linux/drivers/misc/sgi-xp/xp.h

/*
 * This file is subject to the terms and conditions of the GNU General Public
 * License.  See the file "COPYING" in the main directory of this archive
 * for more details.
 *
 * (C) Copyright 2020 Hewlett Packard Enterprise Development LP
 * Copyright (C) 2004-2008 Silicon Graphics, Inc. All rights reserved.
 */

/*
 * External Cross Partition (XP) structures and defines.
 */

#ifndef _DRIVERS_MISC_SGIXP_XP_H
#define _DRIVERS_MISC_SGIXP_XP_H

#include <linux/mutex.h>

#if defined CONFIG_X86_UV
#include <asm/uv/uv.h>
#endif

#ifdef USE_DBUG_ON
#define DBUG_ON
#else
#define DBUG_ON(condition)
#endif

/*
 * Define the maximum number of partitions the system can possibly support.
 * It is based on the maximum number of hardware partitionable regions. The
 * term 'region' in this context refers to the minimum number of nodes that
 * can comprise an access protection grouping. The access protection is in
 * regards to memory, IPI and IOI.
 *
 * The maximum number of hardware partitionable regions is equal to the
 * maximum number of nodes in the entire system divided by the minimum number
 * of nodes that comprise an access protection grouping.
 */
#define XP_MAX_NPARTITIONS_SN2
#define XP_MAX_NPARTITIONS_UV

/*
 * XPC establishes channel connections between the local partition and any
 * other partition that is currently up. Over these channels, kernel-level
 * `users' can communicate with their counterparts on the other partitions.
 *
 * If the need for additional channels arises, one can simply increase
 * XPC_MAX_NCHANNELS accordingly. If the day should come where that number
 * exceeds the absolute MAXIMUM number of channels possible (eight), then one
 * will need to make changes to the XPC code to accommodate for this.
 *
 * The absolute maximum number of channels possible is limited to eight for
 * performance reasons on sn2 hardware. The internal cross partition structures
 * require sixteen bytes per channel, and eight allows all of this
 * interface-shared info to fit in one 128-byte cacheline.
 */
#define XPC_MEM_CHANNEL
#define XPC_NET_CHANNEL

#define XPC_MAX_NCHANNELS

#if XPC_MAX_NCHANNELS > 8
#error	XPC_MAX_NCHANNELS exceeds absolute MAXIMUM possible.
#endif

/*
 * Define macro, XPC_MSG_SIZE(), is provided for the user
 * that wants to fit as many msg entries as possible in a given memory size
 * (e.g. a memory page).
 */
#define XPC_MSG_MAX_SIZE
#define XPC_MSG_HDR_MAX_SIZE
#define XPC_MSG_PAYLOAD_MAX_SIZE

#define XPC_MSG_SIZE(_payload_size)


/*
 * Define the return values and values passed to user's callout functions.
 * (It is important to add new value codes at the end just preceding
 * xpUnknownReason, which must have the highest numerical value.)
 */
enum xp_retval {};

/*
 * Define the callout function type used by XPC to update the user on
 * connection activity and state changes via the user function registered
 * by xpc_connect().
 *
 * Arguments:
 *
 *	reason - reason code.
 *	partid - partition ID associated with condition.
 *	ch_number - channel # associated with condition.
 *	data - pointer to optional data.
 *	key - pointer to optional user-defined value provided as the "key"
 *	      argument to xpc_connect().
 *
 * A reason code of xpConnected indicates that a connection has been
 * established to the specified partition on the specified channel. The data
 * argument indicates the max number of entries allowed in the message queue.
 *
 * A reason code of xpMsgReceived indicates that a XPC message arrived from
 * the specified partition on the specified channel. The data argument
 * specifies the address of the message's payload. The user must call
 * xpc_received() when finished with the payload.
 *
 * All other reason codes indicate failure. The data argmument is NULL.
 * When a failure reason code is received, one can assume that the channel
 * is not connected.
 */
xpc_channel_func;

/*
 * Define the callout function type used by XPC to notify the user of
 * messages received and delivered via the user function registered by
 * xpc_send_notify().
 *
 * Arguments:
 *
 *	reason - reason code.
 *	partid - partition ID associated with condition.
 *	ch_number - channel # associated with condition.
 *	key - pointer to optional user-defined value provided as the "key"
 *	      argument to xpc_send_notify().
 *
 * A reason code of xpMsgDelivered indicates that the message was delivered
 * to the intended recipient and that they have acknowledged its receipt by
 * calling xpc_received().
 *
 * All other reason codes indicate failure.
 *
 * NOTE: The user defined function must be callable by an interrupt handler
 *       and thus cannot block.
 */
xpc_notify_func;

/*
 * The following is a registration entry. There is a global array of these,
 * one per channel. It is used to record the connection registration made
 * by the users of XPC. As long as a registration entry exists, for any
 * partition that comes up, XPC will attempt to establish a connection on
 * that channel. Notification that a connection has been made will occur via
 * the xpc_channel_func function.
 *
 * The 'func' field points to the function to call when aynchronous
 * notification is required for such events as: a connection established/lost,
 * or an incoming message received, or an error condition encountered. A
 * non-NULL 'func' field indicates that there is an active registration for
 * the channel.
 */
struct xpc_registration {} ____cacheline_aligned;

#define XPC_CHANNEL_REGISTERED(_c)

/* the following are valid xpc_send() or xpc_send_notify() flags */
#define XPC_WAIT
#define XPC_NOWAIT

struct xpc_interface {};

extern struct xpc_interface xpc_interface;

extern void xpc_set_interface(void (*)(int),
			      void (*)(int),
			      enum xp_retval (*)(short, int, u32, void *, u16),
			      enum xp_retval (*)(short, int, u32, void *, u16,
						 xpc_notify_func, void *),
			      void (*)(short, int, void *),
			      enum xp_retval (*)(short, void *));
extern void xpc_clear_interface(void);

extern enum xp_retval xpc_connect(int, xpc_channel_func, void *, u16,
				   u16, u32, u32);
extern void xpc_disconnect(int);

static inline enum xp_retval
xpc_send(short partid, int ch_number, u32 flags, void *payload,
	 u16 payload_size)
{}

static inline enum xp_retval
xpc_send_notify(short partid, int ch_number, u32 flags, void *payload,
		u16 payload_size, xpc_notify_func func, void *key)
{}

static inline void
xpc_received(short partid, int ch_number, void *payload)
{}

static inline enum xp_retval
xpc_partid_to_nasids(short partid, void *nasids)
{}

extern short xp_max_npartitions;
extern short xp_partition_id;
extern u8 xp_region_size;

extern unsigned long (*xp_pa) (void *);
extern unsigned long (*xp_socket_pa) (unsigned long);
extern enum xp_retval (*xp_remote_memcpy) (unsigned long, const unsigned long,
		       size_t);
extern int (*xp_cpu_to_nasid) (int);
extern enum xp_retval (*xp_expand_memprotect) (unsigned long, unsigned long);
extern enum xp_retval (*xp_restrict_memprotect) (unsigned long, unsigned long);

extern struct device *xp;
extern enum xp_retval xp_init_uv(void);
extern void xp_exit_uv(void);

#endif /* _DRIVERS_MISC_SGIXP_XP_H */