/* SPDX-License-Identifier: GPL-2.0 */ /* * NVMe over Fabrics common host code. * Copyright (c) 2015-2016 HGST, a Western Digital Company. */ #ifndef _NVME_FABRICS_H #define _NVME_FABRICS_H … #include <linux/in.h> #include <linux/inet.h> #define NVMF_MIN_QUEUE_SIZE … #define NVMF_MAX_QUEUE_SIZE … #define NVMF_DEF_QUEUE_SIZE … #define NVMF_DEF_RECONNECT_DELAY … /* default to 600 seconds of reconnect attempts before giving up */ #define NVMF_DEF_CTRL_LOSS_TMO … /* default is -1: the fail fast mechanism is disabled */ #define NVMF_DEF_FAIL_FAST_TMO … /* * Define a host as seen by the target. We allocate one at boot, but also * allow the override it when creating controllers. This is both to provide * persistence of the Host NQN over multiple boots, and to allow using * multiple ones, for example in a container scenario. Because we must not * use different Host NQNs with the same Host ID we generate a Host ID and * use this structure to keep track of the relation between the two. */ struct nvmf_host { … }; /** * enum nvmf_parsing_opts - used to define the sysfs parsing options used. */ enum { … }; /** * struct nvmf_ctrl_options - Used to hold the options specified * with the parsing opts enum. * @mask: Used by the fabrics library to parse through sysfs options * on adding a NVMe controller. * @max_reconnects: maximum number of allowed reconnect attempts before removing * the controller, (-1) means reconnect forever, zero means remove * immediately; * @transport: Holds the fabric transport "technology name" (for a lack of * better description) that will be used by an NVMe controller * being added. * @subsysnqn: Hold the fully qualified NQN subystem name (format defined * in the NVMe specification, "NVMe Qualified Names"). * @traddr: The transport-specific TRADDR field for a port on the * subsystem which is adding a controller. * @trsvcid: The transport-specific TRSVCID field for a port on the * subsystem which is adding a controller. * @host_traddr: A transport-specific field identifying the NVME host port * to use for the connection to the controller. * @host_iface: A transport-specific field identifying the NVME host * interface to use for the connection to the controller. * @queue_size: Number of IO queue elements. * @nr_io_queues: Number of controller IO queues that will be established. * @reconnect_delay: Time between two consecutive reconnect attempts. * @discovery_nqn: indicates if the subsysnqn is the well-known discovery NQN. * @kato: Keep-alive timeout. * @host: Virtual NVMe host, contains the NQN and Host ID. * @dhchap_secret: DH-HMAC-CHAP secret * @dhchap_ctrl_secret: DH-HMAC-CHAP controller secret for bi-directional * authentication * @keyring: Keyring to use for key lookups * @tls_key: TLS key for encrypted connections (TCP) * @tls: Start TLS encrypted connections (TCP) * @disable_sqflow: disable controller sq flow control * @hdr_digest: generate/verify header digest (TCP) * @data_digest: generate/verify data digest (TCP) * @nr_write_queues: number of queues for write I/O * @nr_poll_queues: number of queues for polling I/O * @tos: type of service * @fast_io_fail_tmo: Fast I/O fail timeout in seconds */ struct nvmf_ctrl_options { … }; /* * struct nvmf_transport_ops - used to register a specific * fabric implementation of NVMe fabrics. * @entry: Used by the fabrics library to add the new * registration entry to its linked-list internal tree. * @module: Transport module reference * @name: Name of the NVMe fabric driver implementation. * @required_opts: sysfs command-line options that must be specified * when adding a new NVMe controller. * @allowed_opts: sysfs command-line options that can be specified * when adding a new NVMe controller. * @create_ctrl(): function pointer that points to a non-NVMe * implementation-specific fabric technology * that would go into starting up that fabric * for the purpose of conneciton to an NVMe controller * using that fabric technology. * * Notes: * 1. At minimum, 'required_opts' and 'allowed_opts' should * be set to the same enum parsing options defined earlier. * 2. create_ctrl() must be defined (even if it does nothing) * 3. struct nvmf_transport_ops must be statically allocated in the * modules .bss section so that a pure module_get on @module * prevents the memory from beeing freed. */ struct nvmf_transport_ops { … }; static inline bool nvmf_ctlr_matches_baseopts(struct nvme_ctrl *ctrl, struct nvmf_ctrl_options *opts) { … } static inline char *nvmf_ctrl_subsysnqn(struct nvme_ctrl *ctrl) { … } static inline void nvmf_complete_timed_out_request(struct request *rq) { … } static inline unsigned int nvmf_nr_io_queues(struct nvmf_ctrl_options *opts) { … } int nvmf_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val); int nvmf_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val); int nvmf_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val); int nvmf_subsystem_reset(struct nvme_ctrl *ctrl); int nvmf_connect_admin_queue(struct nvme_ctrl *ctrl); int nvmf_connect_io_queue(struct nvme_ctrl *ctrl, u16 qid); int nvmf_register_transport(struct nvmf_transport_ops *ops); void nvmf_unregister_transport(struct nvmf_transport_ops *ops); void nvmf_free_options(struct nvmf_ctrl_options *opts); int nvmf_get_address(struct nvme_ctrl *ctrl, char *buf, int size); bool nvmf_should_reconnect(struct nvme_ctrl *ctrl, int status); bool nvmf_ip_options_match(struct nvme_ctrl *ctrl, struct nvmf_ctrl_options *opts); void nvmf_set_io_queues(struct nvmf_ctrl_options *opts, u32 nr_io_queues, u32 io_queues[HCTX_MAX_TYPES]); void nvmf_map_queues(struct blk_mq_tag_set *set, struct nvme_ctrl *ctrl, u32 io_queues[HCTX_MAX_TYPES]); #endif /* _NVME_FABRICS_H */