 for a hardware event
 */
static inline int is_software_event(struct perf_event *event)
{}

/*
 * Return 1 for event in sw context, 0 for event in hw context
 */
static inline int in_software_context(struct perf_event *event)
{}

static inline int is_exclusive_pmu(struct pmu *pmu)
{}

extern struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];

extern void ___perf_sw_event(u32, u64, struct pt_regs *, u64);
extern void __perf_sw_event(u32, u64, struct pt_regs *, u64);

#ifndef perf_arch_fetch_caller_regs
static inline void perf_arch_fetch_caller_regs(struct pt_regs *regs, unsigned long ip) { }
#endif

/*
 * When generating a perf sample in-line, instead of from an interrupt /
 * exception, we lack a pt_regs. This is typically used from software events
 * like: SW_CONTEXT_SWITCHES, SW_MIGRATIONS and the tie-in with tracepoints.
 *
 * We typically don't need a full set, but (for x86) do require:
 * - ip for PERF_SAMPLE_IP
 * - cs for user_mode() tests
 * - sp for PERF_SAMPLE_CALLCHAIN
 * - eflags for MISC bits and CALLCHAIN (see: perf_hw_regs())
 *
 * NOTE: assumes @regs is otherwise already 0 filled; this is important for
 * things like PERF_SAMPLE_REGS_INTR.
 */
static inline void perf_fetch_caller_regs(struct pt_regs *regs)
{}

static __always_inline void
perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
{}

DECLARE_PER_CPU(struct pt_regs, __perf_regs[4]);

/*
 * 'Special' version for the scheduler, it hard assumes no recursion,
 * which is guaranteed by us not actually scheduling inside other swevents
 * because those disable preemption.
 */
static __always_inline void __perf_sw_event_sched(u32 event_id, u64 nr, u64 addr)
{}

extern struct static_key_false perf_sched_events;

static __always_inline bool __perf_sw_enabled(int swevt)
{}

static inline void perf_event_task_migrate(struct task_struct *task)
{}

static inline void perf_event_task_sched_in(struct task_struct *prev,
					    struct task_struct *task)
{}

static inline void perf_event_task_sched_out(struct task_struct *prev,
					     struct task_struct *next)
{}

extern void perf_event_mmap(struct vm_area_struct *vma);

extern void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len,
			       bool unregister, const char *sym);
extern void perf_event_bpf_event(struct bpf_prog *prog,
				 enum perf_bpf_event_type type,
				 u16 flags);

#ifdef CONFIG_GUEST_PERF_EVENTS
extern struct perf_guest_info_callbacks __rcu *perf_guest_cbs;

DECLARE_STATIC_CALL(__perf_guest_state, *perf_guest_cbs->state);
DECLARE_STATIC_CALL(__perf_guest_get_ip, *perf_guest_cbs->get_ip);
DECLARE_STATIC_CALL(__perf_guest_handle_intel_pt_intr, *perf_guest_cbs->handle_intel_pt_intr);

static inline unsigned int perf_guest_state(void)
{}
static inline unsigned long perf_guest_get_ip(void)
{}
static inline unsigned int perf_guest_handle_intel_pt_intr(void)
{}
extern void perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs);
extern void perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs);
#else
static inline unsigned int perf_guest_state(void)		 { return 0; }
static inline unsigned long perf_guest_get_ip(void)		 { return 0; }
static inline unsigned int perf_guest_handle_intel_pt_intr(void) { return 0; }
#endif /* CONFIG_GUEST_PERF_EVENTS */

extern void perf_event_exec(void);
extern void perf_event_comm(struct task_struct *tsk, bool exec);
extern void perf_event_namespaces(struct task_struct *tsk);
extern void perf_event_fork(struct task_struct *tsk);
extern void perf_event_text_poke(const void *addr,
				 const void *old_bytes, size_t old_len,
				 const void *new_bytes, size_t new_len);

/* Callchains */
DECLARE_PER_CPU(struct perf_callchain_entry, perf_callchain_entry);

extern void perf_callchain_user(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs);
extern void perf_callchain_kernel(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs);
extern struct perf_callchain_entry *
get_perf_callchain(struct pt_regs *regs, u32 init_nr, bool kernel, bool user,
		   u32 max_stack, bool crosstask, bool add_mark);
extern int get_callchain_buffers(int max_stack);
extern void put_callchain_buffers(void);
extern struct perf_callchain_entry *get_callchain_entry(int *rctx);
extern void put_callchain_entry(int rctx);

extern int sysctl_perf_event_max_stack;
extern int sysctl_perf_event_max_contexts_per_stack;

static inline int perf_callchain_store_context(struct perf_callchain_entry_ctx *ctx, u64 ip)
{}

static inline int perf_callchain_store(struct perf_callchain_entry_ctx *ctx, u64 ip)
{}

extern int sysctl_perf_event_paranoid;
extern int sysctl_perf_event_mlock;
extern int sysctl_perf_event_sample_rate;
extern int sysctl_perf_cpu_time_max_percent;

extern void perf_sample_event_took(u64 sample_len_ns);

int perf_event_max_sample_rate_handler(const struct ctl_table *table, int write,
		void *buffer, size_t *lenp, loff_t *ppos);
int perf_cpu_time_max_percent_handler(const struct ctl_table *table, int write,
		void *buffer, size_t *lenp, loff_t *ppos);
int perf_event_max_stack_handler(const struct ctl_table *table, int write,
		void *buffer, size_t *lenp, loff_t *ppos);

/* Access to perf_event_open(2) syscall. */
#define PERF_SECURITY_OPEN

/* Finer grained perf_event_open(2) access control. */
#define PERF_SECURITY_CPU
#define PERF_SECURITY_KERNEL
#define PERF_SECURITY_TRACEPOINT

static inline int perf_is_paranoid(void)
{}

int perf_allow_kernel(struct perf_event_attr *attr);

static inline int perf_allow_cpu(struct perf_event_attr *attr)
{}

static inline int perf_allow_tracepoint(struct perf_event_attr *attr)
{}

extern void perf_event_init(void);
extern void perf_tp_event(u16 event_type, u64 count, void *record,
			  int entry_size, struct pt_regs *regs,
			  struct hlist_head *head, int rctx,
			  struct task_struct *task);
extern void perf_bp_event(struct perf_event *event, void *data);

#ifndef perf_misc_flags
#define perf_misc_flags
#define perf_instruction_pointer
#endif
#ifndef perf_arch_bpf_user_pt_regs
#define perf_arch_bpf_user_pt_regs(regs)
#endif

static inline bool has_branch_stack(struct perf_event *event)
{}

static inline bool needs_branch_stack(struct perf_event *event)
{}

static inline bool has_aux(struct perf_event *event)
{}

static inline bool is_write_backward(struct perf_event *event)
{}

static inline bool has_addr_filter(struct perf_event *event)
{}

/*
 * An inherited event uses parent's filters
 */
static inline struct perf_addr_filters_head *
perf_event_addr_filters(struct perf_event *event)
{}

static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
{}

extern void perf_event_addr_filters_sync(struct perf_event *event);
extern void perf_report_aux_output_id(struct perf_event *event, u64 hw_id);

extern int perf_output_begin(struct perf_output_handle *handle,
			     struct perf_sample_data *data,
			     struct perf_event *event, unsigned int size);
extern int perf_output_begin_forward(struct perf_output_handle *handle,
				     struct perf_sample_data *data,
				     struct perf_event *event,
				     unsigned int size);
extern int perf_output_begin_backward(struct perf_output_handle *handle,
				      struct perf_sample_data *data,
				      struct perf_event *event,
				      unsigned int size);

extern void perf_output_end(struct perf_output_handle *handle);
extern unsigned int perf_output_copy(struct perf_output_handle *handle,
			     const void *buf, unsigned int len);
extern unsigned int perf_output_skip(struct perf_output_handle *handle,
				     unsigned int len);
extern long perf_output_copy_aux(struct perf_output_handle *aux_handle,
				 struct perf_output_handle *handle,
				 unsigned long from, unsigned long to);
extern int perf_swevent_get_recursion_context(void);
extern void perf_swevent_put_recursion_context(int rctx);
extern u64 perf_swevent_set_period(struct perf_event *event);
extern void perf_event_enable(struct perf_event *event);
extern void perf_event_disable(struct perf_event *event);
extern void perf_event_disable_local(struct perf_event *event);
extern void perf_event_disable_inatomic(struct perf_event *event);
extern void perf_event_task_tick(void);
extern int perf_event_account_interrupt(struct perf_event *event);
extern int perf_event_period(struct perf_event *event, u64 value);
extern u64 perf_event_pause(struct perf_event *event, bool reset);
#else /* !CONFIG_PERF_EVENTS: */
static inline void *
perf_aux_output_begin(struct perf_output_handle *handle,
		      struct perf_event *event)				{ return NULL; }
static inline void
perf_aux_output_end(struct perf_output_handle *handle, unsigned long size)
									{ }
static inline int
perf_aux_output_skip(struct perf_output_handle *handle,
		     unsigned long size)				{ return -EINVAL; }
static inline void *
perf_get_aux(struct perf_output_handle *handle)				{ return NULL; }
static inline void
perf_event_task_migrate(struct task_struct *task)			{ }
static inline void
perf_event_task_sched_in(struct task_struct *prev,
			 struct task_struct *task)			{ }
static inline void
perf_event_task_sched_out(struct task_struct *prev,
			  struct task_struct *next)			{ }
static inline int perf_event_init_task(struct task_struct *child,
				       u64 clone_flags)			{ return 0; }
static inline void perf_event_exit_task(struct task_struct *child)	{ }
static inline void perf_event_free_task(struct task_struct *task)	{ }
static inline void perf_event_delayed_put(struct task_struct *task)	{ }
static inline struct file *perf_event_get(unsigned int fd)	{ return ERR_PTR(-EINVAL); }
static inline const struct perf_event *perf_get_event(struct file *file)
{
	return ERR_PTR(-EINVAL);
}
static inline const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
{
	return ERR_PTR(-EINVAL);
}
static inline int perf_event_read_local(struct perf_event *event, u64 *value,
					u64 *enabled, u64 *running)
{
	return -EINVAL;
}
static inline void perf_event_print_debug(void)				{ }
static inline int perf_event_task_disable(void)				{ return -EINVAL; }
static inline int perf_event_task_enable(void)				{ return -EINVAL; }
static inline int perf_event_refresh(struct perf_event *event, int refresh)
{
	return -EINVAL;
}

static inline void
perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)	{ }
static inline void
perf_bp_event(struct perf_event *event, void *data)			{ }

static inline void perf_event_mmap(struct vm_area_struct *vma)		{ }

typedef int (perf_ksymbol_get_name_f)(char *name, int name_len, void *data);
static inline void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len,
				      bool unregister, const char *sym)	{ }
static inline void perf_event_bpf_event(struct bpf_prog *prog,
					enum perf_bpf_event_type type,
					u16 flags)			{ }
static inline void perf_event_exec(void)				{ }
static inline void perf_event_comm(struct task_struct *tsk, bool exec)	{ }
static inline void perf_event_namespaces(struct task_struct *tsk)	{ }
static inline void perf_event_fork(struct task_struct *tsk)		{ }
static inline void perf_event_text_poke(const void *addr,
					const void *old_bytes,
					size_t old_len,
					const void *new_bytes,
					size_t new_len)			{ }
static inline void perf_event_init(void)				{ }
static inline int  perf_swevent_get_recursion_context(void)		{ return -1; }
static inline void perf_swevent_put_recursion_context(int rctx)		{ }
static inline u64 perf_swevent_set_period(struct perf_event *event)	{ return 0; }
static inline void perf_event_enable(struct perf_event *event)		{ }
static inline void perf_event_disable(struct perf_event *event)		{ }
static inline int __perf_event_disable(void *info)			{ return -1; }
static inline void perf_event_task_tick(void)				{ }
static inline int perf_event_release_kernel(struct perf_event *event)	{ return 0; }
static inline int perf_event_period(struct perf_event *event, u64 value)
{
	return -EINVAL;
}
static inline u64 perf_event_pause(struct perf_event *event, bool reset)
{
	return 0;
}
#endif

#if defined(CONFIG_PERF_EVENTS) && defined(CONFIG_CPU_SUP_INTEL)
extern void perf_restore_debug_store(void);
#else
static inline void perf_restore_debug_store(void)			{ }
#endif

#define perf_output_put(handle, x)

struct perf_pmu_events_attr {};

struct perf_pmu_events_ht_attr {};

struct perf_pmu_events_hybrid_attr {};

struct perf_pmu_format_hybrid_attr {};

ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
			      char *page);

#define PMU_EVENT_ATTR(_name, _var, _id, _show)

#define PMU_EVENT_ATTR_STRING(_name, _var, _str)

#define PMU_EVENT_ATTR_ID(_name, _show, _id)

#define PMU_FORMAT_ATTR_SHOW(_name, _format)									\

#define PMU_FORMAT_ATTR(_name, _format)

/* Performance counter hotplug functions */
#ifdef CONFIG_PERF_EVENTS
int perf_event_init_cpu(unsigned int cpu);
int perf_event_exit_cpu(unsigned int cpu);
#else
#define perf_event_init_cpu
#define perf_event_exit_cpu
#endif

extern void arch_perf_update_userpage(struct perf_event *event,
				      struct perf_event_mmap_page *userpg,
				      u64 now);

/*
 * Snapshot branch stack on software events.
 *
 * Branch stack can be very useful in understanding software events. For
 * example, when a long function, e.g. sys_perf_event_open, returns an
 * errno, it is not obvious why the function failed. Branch stack could
 * provide very helpful information in this type of scenarios.
 *
 * On software event, it is necessary to stop the hardware branch recorder
 * fast. Otherwise, the hardware register/buffer will be flushed with
 * entries of the triggering event. Therefore, static call is used to
 * stop the hardware recorder.
 */

/*
 * cnt is the number of entries allocated for entries.
 * Return number of entries copied to .
 */
perf_snapshot_branch_stack_t;
DECLARE_STATIC_CALL(perf_snapshot_branch_stack, perf_snapshot_branch_stack_t);

#ifndef PERF_NEEDS_LOPWR_CB
static inline void perf_lopwr_cb(bool mode)
{
}
#endif

#endif /* _LINUX_PERF_EVENT_H */