linux/drivers/net/ethernet/intel/i40e/i40e_txrx.h

/* SPDX-License-Identifier: GPL-2.0 */
/* Copyright(c) 2013 - 2018 Intel Corporation. */

#ifndef _I40E_TXRX_H_
#define _I40E_TXRX_H_

#include <net/xdp.h>
#include "i40e_type.h"

/* Interrupt Throttling and Rate Limiting Goodies */
#define I40E_DEFAULT_IRQ_WORK

/* The datasheet for the X710 and XL710 indicate that the maximum value for
 * the ITR is 8160usec which is then called out as 0xFF0 with a 2usec
 * resolution. 8160 is 0x1FE0 when written out in hex. So instead of storing
 * the register value which is divided by 2 lets use the actual values and
 * avoid an excessive amount of translation.
 */
#define I40E_ITR_DYNAMIC
#define I40E_ITR_MASK
#define I40E_MIN_ITR
#define I40E_ITR_20K
#define I40E_ITR_8K
#define I40E_MAX_ITR
#define ITR_TO_REG(setting)
#define ITR_REG_ALIGN(setting)
#define ITR_IS_DYNAMIC(setting)

#define I40E_ITR_RX_DEF
#define I40E_ITR_TX_DEF

/* 0x40 is the enable bit for interrupt rate limiting, and must be set if
 * the value of the rate limit is non-zero
 */
#define INTRL_ENA
#define I40E_MAX_INTRL
#define INTRL_REG_TO_USEC(intrl)

/**
 * i40e_intrl_usec_to_reg - convert interrupt rate limit to register
 * @intrl: interrupt rate limit to convert
 *
 * This function converts a decimal interrupt rate limit to the appropriate
 * register format expected by the firmware when setting interrupt rate limit.
 */
static inline u16 i40e_intrl_usec_to_reg(int intrl)
{}

#define I40E_QUEUE_END_OF_LIST

/* this enum matches hardware bits and is meant to be used by DYN_CTLN
 * registers and QINT registers or more generally anywhere in the manual
 * mentioning ITR_INDX, ITR_NONE cannot be used as an index 'n' into any
 * register but instead is a special value meaning "don't update" ITR0/1/2.
 */
enum i40e_dyn_idx {};

/* these are indexes into ITRN registers */
#define I40E_RX_ITR
#define I40E_TX_ITR
#define I40E_SW_ITR

/* Supported RSS offloads */
#define I40E_DEFAULT_RSS_HENA

#define I40E_DEFAULT_RSS_HENA_EXPANDED

#define i40e_pf_get_default_rss_hena(pf)

/* Supported Rx Buffer Sizes (a multiple of 128) */
#define I40E_RXBUFFER_256
#define I40E_RXBUFFER_1536
#define I40E_RXBUFFER_2048
#define I40E_RXBUFFER_3072
#define I40E_MAX_RXBUFFER

/* NOTE: netdev_alloc_skb reserves up to 64 bytes, NET_IP_ALIGN means we
 * reserve 2 more, and skb_shared_info adds an additional 384 bytes more,
 * this adds up to 512 bytes of extra data meaning the smallest allocation
 * we could have is 1K.
 * i.e. RXBUFFER_256 --> 960 byte skb (size-1024 slab)
 * i.e. RXBUFFER_512 --> 1216 byte skb (size-2048 slab)
 */
#define I40E_RX_HDR_SIZE
#define I40E_PACKET_HDR_PAD
#define i40e_rx_desc

#define I40E_RX_DMA_ATTR

/* Attempt to maximize the headroom available for incoming frames.  We
 * use a 2K buffer for receives and need 1536/1534 to store the data for
 * the frame.  This leaves us with 512 bytes of room.  From that we need
 * to deduct the space needed for the shared info and the padding needed
 * to IP align the frame.
 *
 * Note: For cache line sizes 256 or larger this value is going to end
 *	 up negative.  In these cases we should fall back to the legacy
 *	 receive path.
 */
#if (PAGE_SIZE < 8192)
#define I40E_2K_TOO_SMALL_WITH_PADDING

static inline int i40e_compute_pad(int rx_buf_len)
{}

static inline int i40e_skb_pad(void)
{}

#define I40E_SKB_PAD
#else
#define I40E_2K_TOO_SMALL_WITH_PADDING
#define I40E_SKB_PAD
#endif

/**
 * i40e_test_staterr - tests bits in Rx descriptor status and error fields
 * @rx_desc: pointer to receive descriptor (in le64 format)
 * @stat_err_bits: value to mask
 *
 * This function does some fast chicanery in order to return the
 * value of the mask which is really only used for boolean tests.
 * The status_error_len doesn't need to be shifted because it begins
 * at offset zero.
 */
static inline bool i40e_test_staterr(union i40e_rx_desc *rx_desc,
				     const u64 stat_err_bits)
{}

/* How many Rx Buffers do we bundle into one write to the hardware ? */
#define I40E_RX_BUFFER_WRITE

#define I40E_RX_NEXT_DESC(r, i, n)


#define I40E_MAX_BUFFER_TXD
#define I40E_MIN_TX_LEN

/* The size limit for a transmit buffer in a descriptor is (16K - 1).
 * In order to align with the read requests we will align the value to
 * the nearest 4K which represents our maximum read request size.
 */
#define I40E_MAX_READ_REQ_SIZE
#define I40E_MAX_DATA_PER_TXD
#define I40E_MAX_DATA_PER_TXD_ALIGNED

/**
 * i40e_txd_use_count  - estimate the number of descriptors needed for Tx
 * @size: transmit request size in bytes
 *
 * Due to hardware alignment restrictions (4K alignment), we need to
 * assume that we can have no more than 12K of data per descriptor, even
 * though each descriptor can take up to 16K - 1 bytes of aligned memory.
 * Thus, we need to divide by 12K. But division is slow! Instead,
 * we decompose the operation into shifts and one relatively cheap
 * multiply operation.
 *
 * To divide by 12K, we first divide by 4K, then divide by 3:
 *     To divide by 4K, shift right by 12 bits
 *     To divide by 3, multiply by 85, then divide by 256
 *     (Divide by 256 is done by shifting right by 8 bits)
 * Finally, we add one to round up. Because 256 isn't an exact multiple of
 * 3, we'll underestimate near each multiple of 12K. This is actually more
 * accurate as we have 4K - 1 of wiggle room that we can fit into the last
 * segment.  For our purposes this is accurate out to 1M which is orders of
 * magnitude greater than our largest possible GSO size.
 *
 * This would then be implemented as:
 *     return (((size >> 12) * 85) >> 8) + 1;
 *
 * Since multiplication and division are commutative, we can reorder
 * operations into:
 *     return ((size * 85) >> 20) + 1;
 */
static inline unsigned int i40e_txd_use_count(unsigned int size)
{}

/* Tx Descriptors needed, worst case */
#define DESC_NEEDED

#define I40E_TX_FLAGS_HW_VLAN
#define I40E_TX_FLAGS_SW_VLAN
#define I40E_TX_FLAGS_TSO
#define I40E_TX_FLAGS_IPV4
#define I40E_TX_FLAGS_IPV6
#define I40E_TX_FLAGS_TSYN
#define I40E_TX_FLAGS_FD_SB
#define I40E_TX_FLAGS_UDP_TUNNEL
#define I40E_TX_FLAGS_VLAN_MASK
#define I40E_TX_FLAGS_VLAN_PRIO_MASK
#define I40E_TX_FLAGS_VLAN_PRIO_SHIFT
#define I40E_TX_FLAGS_VLAN_SHIFT

struct i40e_tx_buffer {};

struct i40e_rx_buffer {};

struct i40e_queue_stats {};

struct i40e_tx_queue_stats {};

struct i40e_rx_queue_stats {};

enum i40e_ring_state {};

/* some useful defines for virtchannel interface, which
 * is the only remaining user of header split
 */
#define I40E_RX_DTYPE_HEADER_SPLIT
#define I40E_RX_SPLIT_L2
#define I40E_RX_SPLIT_IP
#define I40E_RX_SPLIT_TCP_UDP
#define I40E_RX_SPLIT_SCTP

/* struct that defines a descriptor ring, associated with a VSI */
struct i40e_ring {} ____cacheline_internodealigned_in_smp;

static inline bool ring_uses_build_skb(struct i40e_ring *ring)
{}

static inline void set_ring_build_skb_enabled(struct i40e_ring *ring)
{}

static inline void clear_ring_build_skb_enabled(struct i40e_ring *ring)
{}

static inline bool ring_is_xdp(struct i40e_ring *ring)
{}

static inline void set_ring_xdp(struct i40e_ring *ring)
{}

#define I40E_ITR_ADAPTIVE_MIN_INC
#define I40E_ITR_ADAPTIVE_MIN_USECS
#define I40E_ITR_ADAPTIVE_MAX_USECS
#define I40E_ITR_ADAPTIVE_LATENCY
#define I40E_ITR_ADAPTIVE_BULK

struct i40e_ring_container {};

/* iterator for handling rings in ring container */
#define i40e_for_each_ring(pos, head)

static inline unsigned int i40e_rx_pg_order(struct i40e_ring *ring)
{}

#define i40e_rx_pg_size(_ring)

bool i40e_alloc_rx_buffers(struct i40e_ring *rxr, u16 cleaned_count);
netdev_tx_t i40e_lan_xmit_frame(struct sk_buff *skb, struct net_device *netdev);
u16 i40e_lan_select_queue(struct net_device *netdev, struct sk_buff *skb,
			  struct net_device *sb_dev);
void i40e_clean_tx_ring(struct i40e_ring *tx_ring);
void i40e_clean_rx_ring(struct i40e_ring *rx_ring);
int i40e_setup_tx_descriptors(struct i40e_ring *tx_ring);
int i40e_setup_rx_descriptors(struct i40e_ring *rx_ring);
void i40e_free_tx_resources(struct i40e_ring *tx_ring);
void i40e_free_rx_resources(struct i40e_ring *rx_ring);
int i40e_napi_poll(struct napi_struct *napi, int budget);
void i40e_force_wb(struct i40e_vsi *vsi, struct i40e_q_vector *q_vector);
u32 i40e_get_tx_pending(struct i40e_ring *ring, bool in_sw);
void i40e_detect_recover_hung(struct i40e_pf *pf);
int __i40e_maybe_stop_tx(struct i40e_ring *tx_ring, int size);
bool __i40e_chk_linearize(struct sk_buff *skb);
int i40e_xdp_xmit(struct net_device *dev, int n, struct xdp_frame **frames,
		  u32 flags);
bool i40e_is_non_eop(struct i40e_ring *rx_ring,
		     union i40e_rx_desc *rx_desc);

/**
 * i40e_get_head - Retrieve head from head writeback
 * @tx_ring:  tx ring to fetch head of
 *
 * Returns value of Tx ring head based on value stored
 * in head write-back location
 **/
static inline u32 i40e_get_head(struct i40e_ring *tx_ring)
{}

/**
 * i40e_xmit_descriptor_count - calculate number of Tx descriptors needed
 * @skb:     send buffer
 *
 * Returns number of data descriptors needed for this skb. Returns 0 to indicate
 * there is not enough descriptors available in this ring since we need at least
 * one descriptor.
 **/
static inline int i40e_xmit_descriptor_count(struct sk_buff *skb)
{}

/**
 * i40e_maybe_stop_tx - 1st level check for Tx stop conditions
 * @tx_ring: the ring to be checked
 * @size:    the size buffer we want to assure is available
 *
 * Returns 0 if stop is not needed
 **/
static inline int i40e_maybe_stop_tx(struct i40e_ring *tx_ring, int size)
{}

/**
 * i40e_chk_linearize - Check if there are more than 8 fragments per packet
 * @skb:      send buffer
 * @count:    number of buffers used
 *
 * Note: Our HW can't scatter-gather more than 8 fragments to build
 * a packet on the wire and so we need to figure out the cases where we
 * need to linearize the skb.
 **/
static inline bool i40e_chk_linearize(struct sk_buff *skb, int count)
{}

/**
 * txring_txq - Find the netdev Tx ring based on the i40e Tx ring
 * @ring: Tx ring to find the netdev equivalent of
 **/
static inline struct netdev_queue *txring_txq(const struct i40e_ring *ring)
{}
#endif /* _I40E_TXRX_H_ */