/* SPDX-License-Identifier: GPL-2.0-only */ #ifndef __CARD_BASE_H__ #define __CARD_BASE_H__ /** * IBM Accelerator Family 'GenWQE' * * (C) Copyright IBM Corp. 2013 * * Author: Frank Haverkamp <[email protected]> * Author: Joerg-Stephan Vogt <[email protected]> * Author: Michael Jung <[email protected]> * Author: Michael Ruettger <[email protected]> */ /* * Interfaces within the GenWQE module. Defines genwqe_card and * ddcb_queue as well as ddcb_requ. */ #include <linux/kernel.h> #include <linux/types.h> #include <linux/cdev.h> #include <linux/stringify.h> #include <linux/pci.h> #include <linux/semaphore.h> #include <linux/uaccess.h> #include <linux/io.h> #include <linux/debugfs.h> #include <linux/slab.h> #include <linux/genwqe/genwqe_card.h> #include "genwqe_driver.h" #define GENWQE_MSI_IRQS … #define GENWQE_MAX_VFS … #define GENWQE_MAX_FUNCS … #define GENWQE_CARD_NO_MAX … /* Compile parameters, some of them appear in debugfs for later adjustment */ #define GENWQE_DDCB_MAX … #define GENWQE_POLLING_ENABLED … #define GENWQE_DDCB_SOFTWARE_TIMEOUT … #define GENWQE_KILL_TIMEOUT … #define GENWQE_VF_JOBTIMEOUT_MSEC … #define GENWQE_PF_JOBTIMEOUT_MSEC … #define GENWQE_HEALTH_CHECK_INTERVAL … /* Sysfs attribute groups used when we create the genwqe device */ extern const struct attribute_group *genwqe_attribute_groups[]; /* * Config space for Genwqe5 A7: * 00:[14 10 4b 04]40 00 10 00[00 00 00 12]00 00 00 00 * 10: 0c 00 00 f0 07 3c 00 00 00 00 00 00 00 00 00 00 * 20: 00 00 00 00 00 00 00 00 00 00 00 00[14 10 4b 04] * 30: 00 00 00 00 50 00 00 00 00 00 00 00 00 00 00 00 */ #define PCI_DEVICE_GENWQE … #define PCI_SUBSYSTEM_ID_GENWQE5 … #define PCI_SUBSYSTEM_ID_GENWQE5_NEW … #define PCI_CLASSCODE_GENWQE5 … #define PCI_SUBVENDOR_ID_IBM_SRIOV … #define PCI_SUBSYSTEM_ID_GENWQE5_SRIOV … #define PCI_CLASSCODE_GENWQE5_SRIOV … #define GENWQE_SLU_ARCH_REQ … /** * struct genwqe_reg - Genwqe data dump functionality */ struct genwqe_reg { … }; /* * enum genwqe_dbg_type - Specify chip unit to dump/debug */ enum genwqe_dbg_type { … }; /* Software error injection to simulate card failures */ #define GENWQE_INJECT_HARDWARE_FAILURE … #define GENWQE_INJECT_BUS_RESET_FAILURE … #define GENWQE_INJECT_GFIR_FATAL … #define GENWQE_INJECT_GFIR_INFO … /* * Genwqe card description and management data. * * Error-handling in case of card malfunction * ------------------------------------------ * * If the card is detected to be defective the outside environment * will cause the PCI layer to call deinit (the cleanup function for * probe). This is the same effect like doing a unbind/bind operation * on the card. * * The genwqe card driver implements a health checking thread which * verifies the card function. If this detects a problem the cards * device is being shutdown and restarted again, along with a reset of * the card and queue. * * All functions accessing the card device return either -EIO or -ENODEV * code to indicate the malfunction to the user. The user has to close * the file descriptor and open a new one, once the card becomes * available again. * * If the open file descriptor is setup to receive SIGIO, the signal is * genereated for the application which has to provide a handler to * react on it. If the application does not close the open * file descriptor a SIGKILL is send to enforce freeing the cards * resources. * * I did not find a different way to prevent kernel problems due to * reference counters for the cards character devices getting out of * sync. The character device deallocation does not block, even if * there is still an open file descriptor pending. If this pending * descriptor is closed, the data structures used by the character * device is reinstantiated, which will lead to the reference counter * dropping below the allowed values. * * Card recovery * ------------- * * To test the internal driver recovery the following command can be used: * sudo sh -c 'echo 0xfffff > /sys/class/genwqe/genwqe0_card/err_inject' */ /** * struct dma_mapping_type - Mapping type definition * * To avoid memcpying data arround we use user memory directly. To do * this we need to pin/swap-in the memory and request a DMA address * for it. */ enum dma_mapping_type { … }; /** * struct dma_mapping - Information about memory mappings done by the driver */ struct dma_mapping { … }; static inline void genwqe_mapping_init(struct dma_mapping *m, enum dma_mapping_type type) { … } /** * struct ddcb_queue - DDCB queue data * @ddcb_max: Number of DDCBs on the queue * @ddcb_next: Next free DDCB * @ddcb_act: Next DDCB supposed to finish * @ddcb_seq: Sequence number of last DDCB * @ddcbs_in_flight: Currently enqueued DDCBs * @ddcbs_completed: Number of already completed DDCBs * @return_on_busy: Number of -EBUSY returns on full queue * @wait_on_busy: Number of waits on full queue * @ddcb_daddr: DMA address of first DDCB in the queue * @ddcb_vaddr: Kernel virtual address of first DDCB in the queue * @ddcb_req: Associated requests (one per DDCB) * @ddcb_waitqs: Associated wait queues (one per DDCB) * @ddcb_lock: Lock to protect queuing operations * @ddcb_waitq: Wait on next DDCB finishing */ struct ddcb_queue { … }; /* * GFIR, SLU_UNITCFG, APP_UNITCFG * 8 Units with FIR/FEC + 64 * 2ndary FIRS/FEC. */ #define GENWQE_FFDC_REGS … struct genwqe_ffdc { … }; /** * struct genwqe_dev - GenWQE device information * @card_state: Card operation state, see above * @ffdc: First Failure Data Capture buffers for each unit * @card_thread: Working thread to operate the DDCB queue * @card_waitq: Wait queue used in card_thread * @queue: DDCB queue * @health_thread: Card monitoring thread (only for PFs) * @health_waitq: Wait queue used in health_thread * @pci_dev: Associated PCI device (function) * @mmio: Base address of 64-bit register space * @mmio_len: Length of register area * @file_lock: Lock to protect access to file_list * @file_list: List of all processes with open GenWQE file descriptors * * This struct contains all information needed to communicate with a * GenWQE card. It is initialized when a GenWQE device is found and * destroyed when it goes away. It holds data to maintain the queue as * well as data needed to feed the user interfaces. */ struct genwqe_dev { … }; /** * enum genwqe_requ_state - State of a DDCB execution request */ enum genwqe_requ_state { … }; /** * struct genwqe_sgl - Scatter gather list describing user-space memory * @sgl: scatter gather list needs to be 128 byte aligned * @sgl_dma_addr: dma address of sgl * @sgl_size: size of area used for sgl * @user_addr: user-space address of memory area * @user_size: size of user-space memory area * @page: buffer for partial pages if needed * @page_dma_addr: dma address partial pages * @write: should we write it back to userspace? */ struct genwqe_sgl { … }; int genwqe_alloc_sync_sgl(struct genwqe_dev *cd, struct genwqe_sgl *sgl, void __user *user_addr, size_t user_size, int write); int genwqe_setup_sgl(struct genwqe_dev *cd, struct genwqe_sgl *sgl, dma_addr_t *dma_list); int genwqe_free_sync_sgl(struct genwqe_dev *cd, struct genwqe_sgl *sgl); /** * struct ddcb_requ - Kernel internal representation of the DDCB request * @cmd: User space representation of the DDCB execution request */ struct ddcb_requ { … }; /** * struct genwqe_file - Information for open GenWQE devices */ struct genwqe_file { … }; int genwqe_setup_service_layer(struct genwqe_dev *cd); /* for PF only */ int genwqe_finish_queue(struct genwqe_dev *cd); int genwqe_release_service_layer(struct genwqe_dev *cd); /** * genwqe_get_slu_id() - Read Service Layer Unit Id * Return: 0x00: Development code * 0x01: SLC1 (old) * 0x02: SLC2 (sept2012) * 0x03: SLC2 (feb2013, generic driver) */ static inline int genwqe_get_slu_id(struct genwqe_dev *cd) { … } int genwqe_ddcbs_in_flight(struct genwqe_dev *cd); u8 genwqe_card_type(struct genwqe_dev *cd); int genwqe_card_reset(struct genwqe_dev *cd); int genwqe_set_interrupt_capability(struct genwqe_dev *cd, int count); void genwqe_reset_interrupt_capability(struct genwqe_dev *cd); int genwqe_device_create(struct genwqe_dev *cd); int genwqe_device_remove(struct genwqe_dev *cd); /* debugfs */ void genwqe_init_debugfs(struct genwqe_dev *cd); void genqwe_exit_debugfs(struct genwqe_dev *cd); int genwqe_read_softreset(struct genwqe_dev *cd); /* Hardware Circumventions */ int genwqe_recovery_on_fatal_gfir_required(struct genwqe_dev *cd); int genwqe_flash_readback_fails(struct genwqe_dev *cd); /** * genwqe_write_vreg() - Write register in VF window * @cd: genwqe device * @reg: register address * @val: value to write * @func: 0: PF, 1: VF0, ..., 15: VF14 */ int genwqe_write_vreg(struct genwqe_dev *cd, u32 reg, u64 val, int func); /** * genwqe_read_vreg() - Read register in VF window * @cd: genwqe device * @reg: register address * @func: 0: PF, 1: VF0, ..., 15: VF14 * * Return: content of the register */ u64 genwqe_read_vreg(struct genwqe_dev *cd, u32 reg, int func); /* FFDC Buffer Management */ int genwqe_ffdc_buff_size(struct genwqe_dev *cd, int unit_id); int genwqe_ffdc_buff_read(struct genwqe_dev *cd, int unit_id, struct genwqe_reg *regs, unsigned int max_regs); int genwqe_read_ffdc_regs(struct genwqe_dev *cd, struct genwqe_reg *regs, unsigned int max_regs, int all); int genwqe_ffdc_dump_dma(struct genwqe_dev *cd, struct genwqe_reg *regs, unsigned int max_regs); int genwqe_init_debug_data(struct genwqe_dev *cd, struct genwqe_debug_data *d); void genwqe_init_crc32(void); int genwqe_read_app_id(struct genwqe_dev *cd, char *app_name, int len); /* Memory allocation/deallocation; dma address handling */ int genwqe_user_vmap(struct genwqe_dev *cd, struct dma_mapping *m, void *uaddr, unsigned long size); int genwqe_user_vunmap(struct genwqe_dev *cd, struct dma_mapping *m); static inline bool dma_mapping_used(struct dma_mapping *m) { … } /** * __genwqe_execute_ddcb() - Execute DDCB request with addr translation * * This function will do the address translation changes to the DDCBs * according to the definitions required by the ATS field. It looks up * the memory allocation buffer or does vmap/vunmap for the respective * user-space buffers, inclusive page pinning and scatter gather list * buildup and teardown. */ int __genwqe_execute_ddcb(struct genwqe_dev *cd, struct genwqe_ddcb_cmd *cmd, unsigned int f_flags); /** * __genwqe_execute_raw_ddcb() - Execute DDCB request without addr translation * * This version will not do address translation or any modification of * the DDCB data. It is used e.g. for the MoveFlash DDCB which is * entirely prepared by the driver itself. That means the appropriate * DMA addresses are already in the DDCB and do not need any * modification. */ int __genwqe_execute_raw_ddcb(struct genwqe_dev *cd, struct genwqe_ddcb_cmd *cmd, unsigned int f_flags); int __genwqe_enqueue_ddcb(struct genwqe_dev *cd, struct ddcb_requ *req, unsigned int f_flags); int __genwqe_wait_ddcb(struct genwqe_dev *cd, struct ddcb_requ *req); int __genwqe_purge_ddcb(struct genwqe_dev *cd, struct ddcb_requ *req); /* register access */ int __genwqe_writeq(struct genwqe_dev *cd, u64 byte_offs, u64 val); u64 __genwqe_readq(struct genwqe_dev *cd, u64 byte_offs); int __genwqe_writel(struct genwqe_dev *cd, u64 byte_offs, u32 val); u32 __genwqe_readl(struct genwqe_dev *cd, u64 byte_offs); void *__genwqe_alloc_consistent(struct genwqe_dev *cd, size_t size, dma_addr_t *dma_handle); void __genwqe_free_consistent(struct genwqe_dev *cd, size_t size, void *vaddr, dma_addr_t dma_handle); /* Base clock frequency in MHz */ int genwqe_base_clock_frequency(struct genwqe_dev *cd); /* Before FFDC is captured the traps should be stopped. */ void genwqe_stop_traps(struct genwqe_dev *cd); void genwqe_start_traps(struct genwqe_dev *cd); /* Hardware circumvention */ bool genwqe_need_err_masking(struct genwqe_dev *cd); /** * genwqe_is_privileged() - Determine operation mode for PCI function * * On Intel with SRIOV support we see: * PF: is_physfn = 1 is_virtfn = 0 * VF: is_physfn = 0 is_virtfn = 1 * * On Systems with no SRIOV support _and_ virtualized systems we get: * is_physfn = 0 is_virtfn = 0 * * Other vendors have individual pci device ids to distinguish between * virtual function drivers and physical function drivers. GenWQE * unfortunately has just on pci device id for both, VFs and PF. * * The following code is used to distinguish if the card is running in * privileged mode, either as true PF or in a virtualized system with * full register access e.g. currently on PowerPC. * * if (pci_dev->is_virtfn) * cd->is_privileged = 0; * else * cd->is_privileged = (__genwqe_readq(cd, IO_SLU_BITSTREAM) * != IO_ILLEGAL_VALUE); */ static inline int genwqe_is_privileged(struct genwqe_dev *cd) { … } #endif /* __CARD_BASE_H__ */