/* * Copyright (C) 2014 Red Hat * Copyright (C) 2014 Intel Corp. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. * * Authors: * Rob Clark <[email protected]> * Daniel Vetter <[email protected]> */ #include <linux/dma-fence.h> #include <linux/ktime.h> #include <drm/drm_atomic.h> #include <drm/drm_atomic_helper.h> #include <drm/drm_atomic_uapi.h> #include <drm/drm_blend.h> #include <drm/drm_bridge.h> #include <drm/drm_damage_helper.h> #include <drm/drm_device.h> #include <drm/drm_drv.h> #include <drm/drm_framebuffer.h> #include <drm/drm_gem_atomic_helper.h> #include <drm/drm_panic.h> #include <drm/drm_print.h> #include <drm/drm_self_refresh_helper.h> #include <drm/drm_vblank.h> #include <drm/drm_writeback.h> #include "drm_crtc_helper_internal.h" #include "drm_crtc_internal.h" /** * DOC: overview * * This helper library provides implementations of check and commit functions on * top of the CRTC modeset helper callbacks and the plane helper callbacks. It * also provides convenience implementations for the atomic state handling * callbacks for drivers which don't need to subclass the drm core structures to * add their own additional internal state. * * This library also provides default implementations for the check callback in * drm_atomic_helper_check() and for the commit callback with * drm_atomic_helper_commit(). But the individual stages and callbacks are * exposed to allow drivers to mix and match and e.g. use the plane helpers only * together with a driver private modeset implementation. * * This library also provides implementations for all the legacy driver * interfaces on top of the atomic interface. See drm_atomic_helper_set_config(), * drm_atomic_helper_disable_plane(), and the various functions to implement * set_property callbacks. New drivers must not implement these functions * themselves but must use the provided helpers. * * The atomic helper uses the same function table structures as all other * modesetting helpers. See the documentation for &struct drm_crtc_helper_funcs, * struct &drm_encoder_helper_funcs and &struct drm_connector_helper_funcs. It * also shares the &struct drm_plane_helper_funcs function table with the plane * helpers. */ static void drm_atomic_helper_plane_changed(struct drm_atomic_state *state, struct drm_plane_state *old_plane_state, struct drm_plane_state *plane_state, struct drm_plane *plane) { … } static int handle_conflicting_encoders(struct drm_atomic_state *state, bool disable_conflicting_encoders) { … } static void set_best_encoder(struct drm_atomic_state *state, struct drm_connector_state *conn_state, struct drm_encoder *encoder) { … } static void steal_encoder(struct drm_atomic_state *state, struct drm_encoder *encoder) { … } static int update_connector_routing(struct drm_atomic_state *state, struct drm_connector *connector, struct drm_connector_state *old_connector_state, struct drm_connector_state *new_connector_state, bool added_by_user) { … } static int mode_fixup(struct drm_atomic_state *state) { … } static enum drm_mode_status mode_valid_path(struct drm_connector *connector, struct drm_encoder *encoder, struct drm_crtc *crtc, const struct drm_display_mode *mode) { … } static int mode_valid(struct drm_atomic_state *state) { … } /** * drm_atomic_helper_check_modeset - validate state object for modeset changes * @dev: DRM device * @state: the driver state object * * Check the state object to see if the requested state is physically possible. * This does all the CRTC and connector related computations for an atomic * update and adds any additional connectors needed for full modesets. It calls * the various per-object callbacks in the follow order: * * 1. &drm_connector_helper_funcs.atomic_best_encoder for determining the new encoder. * 2. &drm_connector_helper_funcs.atomic_check to validate the connector state. * 3. If it's determined a modeset is needed then all connectors on the affected * CRTC are added and &drm_connector_helper_funcs.atomic_check is run on them. * 4. &drm_encoder_helper_funcs.mode_valid, &drm_bridge_funcs.mode_valid and * &drm_crtc_helper_funcs.mode_valid are called on the affected components. * 5. &drm_bridge_funcs.mode_fixup is called on all encoder bridges. * 6. &drm_encoder_helper_funcs.atomic_check is called to validate any encoder state. * This function is only called when the encoder will be part of a configured CRTC, * it must not be used for implementing connector property validation. * If this function is NULL, &drm_atomic_encoder_helper_funcs.mode_fixup is called * instead. * 7. &drm_crtc_helper_funcs.mode_fixup is called last, to fix up the mode with CRTC constraints. * * &drm_crtc_state.mode_changed is set when the input mode is changed. * &drm_crtc_state.connectors_changed is set when a connector is added or * removed from the CRTC. &drm_crtc_state.active_changed is set when * &drm_crtc_state.active changes, which is used for DPMS. * &drm_crtc_state.no_vblank is set from the result of drm_dev_has_vblank(). * See also: drm_atomic_crtc_needs_modeset() * * IMPORTANT: * * Drivers which set &drm_crtc_state.mode_changed (e.g. in their * &drm_plane_helper_funcs.atomic_check hooks if a plane update can't be done * without a full modeset) _must_ call this function after that change. It is * permitted to call this function multiple times for the same update, e.g. * when the &drm_crtc_helper_funcs.atomic_check functions depend upon the * adjusted dotclock for fifo space allocation and watermark computation. * * RETURNS: * Zero for success or -errno */ int drm_atomic_helper_check_modeset(struct drm_device *dev, struct drm_atomic_state *state) { … } EXPORT_SYMBOL(…); /** * drm_atomic_helper_check_wb_connector_state() - Check writeback connector state * @connector: corresponding connector * @state: the driver state object * * Checks if the writeback connector state is valid, and returns an error if it * isn't. * * RETURNS: * Zero for success or -errno */ int drm_atomic_helper_check_wb_connector_state(struct drm_connector *connector, struct drm_atomic_state *state) { … } EXPORT_SYMBOL(…); /** * drm_atomic_helper_check_plane_state() - Check plane state for validity * @plane_state: plane state to check * @crtc_state: CRTC state to check * @min_scale: minimum @src:@dest scaling factor in 16.16 fixed point * @max_scale: maximum @src:@dest scaling factor in 16.16 fixed point * @can_position: is it legal to position the plane such that it * doesn't cover the entire CRTC? This will generally * only be false for primary planes. * @can_update_disabled: can the plane be updated while the CRTC * is disabled? * * Checks that a desired plane update is valid, and updates various * bits of derived state (clipped coordinates etc.). Drivers that provide * their own plane handling rather than helper-provided implementations may * still wish to call this function to avoid duplication of error checking * code. * * RETURNS: * Zero if update appears valid, error code on failure */ int drm_atomic_helper_check_plane_state(struct drm_plane_state *plane_state, const struct drm_crtc_state *crtc_state, int min_scale, int max_scale, bool can_position, bool can_update_disabled) { … } EXPORT_SYMBOL(…); /** * drm_atomic_helper_check_crtc_primary_plane() - Check CRTC state for primary plane * @crtc_state: CRTC state to check * * Checks that a CRTC has at least one primary plane attached to it, which is * a requirement on some hardware. Note that this only involves the CRTC side * of the test. To test if the primary plane is visible or if it can be updated * without the CRTC being enabled, use drm_atomic_helper_check_plane_state() in * the plane's atomic check. * * RETURNS: * 0 if a primary plane is attached to the CRTC, or an error code otherwise */ int drm_atomic_helper_check_crtc_primary_plane(struct drm_crtc_state *crtc_state) { … } EXPORT_SYMBOL(…); /** * drm_atomic_helper_check_planes - validate state object for planes changes * @dev: DRM device * @state: the driver state object * * Check the state object to see if the requested state is physically possible. * This does all the plane update related checks using by calling into the * &drm_crtc_helper_funcs.atomic_check and &drm_plane_helper_funcs.atomic_check * hooks provided by the driver. * * It also sets &drm_crtc_state.planes_changed to indicate that a CRTC has * updated planes. * * RETURNS: * Zero for success or -errno */ int drm_atomic_helper_check_planes(struct drm_device *dev, struct drm_atomic_state *state) { … } EXPORT_SYMBOL(…); /** * drm_atomic_helper_check - validate state object * @dev: DRM device * @state: the driver state object * * Check the state object to see if the requested state is physically possible. * Only CRTCs and planes have check callbacks, so for any additional (global) * checking that a driver needs it can simply wrap that around this function. * Drivers without such needs can directly use this as their * &drm_mode_config_funcs.atomic_check callback. * * This just wraps the two parts of the state checking for planes and modeset * state in the default order: First it calls drm_atomic_helper_check_modeset() * and then drm_atomic_helper_check_planes(). The assumption is that the * @drm_plane_helper_funcs.atomic_check and @drm_crtc_helper_funcs.atomic_check * functions depend upon an updated adjusted_mode.clock to e.g. properly compute * watermarks. * * Note that zpos normalization will add all enable planes to the state which * might not desired for some drivers. * For example enable/disable of a cursor plane which have fixed zpos value * would trigger all other enabled planes to be forced to the state change. * * RETURNS: * Zero for success or -errno */ int drm_atomic_helper_check(struct drm_device *dev, struct drm_atomic_state *state) { … } EXPORT_SYMBOL(…); static bool crtc_needs_disable(struct drm_crtc_state *old_state, struct drm_crtc_state *new_state) { … } static void disable_outputs(struct drm_device *dev, struct drm_atomic_state *old_state) { … } /** * drm_atomic_helper_update_legacy_modeset_state - update legacy modeset state * @dev: DRM device * @old_state: atomic state object with old state structures * * This function updates all the various legacy modeset state pointers in * connectors, encoders and CRTCs. * * Drivers can use this for building their own atomic commit if they don't have * a pure helper-based modeset implementation. * * Since these updates are not synchronized with lockings, only code paths * called from &drm_mode_config_helper_funcs.atomic_commit_tail can look at the * legacy state filled out by this helper. Defacto this means this helper and * the legacy state pointers are only really useful for transitioning an * existing driver to the atomic world. */ void drm_atomic_helper_update_legacy_modeset_state(struct drm_device *dev, struct drm_atomic_state *old_state) { … } EXPORT_SYMBOL(…); /** * drm_atomic_helper_calc_timestamping_constants - update vblank timestamping constants * @state: atomic state object * * Updates the timestamping constants used for precise vblank timestamps * by calling drm_calc_timestamping_constants() for all enabled crtcs in @state. */ void drm_atomic_helper_calc_timestamping_constants(struct drm_atomic_state *state) { … } EXPORT_SYMBOL(…); static void crtc_set_mode(struct drm_device *dev, struct drm_atomic_state *old_state) { … } /** * drm_atomic_helper_commit_modeset_disables - modeset commit to disable outputs * @dev: DRM device * @old_state: atomic state object with old state structures * * This function shuts down all the outputs that need to be shut down and * prepares them (if required) with the new mode. * * For compatibility with legacy CRTC helpers this should be called before * drm_atomic_helper_commit_planes(), which is what the default commit function * does. But drivers with different needs can group the modeset commits together * and do the plane commits at the end. This is useful for drivers doing runtime * PM since planes updates then only happen when the CRTC is actually enabled. */ void drm_atomic_helper_commit_modeset_disables(struct drm_device *dev, struct drm_atomic_state *old_state) { … } EXPORT_SYMBOL(…); static void drm_atomic_helper_commit_writebacks(struct drm_device *dev, struct drm_atomic_state *old_state) { … } /** * drm_atomic_helper_commit_modeset_enables - modeset commit to enable outputs * @dev: DRM device * @old_state: atomic state object with old state structures * * This function enables all the outputs with the new configuration which had to * be turned off for the update. * * For compatibility with legacy CRTC helpers this should be called after * drm_atomic_helper_commit_planes(), which is what the default commit function * does. But drivers with different needs can group the modeset commits together * and do the plane commits at the end. This is useful for drivers doing runtime * PM since planes updates then only happen when the CRTC is actually enabled. */ void drm_atomic_helper_commit_modeset_enables(struct drm_device *dev, struct drm_atomic_state *old_state) { … } EXPORT_SYMBOL(…); /* * For atomic updates which touch just a single CRTC, calculate the time of the * next vblank, and inform all the fences of the deadline. */ static void set_fence_deadline(struct drm_device *dev, struct drm_atomic_state *state) { … } /** * drm_atomic_helper_wait_for_fences - wait for fences stashed in plane state * @dev: DRM device * @state: atomic state object with old state structures * @pre_swap: If true, do an interruptible wait, and @state is the new state. * Otherwise @state is the old state. * * For implicit sync, driver should fish the exclusive fence out from the * incoming fb's and stash it in the drm_plane_state. This is called after * drm_atomic_helper_swap_state() so it uses the current plane state (and * just uses the atomic state to find the changed planes) * * Note that @pre_swap is needed since the point where we block for fences moves * around depending upon whether an atomic commit is blocking or * non-blocking. For non-blocking commit all waiting needs to happen after * drm_atomic_helper_swap_state() is called, but for blocking commits we want * to wait **before** we do anything that can't be easily rolled back. That is * before we call drm_atomic_helper_swap_state(). * * Returns zero if success or < 0 if dma_fence_wait() fails. */ int drm_atomic_helper_wait_for_fences(struct drm_device *dev, struct drm_atomic_state *state, bool pre_swap) { … } EXPORT_SYMBOL(…); /** * drm_atomic_helper_wait_for_vblanks - wait for vblank on CRTCs * @dev: DRM device * @old_state: atomic state object with old state structures * * Helper to, after atomic commit, wait for vblanks on all affected * CRTCs (ie. before cleaning up old framebuffers using * drm_atomic_helper_cleanup_planes()). It will only wait on CRTCs where the * framebuffers have actually changed to optimize for the legacy cursor and * plane update use-case. * * Drivers using the nonblocking commit tracking support initialized by calling * drm_atomic_helper_setup_commit() should look at * drm_atomic_helper_wait_for_flip_done() as an alternative. */ void drm_atomic_helper_wait_for_vblanks(struct drm_device *dev, struct drm_atomic_state *old_state) { … } EXPORT_SYMBOL(…); /** * drm_atomic_helper_wait_for_flip_done - wait for all page flips to be done * @dev: DRM device * @old_state: atomic state object with old state structures * * Helper to, after atomic commit, wait for page flips on all affected * crtcs (ie. before cleaning up old framebuffers using * drm_atomic_helper_cleanup_planes()). Compared to * drm_atomic_helper_wait_for_vblanks() this waits for the completion on all * CRTCs, assuming that cursors-only updates are signalling their completion * immediately (or using a different path). * * This requires that drivers use the nonblocking commit tracking support * initialized using drm_atomic_helper_setup_commit(). */ void drm_atomic_helper_wait_for_flip_done(struct drm_device *dev, struct drm_atomic_state *old_state) { … } EXPORT_SYMBOL(…); /** * drm_atomic_helper_commit_tail - commit atomic update to hardware * @old_state: atomic state object with old state structures * * This is the default implementation for the * &drm_mode_config_helper_funcs.atomic_commit_tail hook, for drivers * that do not support runtime_pm or do not need the CRTC to be * enabled to perform a commit. Otherwise, see * drm_atomic_helper_commit_tail_rpm(). * * Note that the default ordering of how the various stages are called is to * match the legacy modeset helper library closest. */ void drm_atomic_helper_commit_tail(struct drm_atomic_state *old_state) { … } EXPORT_SYMBOL(…); /** * drm_atomic_helper_commit_tail_rpm - commit atomic update to hardware * @old_state: new modeset state to be committed * * This is an alternative implementation for the * &drm_mode_config_helper_funcs.atomic_commit_tail hook, for drivers * that support runtime_pm or need the CRTC to be enabled to perform a * commit. Otherwise, one should use the default implementation * drm_atomic_helper_commit_tail(). */ void drm_atomic_helper_commit_tail_rpm(struct drm_atomic_state *old_state) { … } EXPORT_SYMBOL(…); static void commit_tail(struct drm_atomic_state *old_state) { … } static void commit_work(struct work_struct *work) { … } /** * drm_atomic_helper_async_check - check if state can be committed asynchronously * @dev: DRM device * @state: the driver state object * * This helper will check if it is possible to commit the state asynchronously. * Async commits are not supposed to swap the states like normal sync commits * but just do in-place changes on the current state. * * It will return 0 if the commit can happen in an asynchronous fashion or error * if not. Note that error just mean it can't be committed asynchronously, if it * fails the commit should be treated like a normal synchronous commit. */ int drm_atomic_helper_async_check(struct drm_device *dev, struct drm_atomic_state *state) { … } EXPORT_SYMBOL(…); /** * drm_atomic_helper_async_commit - commit state asynchronously * @dev: DRM device * @state: the driver state object * * This function commits a state asynchronously, i.e., not vblank * synchronized. It should be used on a state only when * drm_atomic_async_check() succeeds. Async commits are not supposed to swap * the states like normal sync commits, but just do in-place changes on the * current state. * * TODO: Implement full swap instead of doing in-place changes. */ void drm_atomic_helper_async_commit(struct drm_device *dev, struct drm_atomic_state *state) { … } EXPORT_SYMBOL(…); /** * drm_atomic_helper_commit - commit validated state object * @dev: DRM device * @state: the driver state object * @nonblock: whether nonblocking behavior is requested. * * This function commits a with drm_atomic_helper_check() pre-validated state * object. This can still fail when e.g. the framebuffer reservation fails. This * function implements nonblocking commits, using * drm_atomic_helper_setup_commit() and related functions. * * Committing the actual hardware state is done through the * &drm_mode_config_helper_funcs.atomic_commit_tail callback, or its default * implementation drm_atomic_helper_commit_tail(). * * RETURNS: * Zero for success or -errno. */ int drm_atomic_helper_commit(struct drm_device *dev, struct drm_atomic_state *state, bool nonblock) { … } EXPORT_SYMBOL(…); /** * DOC: implementing nonblocking commit * * Nonblocking atomic commits should use struct &drm_crtc_commit to sequence * different operations against each another. Locks, especially struct * &drm_modeset_lock, should not be held in worker threads or any other * asynchronous context used to commit the hardware state. * * drm_atomic_helper_commit() implements the recommended sequence for * nonblocking commits, using drm_atomic_helper_setup_commit() internally: * * 1. Run drm_atomic_helper_prepare_planes(). Since this can fail and we * need to propagate out of memory/VRAM errors to userspace, it must be called * synchronously. * * 2. Synchronize with any outstanding nonblocking commit worker threads which * might be affected by the new state update. This is handled by * drm_atomic_helper_setup_commit(). * * Asynchronous workers need to have sufficient parallelism to be able to run * different atomic commits on different CRTCs in parallel. The simplest way to * achieve this is by running them on the &system_unbound_wq work queue. Note * that drivers are not required to split up atomic commits and run an * individual commit in parallel - userspace is supposed to do that if it cares. * But it might be beneficial to do that for modesets, since those necessarily * must be done as one global operation, and enabling or disabling a CRTC can * take a long time. But even that is not required. * * IMPORTANT: A &drm_atomic_state update for multiple CRTCs is sequenced * against all CRTCs therein. Therefore for atomic state updates which only flip * planes the driver must not get the struct &drm_crtc_state of unrelated CRTCs * in its atomic check code: This would prevent committing of atomic updates to * multiple CRTCs in parallel. In general, adding additional state structures * should be avoided as much as possible, because this reduces parallelism in * (nonblocking) commits, both due to locking and due to commit sequencing * requirements. * * 3. The software state is updated synchronously with * drm_atomic_helper_swap_state(). Doing this under the protection of all modeset * locks means concurrent callers never see inconsistent state. Note that commit * workers do not hold any locks; their access is only coordinated through * ordering. If workers would access state only through the pointers in the * free-standing state objects (currently not the case for any driver) then even * multiple pending commits could be in-flight at the same time. * * 4. Schedule a work item to do all subsequent steps, using the split-out * commit helpers: a) pre-plane commit b) plane commit c) post-plane commit and * then cleaning up the framebuffers after the old framebuffer is no longer * being displayed. The scheduled work should synchronize against other workers * using the &drm_crtc_commit infrastructure as needed. See * drm_atomic_helper_setup_commit() for more details. */ static int stall_checks(struct drm_crtc *crtc, bool nonblock) { … } static void release_crtc_commit(struct completion *completion) { … } static void init_commit(struct drm_crtc_commit *commit, struct drm_crtc *crtc) { … } static struct drm_crtc_commit * crtc_or_fake_commit(struct drm_atomic_state *state, struct drm_crtc *crtc) { … } /** * drm_atomic_helper_setup_commit - setup possibly nonblocking commit * @state: new modeset state to be committed * @nonblock: whether nonblocking behavior is requested. * * This function prepares @state to be used by the atomic helper's support for * nonblocking commits. Drivers using the nonblocking commit infrastructure * should always call this function from their * &drm_mode_config_funcs.atomic_commit hook. * * Drivers that need to extend the commit setup to private objects can use the * &drm_mode_config_helper_funcs.atomic_commit_setup hook. * * To be able to use this support drivers need to use a few more helper * functions. drm_atomic_helper_wait_for_dependencies() must be called before * actually committing the hardware state, and for nonblocking commits this call * must be placed in the async worker. See also drm_atomic_helper_swap_state() * and its stall parameter, for when a driver's commit hooks look at the * &drm_crtc.state, &drm_plane.state or &drm_connector.state pointer directly. * * Completion of the hardware commit step must be signalled using * drm_atomic_helper_commit_hw_done(). After this step the driver is not allowed * to read or change any permanent software or hardware modeset state. The only * exception is state protected by other means than &drm_modeset_lock locks. * Only the free standing @state with pointers to the old state structures can * be inspected, e.g. to clean up old buffers using * drm_atomic_helper_cleanup_planes(). * * At the very end, before cleaning up @state drivers must call * drm_atomic_helper_commit_cleanup_done(). * * This is all implemented by in drm_atomic_helper_commit(), giving drivers a * complete and easy-to-use default implementation of the atomic_commit() hook. * * The tracking of asynchronously executed and still pending commits is done * using the core structure &drm_crtc_commit. * * By default there's no need to clean up resources allocated by this function * explicitly: drm_atomic_state_default_clear() will take care of that * automatically. * * Returns: * 0 on success. -EBUSY when userspace schedules nonblocking commits too fast, * -ENOMEM on allocation failures and -EINTR when a signal is pending. */ int drm_atomic_helper_setup_commit(struct drm_atomic_state *state, bool nonblock) { … } EXPORT_SYMBOL(…); /** * drm_atomic_helper_wait_for_dependencies - wait for required preceding commits * @old_state: atomic state object with old state structures * * This function waits for all preceding commits that touch the same CRTC as * @old_state to both be committed to the hardware (as signalled by * drm_atomic_helper_commit_hw_done()) and executed by the hardware (as signalled * by calling drm_crtc_send_vblank_event() on the &drm_crtc_state.event). * * This is part of the atomic helper support for nonblocking commits, see * drm_atomic_helper_setup_commit() for an overview. */ void drm_atomic_helper_wait_for_dependencies(struct drm_atomic_state *old_state) { … } EXPORT_SYMBOL(…); /** * drm_atomic_helper_fake_vblank - fake VBLANK events if needed * @old_state: atomic state object with old state structures * * This function walks all CRTCs and fakes VBLANK events on those with * &drm_crtc_state.no_vblank set to true and &drm_crtc_state.event != NULL. * The primary use of this function is writeback connectors working in oneshot * mode and faking VBLANK events. In this case they only fake the VBLANK event * when a job is queued, and any change to the pipeline that does not touch the * connector is leading to timeouts when calling * drm_atomic_helper_wait_for_vblanks() or * drm_atomic_helper_wait_for_flip_done(). In addition to writeback * connectors, this function can also fake VBLANK events for CRTCs without * VBLANK interrupt. * * This is part of the atomic helper support for nonblocking commits, see * drm_atomic_helper_setup_commit() for an overview. */ void drm_atomic_helper_fake_vblank(struct drm_atomic_state *old_state) { … } EXPORT_SYMBOL(…); /** * drm_atomic_helper_commit_hw_done - setup possible nonblocking commit * @old_state: atomic state object with old state structures * * This function is used to signal completion of the hardware commit step. After * this step the driver is not allowed to read or change any permanent software * or hardware modeset state. The only exception is state protected by other * means than &drm_modeset_lock locks. * * Drivers should try to postpone any expensive or delayed cleanup work after * this function is called. * * This is part of the atomic helper support for nonblocking commits, see * drm_atomic_helper_setup_commit() for an overview. */ void drm_atomic_helper_commit_hw_done(struct drm_atomic_state *old_state) { … } EXPORT_SYMBOL(…); /** * drm_atomic_helper_commit_cleanup_done - signal completion of commit * @old_state: atomic state object with old state structures * * This signals completion of the atomic update @old_state, including any * cleanup work. If used, it must be called right before calling * drm_atomic_state_put(). * * This is part of the atomic helper support for nonblocking commits, see * drm_atomic_helper_setup_commit() for an overview. */ void drm_atomic_helper_commit_cleanup_done(struct drm_atomic_state *old_state) { … } EXPORT_SYMBOL(…); /** * drm_atomic_helper_prepare_planes - prepare plane resources before commit * @dev: DRM device * @state: atomic state object with new state structures * * This function prepares plane state, specifically framebuffers, for the new * configuration, by calling &drm_plane_helper_funcs.prepare_fb. If any failure * is encountered this function will call &drm_plane_helper_funcs.cleanup_fb on * any already successfully prepared framebuffer. * * Returns: * 0 on success, negative error code on failure. */ int drm_atomic_helper_prepare_planes(struct drm_device *dev, struct drm_atomic_state *state) { … } EXPORT_SYMBOL(…); /** * drm_atomic_helper_unprepare_planes - release plane resources on aborts * @dev: DRM device * @state: atomic state object with old state structures * * This function cleans up plane state, specifically framebuffers, from the * atomic state. It undoes the effects of drm_atomic_helper_prepare_planes() * when aborting an atomic commit. For cleaning up after a successful commit * use drm_atomic_helper_cleanup_planes(). */ void drm_atomic_helper_unprepare_planes(struct drm_device *dev, struct drm_atomic_state *state) { … } EXPORT_SYMBOL(…); static bool plane_crtc_active(const struct drm_plane_state *state) { … } /** * drm_atomic_helper_commit_planes - commit plane state * @dev: DRM device * @old_state: atomic state object with old state structures * @flags: flags for committing plane state * * This function commits the new plane state using the plane and atomic helper * functions for planes and CRTCs. It assumes that the atomic state has already * been pushed into the relevant object state pointers, since this step can no * longer fail. * * It still requires the global state object @old_state to know which planes and * crtcs need to be updated though. * * Note that this function does all plane updates across all CRTCs in one step. * If the hardware can't support this approach look at * drm_atomic_helper_commit_planes_on_crtc() instead. * * Plane parameters can be updated by applications while the associated CRTC is * disabled. The DRM/KMS core will store the parameters in the plane state, * which will be available to the driver when the CRTC is turned on. As a result * most drivers don't need to be immediately notified of plane updates for a * disabled CRTC. * * Unless otherwise needed, drivers are advised to set the ACTIVE_ONLY flag in * @flags in order not to receive plane update notifications related to a * disabled CRTC. This avoids the need to manually ignore plane updates in * driver code when the driver and/or hardware can't or just don't need to deal * with updates on disabled CRTCs, for example when supporting runtime PM. * * Drivers may set the NO_DISABLE_AFTER_MODESET flag in @flags if the relevant * display controllers require to disable a CRTC's planes when the CRTC is * disabled. This function would skip the &drm_plane_helper_funcs.atomic_disable * call for a plane if the CRTC of the old plane state needs a modesetting * operation. Of course, the drivers need to disable the planes in their CRTC * disable callbacks since no one else would do that. * * The drm_atomic_helper_commit() default implementation doesn't set the * ACTIVE_ONLY flag to most closely match the behaviour of the legacy helpers. * This should not be copied blindly by drivers. */ void drm_atomic_helper_commit_planes(struct drm_device *dev, struct drm_atomic_state *old_state, uint32_t flags) { … } EXPORT_SYMBOL(…); /** * drm_atomic_helper_commit_planes_on_crtc - commit plane state for a CRTC * @old_crtc_state: atomic state object with the old CRTC state * * This function commits the new plane state using the plane and atomic helper * functions for planes on the specific CRTC. It assumes that the atomic state * has already been pushed into the relevant object state pointers, since this * step can no longer fail. * * This function is useful when plane updates should be done CRTC-by-CRTC * instead of one global step like drm_atomic_helper_commit_planes() does. * * This function can only be savely used when planes are not allowed to move * between different CRTCs because this function doesn't handle inter-CRTC * dependencies. Callers need to ensure that either no such dependencies exist, * resolve them through ordering of commit calls or through some other means. */ void drm_atomic_helper_commit_planes_on_crtc(struct drm_crtc_state *old_crtc_state) { … } EXPORT_SYMBOL(…); /** * drm_atomic_helper_disable_planes_on_crtc - helper to disable CRTC's planes * @old_crtc_state: atomic state object with the old CRTC state * @atomic: if set, synchronize with CRTC's atomic_begin/flush hooks * * Disables all planes associated with the given CRTC. This can be * used for instance in the CRTC helper atomic_disable callback to disable * all planes. * * If the atomic-parameter is set the function calls the CRTC's * atomic_begin hook before and atomic_flush hook after disabling the * planes. * * It is a bug to call this function without having implemented the * &drm_plane_helper_funcs.atomic_disable plane hook. */ void drm_atomic_helper_disable_planes_on_crtc(struct drm_crtc_state *old_crtc_state, bool atomic) { … } EXPORT_SYMBOL(…); /** * drm_atomic_helper_cleanup_planes - cleanup plane resources after commit * @dev: DRM device * @old_state: atomic state object with old state structures * * This function cleans up plane state, specifically framebuffers, from the old * configuration. Hence the old configuration must be perserved in @old_state to * be able to call this function. * * This function may not be called on the new state when the atomic update * fails at any point after calling drm_atomic_helper_prepare_planes(). Use * drm_atomic_helper_unprepare_planes() in this case. */ void drm_atomic_helper_cleanup_planes(struct drm_device *dev, struct drm_atomic_state *old_state) { … } EXPORT_SYMBOL(…); /** * drm_atomic_helper_swap_state - store atomic state into current sw state * @state: atomic state * @stall: stall for preceding commits * * This function stores the atomic state into the current state pointers in all * driver objects. It should be called after all failing steps have been done * and succeeded, but before the actual hardware state is committed. * * For cleanup and error recovery the current state for all changed objects will * be swapped into @state. * * With that sequence it fits perfectly into the plane prepare/cleanup sequence: * * 1. Call drm_atomic_helper_prepare_planes() with the staged atomic state. * * 2. Do any other steps that might fail. * * 3. Put the staged state into the current state pointers with this function. * * 4. Actually commit the hardware state. * * 5. Call drm_atomic_helper_cleanup_planes() with @state, which since step 3 * contains the old state. Also do any other cleanup required with that state. * * @stall must be set when nonblocking commits for this driver directly access * the &drm_plane.state, &drm_crtc.state or &drm_connector.state pointer. With * the current atomic helpers this is almost always the case, since the helpers * don't pass the right state structures to the callbacks. * * Returns: * Returns 0 on success. Can return -ERESTARTSYS when @stall is true and the * waiting for the previous commits has been interrupted. */ int drm_atomic_helper_swap_state(struct drm_atomic_state *state, bool stall) { … } EXPORT_SYMBOL(…); /** * drm_atomic_helper_update_plane - Helper for primary plane update using atomic * @plane: plane object to update * @crtc: owning CRTC of owning plane * @fb: framebuffer to flip onto plane * @crtc_x: x offset of primary plane on @crtc * @crtc_y: y offset of primary plane on @crtc * @crtc_w: width of primary plane rectangle on @crtc * @crtc_h: height of primary plane rectangle on @crtc * @src_x: x offset of @fb for panning * @src_y: y offset of @fb for panning * @src_w: width of source rectangle in @fb * @src_h: height of source rectangle in @fb * @ctx: lock acquire context * * Provides a default plane update handler using the atomic driver interface. * * RETURNS: * Zero on success, error code on failure */ int drm_atomic_helper_update_plane(struct drm_plane *plane, struct drm_crtc *crtc, struct drm_framebuffer *fb, int crtc_x, int crtc_y, unsigned int crtc_w, unsigned int crtc_h, uint32_t src_x, uint32_t src_y, uint32_t src_w, uint32_t src_h, struct drm_modeset_acquire_ctx *ctx) { … } EXPORT_SYMBOL(…); /** * drm_atomic_helper_disable_plane - Helper for primary plane disable using atomic * @plane: plane to disable * @ctx: lock acquire context * * Provides a default plane disable handler using the atomic driver interface. * * RETURNS: * Zero on success, error code on failure */ int drm_atomic_helper_disable_plane(struct drm_plane *plane, struct drm_modeset_acquire_ctx *ctx) { … } EXPORT_SYMBOL(…); /** * drm_atomic_helper_set_config - set a new config from userspace * @set: mode set configuration * @ctx: lock acquisition context * * Provides a default CRTC set_config handler using the atomic driver interface. * * NOTE: For backwards compatibility with old userspace this automatically * resets the "link-status" property to GOOD, to force any link * re-training. The SETCRTC ioctl does not define whether an update does * need a full modeset or just a plane update, hence we're allowed to do * that. See also drm_connector_set_link_status_property(). * * Returns: * Returns 0 on success, negative errno numbers on failure. */ int drm_atomic_helper_set_config(struct drm_mode_set *set, struct drm_modeset_acquire_ctx *ctx) { … } EXPORT_SYMBOL(…); /** * drm_atomic_helper_disable_all - disable all currently active outputs * @dev: DRM device * @ctx: lock acquisition context * * Loops through all connectors, finding those that aren't turned off and then * turns them off by setting their DPMS mode to OFF and deactivating the CRTC * that they are connected to. * * This is used for example in suspend/resume to disable all currently active * functions when suspending. If you just want to shut down everything at e.g. * driver unload, look at drm_atomic_helper_shutdown(). * * Note that if callers haven't already acquired all modeset locks this might * return -EDEADLK, which must be handled by calling drm_modeset_backoff(). * * Returns: * 0 on success or a negative error code on failure. * * See also: * drm_atomic_helper_suspend(), drm_atomic_helper_resume() and * drm_atomic_helper_shutdown(). */ int drm_atomic_helper_disable_all(struct drm_device *dev, struct drm_modeset_acquire_ctx *ctx) { … } EXPORT_SYMBOL(…); /** * drm_atomic_helper_shutdown - shutdown all CRTC * @dev: DRM device * * This shuts down all CRTC, which is useful for driver unloading. Shutdown on * suspend should instead be handled with drm_atomic_helper_suspend(), since * that also takes a snapshot of the modeset state to be restored on resume. * * This is just a convenience wrapper around drm_atomic_helper_disable_all(), * and it is the atomic version of drm_helper_force_disable_all(). */ void drm_atomic_helper_shutdown(struct drm_device *dev) { … } EXPORT_SYMBOL(…); /** * drm_atomic_helper_duplicate_state - duplicate an atomic state object * @dev: DRM device * @ctx: lock acquisition context * * Makes a copy of the current atomic state by looping over all objects and * duplicating their respective states. This is used for example by suspend/ * resume support code to save the state prior to suspend such that it can * be restored upon resume. * * Note that this treats atomic state as persistent between save and restore. * Drivers must make sure that this is possible and won't result in confusion * or erroneous behaviour. * * Note that if callers haven't already acquired all modeset locks this might * return -EDEADLK, which must be handled by calling drm_modeset_backoff(). * * Returns: * A pointer to the copy of the atomic state object on success or an * ERR_PTR()-encoded error code on failure. * * See also: * drm_atomic_helper_suspend(), drm_atomic_helper_resume() */ struct drm_atomic_state * drm_atomic_helper_duplicate_state(struct drm_device *dev, struct drm_modeset_acquire_ctx *ctx) { … } EXPORT_SYMBOL(…); /** * drm_atomic_helper_suspend - subsystem-level suspend helper * @dev: DRM device * * Duplicates the current atomic state, disables all active outputs and then * returns a pointer to the original atomic state to the caller. Drivers can * pass this pointer to the drm_atomic_helper_resume() helper upon resume to * restore the output configuration that was active at the time the system * entered suspend. * * Note that it is potentially unsafe to use this. The atomic state object * returned by this function is assumed to be persistent. Drivers must ensure * that this holds true. Before calling this function, drivers must make sure * to suspend fbdev emulation so that nothing can be using the device. * * Returns: * A pointer to a copy of the state before suspend on success or an ERR_PTR()- * encoded error code on failure. Drivers should store the returned atomic * state object and pass it to the drm_atomic_helper_resume() helper upon * resume. * * See also: * drm_atomic_helper_duplicate_state(), drm_atomic_helper_disable_all(), * drm_atomic_helper_resume(), drm_atomic_helper_commit_duplicated_state() */ struct drm_atomic_state *drm_atomic_helper_suspend(struct drm_device *dev) { … } EXPORT_SYMBOL(…); /** * drm_atomic_helper_commit_duplicated_state - commit duplicated state * @state: duplicated atomic state to commit * @ctx: pointer to acquire_ctx to use for commit. * * The state returned by drm_atomic_helper_duplicate_state() and * drm_atomic_helper_suspend() is partially invalid, and needs to * be fixed up before commit. * * Returns: * 0 on success or a negative error code on failure. * * See also: * drm_atomic_helper_suspend() */ int drm_atomic_helper_commit_duplicated_state(struct drm_atomic_state *state, struct drm_modeset_acquire_ctx *ctx) { … } EXPORT_SYMBOL(…); /** * drm_atomic_helper_resume - subsystem-level resume helper * @dev: DRM device * @state: atomic state to resume to * * Calls drm_mode_config_reset() to synchronize hardware and software states, * grabs all modeset locks and commits the atomic state object. This can be * used in conjunction with the drm_atomic_helper_suspend() helper to * implement suspend/resume for drivers that support atomic mode-setting. * * Returns: * 0 on success or a negative error code on failure. * * See also: * drm_atomic_helper_suspend() */ int drm_atomic_helper_resume(struct drm_device *dev, struct drm_atomic_state *state) { … } EXPORT_SYMBOL(…); static int page_flip_common(struct drm_atomic_state *state, struct drm_crtc *crtc, struct drm_framebuffer *fb, struct drm_pending_vblank_event *event, uint32_t flags) { … } /** * drm_atomic_helper_page_flip - execute a legacy page flip * @crtc: DRM CRTC * @fb: DRM framebuffer * @event: optional DRM event to signal upon completion * @flags: flip flags for non-vblank sync'ed updates * @ctx: lock acquisition context * * Provides a default &drm_crtc_funcs.page_flip implementation * using the atomic driver interface. * * Returns: * Returns 0 on success, negative errno numbers on failure. * * See also: * drm_atomic_helper_page_flip_target() */ int drm_atomic_helper_page_flip(struct drm_crtc *crtc, struct drm_framebuffer *fb, struct drm_pending_vblank_event *event, uint32_t flags, struct drm_modeset_acquire_ctx *ctx) { … } EXPORT_SYMBOL(…); /** * drm_atomic_helper_page_flip_target - do page flip on target vblank period. * @crtc: DRM CRTC * @fb: DRM framebuffer * @event: optional DRM event to signal upon completion * @flags: flip flags for non-vblank sync'ed updates * @target: specifying the target vblank period when the flip to take effect * @ctx: lock acquisition context * * Provides a default &drm_crtc_funcs.page_flip_target implementation. * Similar to drm_atomic_helper_page_flip() with extra parameter to specify * target vblank period to flip. * * Returns: * Returns 0 on success, negative errno numbers on failure. */ int drm_atomic_helper_page_flip_target(struct drm_crtc *crtc, struct drm_framebuffer *fb, struct drm_pending_vblank_event *event, uint32_t flags, uint32_t target, struct drm_modeset_acquire_ctx *ctx) { … } EXPORT_SYMBOL(…); /** * drm_atomic_helper_bridge_propagate_bus_fmt() - Propagate output format to * the input end of a bridge * @bridge: bridge control structure * @bridge_state: new bridge state * @crtc_state: new CRTC state * @conn_state: new connector state * @output_fmt: tested output bus format * @num_input_fmts: will contain the size of the returned array * * This helper is a pluggable implementation of the * &drm_bridge_funcs.atomic_get_input_bus_fmts operation for bridges that don't * modify the bus configuration between their input and their output. It * returns an array of input formats with a single element set to @output_fmt. * * RETURNS: * a valid format array of size @num_input_fmts, or NULL if the allocation * failed */ u32 * drm_atomic_helper_bridge_propagate_bus_fmt(struct drm_bridge *bridge, struct drm_bridge_state *bridge_state, struct drm_crtc_state *crtc_state, struct drm_connector_state *conn_state, u32 output_fmt, unsigned int *num_input_fmts) { … } EXPORT_SYMBOL(…);