linux/drivers/gpu/drm/drm_gem.c

/*
 * Copyright © 2008 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eric Anholt <[email protected]>
 *
 */

#include <linux/dma-buf.h>
#include <linux/file.h>
#include <linux/fs.h>
#include <linux/iosys-map.h>
#include <linux/mem_encrypt.h>
#include <linux/mm.h>
#include <linux/mman.h>
#include <linux/module.h>
#include <linux/pagemap.h>
#include <linux/pagevec.h>
#include <linux/shmem_fs.h>
#include <linux/slab.h>
#include <linux/string_helpers.h>
#include <linux/types.h>
#include <linux/uaccess.h>

#include <drm/drm.h>
#include <drm/drm_device.h>
#include <drm/drm_drv.h>
#include <drm/drm_file.h>
#include <drm/drm_gem.h>
#include <drm/drm_managed.h>
#include <drm/drm_print.h>
#include <drm/drm_vma_manager.h>

#include "drm_internal.h"

/** @file drm_gem.c
 *
 * This file provides some of the base ioctls and library routines for
 * the graphics memory manager implemented by each device driver.
 *
 * Because various devices have different requirements in terms of
 * synchronization and migration strategies, implementing that is left up to
 * the driver, and all that the general API provides should be generic --
 * allocating objects, reading/writing data with the cpu, freeing objects.
 * Even there, platform-dependent optimizations for reading/writing data with
 * the CPU mean we'll likely hook those out to driver-specific calls.  However,
 * the DRI2 implementation wants to have at least allocate/mmap be generic.
 *
 * The goal was to have swap-backed object allocation managed through
 * struct file.  However, file descriptors as handles to a struct file have
 * two major failings:
 * - Process limits prevent more than 1024 or so being used at a time by
 *   default.
 * - Inability to allocate high fds will aggravate the X Server's select()
 *   handling, and likely that of many GL client applications as well.
 *
 * This led to a plan of using our own integer IDs (called handles, following
 * DRM terminology) to mimic fds, and implement the fd syscalls we need as
 * ioctls.  The objects themselves will still include the struct file so
 * that we can transition to fds if the required kernel infrastructure shows
 * up at a later date, and as our interface with shmfs for memory allocation.
 */

static void
drm_gem_init_release(struct drm_device *dev, void *ptr)
{}

/**
 * drm_gem_init - Initialize the GEM device fields
 * @dev: drm_devic structure to initialize
 */
int
drm_gem_init(struct drm_device *dev)
{}

/**
 * drm_gem_object_init - initialize an allocated shmem-backed GEM object
 * @dev: drm_device the object should be initialized for
 * @obj: drm_gem_object to initialize
 * @size: object size
 *
 * Initialize an already allocated GEM object of the specified size with
 * shmfs backing store.
 */
int drm_gem_object_init(struct drm_device *dev,
			struct drm_gem_object *obj, size_t size)
{}
EXPORT_SYMBOL();

/**
 * drm_gem_private_object_init - initialize an allocated private GEM object
 * @dev: drm_device the object should be initialized for
 * @obj: drm_gem_object to initialize
 * @size: object size
 *
 * Initialize an already allocated GEM object of the specified size with
 * no GEM provided backing store. Instead the caller is responsible for
 * backing the object and handling it.
 */
void drm_gem_private_object_init(struct drm_device *dev,
				 struct drm_gem_object *obj, size_t size)
{}
EXPORT_SYMBOL();

/**
 * drm_gem_private_object_fini - Finalize a failed drm_gem_object
 * @obj: drm_gem_object
 *
 * Uninitialize an already allocated GEM object when it initialized failed
 */
void drm_gem_private_object_fini(struct drm_gem_object *obj)
{}
EXPORT_SYMBOL();

/**
 * drm_gem_object_handle_free - release resources bound to userspace handles
 * @obj: GEM object to clean up.
 *
 * Called after the last handle to the object has been closed
 *
 * Removes any name for the object. Note that this must be
 * called before drm_gem_object_free or we'll be touching
 * freed memory
 */
static void drm_gem_object_handle_free(struct drm_gem_object *obj)
{}

static void drm_gem_object_exported_dma_buf_free(struct drm_gem_object *obj)
{}

static void
drm_gem_object_handle_put_unlocked(struct drm_gem_object *obj)
{}

/*
 * Called at device or object close to release the file's
 * handle references on objects.
 */
static int
drm_gem_object_release_handle(int id, void *ptr, void *data)
{}

/**
 * drm_gem_handle_delete - deletes the given file-private handle
 * @filp: drm file-private structure to use for the handle look up
 * @handle: userspace handle to delete
 *
 * Removes the GEM handle from the @filp lookup table which has been added with
 * drm_gem_handle_create(). If this is the last handle also cleans up linked
 * resources like GEM names.
 */
int
drm_gem_handle_delete(struct drm_file *filp, u32 handle)
{}
EXPORT_SYMBOL();

/**
 * drm_gem_dumb_map_offset - return the fake mmap offset for a gem object
 * @file: drm file-private structure containing the gem object
 * @dev: corresponding drm_device
 * @handle: gem object handle
 * @offset: return location for the fake mmap offset
 *
 * This implements the &drm_driver.dumb_map_offset kms driver callback for
 * drivers which use gem to manage their backing storage.
 *
 * Returns:
 * 0 on success or a negative error code on failure.
 */
int drm_gem_dumb_map_offset(struct drm_file *file, struct drm_device *dev,
			    u32 handle, u64 *offset)
{}
EXPORT_SYMBOL_GPL();

/**
 * drm_gem_handle_create_tail - internal functions to create a handle
 * @file_priv: drm file-private structure to register the handle for
 * @obj: object to register
 * @handlep: pointer to return the created handle to the caller
 *
 * This expects the &drm_device.object_name_lock to be held already and will
 * drop it before returning. Used to avoid races in establishing new handles
 * when importing an object from either an flink name or a dma-buf.
 *
 * Handles must be release again through drm_gem_handle_delete(). This is done
 * when userspace closes @file_priv for all attached handles, or through the
 * GEM_CLOSE ioctl for individual handles.
 */
int
drm_gem_handle_create_tail(struct drm_file *file_priv,
			   struct drm_gem_object *obj,
			   u32 *handlep)
{}

/**
 * drm_gem_handle_create - create a gem handle for an object
 * @file_priv: drm file-private structure to register the handle for
 * @obj: object to register
 * @handlep: pointer to return the created handle to the caller
 *
 * Create a handle for this object. This adds a handle reference to the object,
 * which includes a regular reference count. Callers will likely want to
 * dereference the object afterwards.
 *
 * Since this publishes @obj to userspace it must be fully set up by this point,
 * drivers must call this last in their buffer object creation callbacks.
 */
int drm_gem_handle_create(struct drm_file *file_priv,
			  struct drm_gem_object *obj,
			  u32 *handlep)
{}
EXPORT_SYMBOL();


/**
 * drm_gem_free_mmap_offset - release a fake mmap offset for an object
 * @obj: obj in question
 *
 * This routine frees fake offsets allocated by drm_gem_create_mmap_offset().
 *
 * Note that drm_gem_object_release() already calls this function, so drivers
 * don't have to take care of releasing the mmap offset themselves when freeing
 * the GEM object.
 */
void
drm_gem_free_mmap_offset(struct drm_gem_object *obj)
{}
EXPORT_SYMBOL();

/**
 * drm_gem_create_mmap_offset_size - create a fake mmap offset for an object
 * @obj: obj in question
 * @size: the virtual size
 *
 * GEM memory mapping works by handing back to userspace a fake mmap offset
 * it can use in a subsequent mmap(2) call.  The DRM core code then looks
 * up the object based on the offset and sets up the various memory mapping
 * structures.
 *
 * This routine allocates and attaches a fake offset for @obj, in cases where
 * the virtual size differs from the physical size (ie. &drm_gem_object.size).
 * Otherwise just use drm_gem_create_mmap_offset().
 *
 * This function is idempotent and handles an already allocated mmap offset
 * transparently. Drivers do not need to check for this case.
 */
int
drm_gem_create_mmap_offset_size(struct drm_gem_object *obj, size_t size)
{}
EXPORT_SYMBOL();

/**
 * drm_gem_create_mmap_offset - create a fake mmap offset for an object
 * @obj: obj in question
 *
 * GEM memory mapping works by handing back to userspace a fake mmap offset
 * it can use in a subsequent mmap(2) call.  The DRM core code then looks
 * up the object based on the offset and sets up the various memory mapping
 * structures.
 *
 * This routine allocates and attaches a fake offset for @obj.
 *
 * Drivers can call drm_gem_free_mmap_offset() before freeing @obj to release
 * the fake offset again.
 */
int drm_gem_create_mmap_offset(struct drm_gem_object *obj)
{}
EXPORT_SYMBOL();

/*
 * Move folios to appropriate lru and release the folios, decrementing the
 * ref count of those folios.
 */
static void drm_gem_check_release_batch(struct folio_batch *fbatch)
{}

/**
 * drm_gem_get_pages - helper to allocate backing pages for a GEM object
 * from shmem
 * @obj: obj in question
 *
 * This reads the page-array of the shmem-backing storage of the given gem
 * object. An array of pages is returned. If a page is not allocated or
 * swapped-out, this will allocate/swap-in the required pages. Note that the
 * whole object is covered by the page-array and pinned in memory.
 *
 * Use drm_gem_put_pages() to release the array and unpin all pages.
 *
 * This uses the GFP-mask set on the shmem-mapping (see mapping_set_gfp_mask()).
 * If you require other GFP-masks, you have to do those allocations yourself.
 *
 * Note that you are not allowed to change gfp-zones during runtime. That is,
 * shmem_read_mapping_page_gfp() must be called with the same gfp_zone(gfp) as
 * set during initialization. If you have special zone constraints, set them
 * after drm_gem_object_init() via mapping_set_gfp_mask(). shmem-core takes care
 * to keep pages in the required zone during swap-in.
 *
 * This function is only valid on objects initialized with
 * drm_gem_object_init(), but not for those initialized with
 * drm_gem_private_object_init() only.
 */
struct page **drm_gem_get_pages(struct drm_gem_object *obj)
{}
EXPORT_SYMBOL();

/**
 * drm_gem_put_pages - helper to free backing pages for a GEM object
 * @obj: obj in question
 * @pages: pages to free
 * @dirty: if true, pages will be marked as dirty
 * @accessed: if true, the pages will be marked as accessed
 */
void drm_gem_put_pages(struct drm_gem_object *obj, struct page **pages,
		bool dirty, bool accessed)
{}
EXPORT_SYMBOL();

static int objects_lookup(struct drm_file *filp, u32 *handle, int count,
			  struct drm_gem_object **objs)
{}

/**
 * drm_gem_objects_lookup - look up GEM objects from an array of handles
 * @filp: DRM file private date
 * @bo_handles: user pointer to array of userspace handle
 * @count: size of handle array
 * @objs_out: returned pointer to array of drm_gem_object pointers
 *
 * Takes an array of userspace handles and returns a newly allocated array of
 * GEM objects.
 *
 * For a single handle lookup, use drm_gem_object_lookup().
 *
 * Returns:
 * @objs filled in with GEM object pointers. Returned GEM objects need to be
 * released with drm_gem_object_put(). -ENOENT is returned on a lookup
 * failure. 0 is returned on success.
 *
 */
int drm_gem_objects_lookup(struct drm_file *filp, void __user *bo_handles,
			   int count, struct drm_gem_object ***objs_out)
{}
EXPORT_SYMBOL();

/**
 * drm_gem_object_lookup - look up a GEM object from its handle
 * @filp: DRM file private date
 * @handle: userspace handle
 *
 * If looking up an array of handles, use drm_gem_objects_lookup().
 *
 * Returns:
 * A reference to the object named by the handle if such exists on @filp, NULL
 * otherwise.
 */
struct drm_gem_object *
drm_gem_object_lookup(struct drm_file *filp, u32 handle)
{}
EXPORT_SYMBOL();

/**
 * drm_gem_dma_resv_wait - Wait on GEM object's reservation's objects
 * shared and/or exclusive fences.
 * @filep: DRM file private date
 * @handle: userspace handle
 * @wait_all: if true, wait on all fences, else wait on just exclusive fence
 * @timeout: timeout value in jiffies or zero to return immediately
 *
 * Returns:
 * Returns -ERESTARTSYS if interrupted, 0 if the wait timed out, or
 * greater than 0 on success.
 */
long drm_gem_dma_resv_wait(struct drm_file *filep, u32 handle,
				    bool wait_all, unsigned long timeout)
{}
EXPORT_SYMBOL();

/**
 * drm_gem_close_ioctl - implementation of the GEM_CLOSE ioctl
 * @dev: drm_device
 * @data: ioctl data
 * @file_priv: drm file-private structure
 *
 * Releases the handle to an mm object.
 */
int
drm_gem_close_ioctl(struct drm_device *dev, void *data,
		    struct drm_file *file_priv)
{}

/**
 * drm_gem_flink_ioctl - implementation of the GEM_FLINK ioctl
 * @dev: drm_device
 * @data: ioctl data
 * @file_priv: drm file-private structure
 *
 * Create a global name for an object, returning the name.
 *
 * Note that the name does not hold a reference; when the object
 * is freed, the name goes away.
 */
int
drm_gem_flink_ioctl(struct drm_device *dev, void *data,
		    struct drm_file *file_priv)
{}

/**
 * drm_gem_open_ioctl - implementation of the GEM_OPEN ioctl
 * @dev: drm_device
 * @data: ioctl data
 * @file_priv: drm file-private structure
 *
 * Open an object using the global name, returning a handle and the size.
 *
 * This handle (of course) holds a reference to the object, so the object
 * will not go away until the handle is deleted.
 */
int
drm_gem_open_ioctl(struct drm_device *dev, void *data,
		   struct drm_file *file_priv)
{}

/**
 * drm_gem_open - initializes GEM file-private structures at devnode open time
 * @dev: drm_device which is being opened by userspace
 * @file_private: drm file-private structure to set up
 *
 * Called at device open time, sets up the structure for handling refcounting
 * of mm objects.
 */
void
drm_gem_open(struct drm_device *dev, struct drm_file *file_private)
{}

/**
 * drm_gem_release - release file-private GEM resources
 * @dev: drm_device which is being closed by userspace
 * @file_private: drm file-private structure to clean up
 *
 * Called at close time when the filp is going away.
 *
 * Releases any remaining references on objects by this filp.
 */
void
drm_gem_release(struct drm_device *dev, struct drm_file *file_private)
{}

/**
 * drm_gem_object_release - release GEM buffer object resources
 * @obj: GEM buffer object
 *
 * This releases any structures and resources used by @obj and is the inverse of
 * drm_gem_object_init().
 */
void
drm_gem_object_release(struct drm_gem_object *obj)
{}
EXPORT_SYMBOL();

/**
 * drm_gem_object_free - free a GEM object
 * @kref: kref of the object to free
 *
 * Called after the last reference to the object has been lost.
 *
 * Frees the object
 */
void
drm_gem_object_free(struct kref *kref)
{}
EXPORT_SYMBOL();

/**
 * drm_gem_vm_open - vma->ops->open implementation for GEM
 * @vma: VM area structure
 *
 * This function implements the #vm_operations_struct open() callback for GEM
 * drivers. This must be used together with drm_gem_vm_close().
 */
void drm_gem_vm_open(struct vm_area_struct *vma)
{}
EXPORT_SYMBOL();

/**
 * drm_gem_vm_close - vma->ops->close implementation for GEM
 * @vma: VM area structure
 *
 * This function implements the #vm_operations_struct close() callback for GEM
 * drivers. This must be used together with drm_gem_vm_open().
 */
void drm_gem_vm_close(struct vm_area_struct *vma)
{}
EXPORT_SYMBOL();

/**
 * drm_gem_mmap_obj - memory map a GEM object
 * @obj: the GEM object to map
 * @obj_size: the object size to be mapped, in bytes
 * @vma: VMA for the area to be mapped
 *
 * Set up the VMA to prepare mapping of the GEM object using the GEM object's
 * vm_ops. Depending on their requirements, GEM objects can either
 * provide a fault handler in their vm_ops (in which case any accesses to
 * the object will be trapped, to perform migration, GTT binding, surface
 * register allocation, or performance monitoring), or mmap the buffer memory
 * synchronously after calling drm_gem_mmap_obj.
 *
 * This function is mainly intended to implement the DMABUF mmap operation, when
 * the GEM object is not looked up based on its fake offset. To implement the
 * DRM mmap operation, drivers should use the drm_gem_mmap() function.
 *
 * drm_gem_mmap_obj() assumes the user is granted access to the buffer while
 * drm_gem_mmap() prevents unprivileged users from mapping random objects. So
 * callers must verify access restrictions before calling this helper.
 *
 * Return 0 or success or -EINVAL if the object size is smaller than the VMA
 * size, or if no vm_ops are provided.
 */
int drm_gem_mmap_obj(struct drm_gem_object *obj, unsigned long obj_size,
		     struct vm_area_struct *vma)
{}
EXPORT_SYMBOL();

/**
 * drm_gem_mmap - memory map routine for GEM objects
 * @filp: DRM file pointer
 * @vma: VMA for the area to be mapped
 *
 * If a driver supports GEM object mapping, mmap calls on the DRM file
 * descriptor will end up here.
 *
 * Look up the GEM object based on the offset passed in (vma->vm_pgoff will
 * contain the fake offset we created when the GTT map ioctl was called on
 * the object) and map it with a call to drm_gem_mmap_obj().
 *
 * If the caller is not granted access to the buffer object, the mmap will fail
 * with EACCES. Please see the vma manager for more information.
 */
int drm_gem_mmap(struct file *filp, struct vm_area_struct *vma)
{}
EXPORT_SYMBOL();

void drm_gem_print_info(struct drm_printer *p, unsigned int indent,
			const struct drm_gem_object *obj)
{}

int drm_gem_pin_locked(struct drm_gem_object *obj)
{}

void drm_gem_unpin_locked(struct drm_gem_object *obj)
{}

int drm_gem_pin(struct drm_gem_object *obj)
{}

void drm_gem_unpin(struct drm_gem_object *obj)
{}

int drm_gem_vmap(struct drm_gem_object *obj, struct iosys_map *map)
{}
EXPORT_SYMBOL();

void drm_gem_vunmap(struct drm_gem_object *obj, struct iosys_map *map)
{}
EXPORT_SYMBOL();

void drm_gem_lock(struct drm_gem_object *obj)
{}
EXPORT_SYMBOL();

void drm_gem_unlock(struct drm_gem_object *obj)
{}
EXPORT_SYMBOL();

int drm_gem_vmap_unlocked(struct drm_gem_object *obj, struct iosys_map *map)
{}
EXPORT_SYMBOL();

void drm_gem_vunmap_unlocked(struct drm_gem_object *obj, struct iosys_map *map)
{}
EXPORT_SYMBOL();

/**
 * drm_gem_lock_reservations - Sets up the ww context and acquires
 * the lock on an array of GEM objects.
 *
 * Once you've locked your reservations, you'll want to set up space
 * for your shared fences (if applicable), submit your job, then
 * drm_gem_unlock_reservations().
 *
 * @objs: drm_gem_objects to lock
 * @count: Number of objects in @objs
 * @acquire_ctx: struct ww_acquire_ctx that will be initialized as
 * part of tracking this set of locked reservations.
 */
int
drm_gem_lock_reservations(struct drm_gem_object **objs, int count,
			  struct ww_acquire_ctx *acquire_ctx)
{}
EXPORT_SYMBOL();

void
drm_gem_unlock_reservations(struct drm_gem_object **objs, int count,
			    struct ww_acquire_ctx *acquire_ctx)
{}
EXPORT_SYMBOL();

/**
 * drm_gem_lru_init - initialize a LRU
 *
 * @lru: The LRU to initialize
 * @lock: The lock protecting the LRU
 */
void
drm_gem_lru_init(struct drm_gem_lru *lru, struct mutex *lock)
{}
EXPORT_SYMBOL();

static void
drm_gem_lru_remove_locked(struct drm_gem_object *obj)
{}

/**
 * drm_gem_lru_remove - remove object from whatever LRU it is in
 *
 * If the object is currently in any LRU, remove it.
 *
 * @obj: The GEM object to remove from current LRU
 */
void
drm_gem_lru_remove(struct drm_gem_object *obj)
{}
EXPORT_SYMBOL();

/**
 * drm_gem_lru_move_tail_locked - move the object to the tail of the LRU
 *
 * Like &drm_gem_lru_move_tail but lru lock must be held
 *
 * @lru: The LRU to move the object into.
 * @obj: The GEM object to move into this LRU
 */
void
drm_gem_lru_move_tail_locked(struct drm_gem_lru *lru, struct drm_gem_object *obj)
{}
EXPORT_SYMBOL();

/**
 * drm_gem_lru_move_tail - move the object to the tail of the LRU
 *
 * If the object is already in this LRU it will be moved to the
 * tail.  Otherwise it will be removed from whichever other LRU
 * it is in (if any) and moved into this LRU.
 *
 * @lru: The LRU to move the object into.
 * @obj: The GEM object to move into this LRU
 */
void
drm_gem_lru_move_tail(struct drm_gem_lru *lru, struct drm_gem_object *obj)
{}
EXPORT_SYMBOL();

/**
 * drm_gem_lru_scan - helper to implement shrinker.scan_objects
 *
 * If the shrink callback succeeds, it is expected that the driver
 * move the object out of this LRU.
 *
 * If the LRU possibly contain active buffers, it is the responsibility
 * of the shrink callback to check for this (ie. dma_resv_test_signaled())
 * or if necessary block until the buffer becomes idle.
 *
 * @lru: The LRU to scan
 * @nr_to_scan: The number of pages to try to reclaim
 * @remaining: The number of pages left to reclaim, should be initialized by caller
 * @shrink: Callback to try to shrink/reclaim the object.
 */
unsigned long
drm_gem_lru_scan(struct drm_gem_lru *lru,
		 unsigned int nr_to_scan,
		 unsigned long *remaining,
		 bool (*shrink)(struct drm_gem_object *obj))
{}
EXPORT_SYMBOL();

/**
 * drm_gem_evict - helper to evict backing pages for a GEM object
 * @obj: obj in question
 */
int drm_gem_evict(struct drm_gem_object *obj)
{}
EXPORT_SYMBOL();