linux/drivers/net/ethernet/sfc/falcon/net_driver.h

/* SPDX-License-Identifier: GPL-2.0-only */
/****************************************************************************
 * Driver for Solarflare network controllers and boards
 * Copyright 2005-2006 Fen Systems Ltd.
 * Copyright 2005-2013 Solarflare Communications Inc.
 */

/* Common definitions for all Efx net driver code */

#ifndef EF4_NET_DRIVER_H
#define EF4_NET_DRIVER_H

#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/ethtool.h>
#include <linux/if_vlan.h>
#include <linux/timer.h>
#include <linux/mdio.h>
#include <linux/list.h>
#include <linux/pci.h>
#include <linux/device.h>
#include <linux/highmem.h>
#include <linux/workqueue.h>
#include <linux/mutex.h>
#include <linux/rwsem.h>
#include <linux/vmalloc.h>
#include <linux/i2c.h>
#include <linux/mtd/mtd.h>
#include <net/busy_poll.h>

#include "enum.h"
#include "bitfield.h"
#include "filter.h"

/**************************************************************************
 *
 * Build definitions
 *
 **************************************************************************/

#define EF4_DRIVER_VERSION

#ifdef DEBUG
#define EF4_BUG_ON_PARANOID
#define EF4_WARN_ON_PARANOID
#else
#define EF4_BUG_ON_PARANOID(x)
#define EF4_WARN_ON_PARANOID(x)
#endif

/**************************************************************************
 *
 * Efx data structures
 *
 **************************************************************************/

#define EF4_MAX_CHANNELS
#define EF4_MAX_RX_QUEUES
#define EF4_EXTRA_CHANNEL_IOV
#define EF4_EXTRA_CHANNEL_PTP
#define EF4_MAX_EXTRA_CHANNELS

/* Checksum generation is a per-queue option in hardware, so each
 * queue visible to the networking core is backed by two hardware TX
 * queues. */
#define EF4_MAX_TX_TC
#define EF4_MAX_CORE_TX_QUEUES
#define EF4_TXQ_TYPE_OFFLOAD
#define EF4_TXQ_TYPE_HIGHPRI
#define EF4_TXQ_TYPES
#define EF4_MAX_TX_QUEUES

/* Maximum possible MTU the driver supports */
#define EF4_MAX_MTU

/* Minimum MTU, from RFC791 (IP) */
#define EF4_MIN_MTU

/* Size of an RX scatter buffer.  Small enough to pack 2 into a 4K page,
 * and should be a multiple of the cache line size.
 */
#define EF4_RX_USR_BUF_SIZE

/* If possible, we should ensure cache line alignment at start and end
 * of every buffer.  Otherwise, we just need to ensure 4-byte
 * alignment of the network header.
 */
#if NET_IP_ALIGN == 0
#define EF4_RX_BUF_ALIGNMENT
#else
#define EF4_RX_BUF_ALIGNMENT
#endif

struct ef4_self_tests;

/**
 * struct ef4_buffer - A general-purpose DMA buffer
 * @addr: host base address of the buffer
 * @dma_addr: DMA base address of the buffer
 * @len: Buffer length, in bytes
 *
 * The NIC uses these buffers for its interrupt status registers and
 * MAC stats dumps.
 */
struct ef4_buffer {};

/**
 * struct ef4_special_buffer - DMA buffer entered into buffer table
 * @buf: Standard &struct ef4_buffer
 * @index: Buffer index within controller;s buffer table
 * @entries: Number of buffer table entries
 *
 * The NIC has a buffer table that maps buffers of size %EF4_BUF_SIZE.
 * Event and descriptor rings are addressed via one or more buffer
 * table entries (and so can be physically non-contiguous, although we
 * currently do not take advantage of that).  On Falcon and Siena we
 * have to take care of allocating and initialising the entries
 * ourselves.  On later hardware this is managed by the firmware and
 * @index and @entries are left as 0.
 */
struct ef4_special_buffer {};

/**
 * struct ef4_tx_buffer - buffer state for a TX descriptor
 * @skb: When @flags & %EF4_TX_BUF_SKB, the associated socket buffer to be
 *	freed when descriptor completes
 * @option: When @flags & %EF4_TX_BUF_OPTION, a NIC-specific option descriptor.
 * @dma_addr: DMA address of the fragment.
 * @flags: Flags for allocation and DMA mapping type
 * @len: Length of this fragment.
 *	This field is zero when the queue slot is empty.
 * @unmap_len: Length of this fragment to unmap
 * @dma_offset: Offset of @dma_addr from the address of the backing DMA mapping.
 * Only valid if @unmap_len != 0.
 */
struct ef4_tx_buffer {};
#define EF4_TX_BUF_CONT
#define EF4_TX_BUF_SKB
#define EF4_TX_BUF_MAP_SINGLE
#define EF4_TX_BUF_OPTION

/**
 * struct ef4_tx_queue - An Efx TX queue
 *
 * This is a ring buffer of TX fragments.
 * Since the TX completion path always executes on the same
 * CPU and the xmit path can operate on different CPUs,
 * performance is increased by ensuring that the completion
 * path and the xmit path operate on different cache lines.
 * This is particularly important if the xmit path is always
 * executing on one CPU which is different from the completion
 * path.  There is also a cache line for members which are
 * read but not written on the fast path.
 *
 * @efx: The associated Efx NIC
 * @queue: DMA queue number
 * @channel: The associated channel
 * @core_txq: The networking core TX queue structure
 * @buffer: The software buffer ring
 * @cb_page: Array of pages of copy buffers.  Carved up according to
 *	%EF4_TX_CB_ORDER into %EF4_TX_CB_SIZE-sized chunks.
 * @txd: The hardware descriptor ring
 * @ptr_mask: The size of the ring minus 1.
 * @initialised: Has hardware queue been initialised?
 * @tx_min_size: Minimum transmit size for this queue. Depends on HW.
 * @read_count: Current read pointer.
 *	This is the number of buffers that have been removed from both rings.
 * @old_write_count: The value of @write_count when last checked.
 *	This is here for performance reasons.  The xmit path will
 *	only get the up-to-date value of @write_count if this
 *	variable indicates that the queue is empty.  This is to
 *	avoid cache-line ping-pong between the xmit path and the
 *	completion path.
 * @merge_events: Number of TX merged completion events
 * @insert_count: Current insert pointer
 *	This is the number of buffers that have been added to the
 *	software ring.
 * @write_count: Current write pointer
 *	This is the number of buffers that have been added to the
 *	hardware ring.
 * @old_read_count: The value of read_count when last checked.
 *	This is here for performance reasons.  The xmit path will
 *	only get the up-to-date value of read_count if this
 *	variable indicates that the queue is full.  This is to
 *	avoid cache-line ping-pong between the xmit path and the
 *	completion path.
 * @pushes: Number of times the TX push feature has been used
 * @xmit_more_available: Are any packets waiting to be pushed to the NIC
 * @cb_packets: Number of times the TX copybreak feature has been used
 * @empty_read_count: If the completion path has seen the queue as empty
 *	and the transmission path has not yet checked this, the value of
 *	@read_count bitwise-added to %EF4_EMPTY_COUNT_VALID; otherwise 0.
 */
struct ef4_tx_queue {};

#define EF4_TX_CB_ORDER
#define EF4_TX_CB_SIZE

/**
 * struct ef4_rx_buffer - An Efx RX data buffer
 * @dma_addr: DMA base address of the buffer
 * @page: The associated page buffer.
 *	Will be %NULL if the buffer slot is currently free.
 * @page_offset: If pending: offset in @page of DMA base address.
 *	If completed: offset in @page of Ethernet header.
 * @len: If pending: length for DMA descriptor.
 *	If completed: received length, excluding hash prefix.
 * @flags: Flags for buffer and packet state.  These are only set on the
 *	first buffer of a scattered packet.
 */
struct ef4_rx_buffer {};
#define EF4_RX_BUF_LAST_IN_PAGE
#define EF4_RX_PKT_CSUMMED
#define EF4_RX_PKT_DISCARD
#define EF4_RX_PKT_TCP
#define EF4_RX_PKT_PREFIX_LEN

/**
 * struct ef4_rx_page_state - Page-based rx buffer state
 *
 * Inserted at the start of every page allocated for receive buffers.
 * Used to facilitate sharing dma mappings between recycled rx buffers
 * and those passed up to the kernel.
 *
 * @dma_addr: The dma address of this page.
 */
struct ef4_rx_page_state {};

/**
 * struct ef4_rx_queue - An Efx RX queue
 * @efx: The associated Efx NIC
 * @core_index:  Index of network core RX queue.  Will be >= 0 iff this
 *	is associated with a real RX queue.
 * @buffer: The software buffer ring
 * @rxd: The hardware descriptor ring
 * @ptr_mask: The size of the ring minus 1.
 * @refill_enabled: Enable refill whenever fill level is low
 * @flush_pending: Set when a RX flush is pending. Has the same lifetime as
 *	@rxq_flush_pending.
 * @added_count: Number of buffers added to the receive queue.
 * @notified_count: Number of buffers given to NIC (<= @added_count).
 * @removed_count: Number of buffers removed from the receive queue.
 * @scatter_n: Used by NIC specific receive code.
 * @scatter_len: Used by NIC specific receive code.
 * @page_ring: The ring to store DMA mapped pages for reuse.
 * @page_add: Counter to calculate the write pointer for the recycle ring.
 * @page_remove: Counter to calculate the read pointer for the recycle ring.
 * @page_recycle_count: The number of pages that have been recycled.
 * @page_recycle_failed: The number of pages that couldn't be recycled because
 *      the kernel still held a reference to them.
 * @page_recycle_full: The number of pages that were released because the
 *      recycle ring was full.
 * @page_ptr_mask: The number of pages in the RX recycle ring minus 1.
 * @max_fill: RX descriptor maximum fill level (<= ring size)
 * @fast_fill_trigger: RX descriptor fill level that will trigger a fast fill
 *	(<= @max_fill)
 * @min_fill: RX descriptor minimum non-zero fill level.
 *	This records the minimum fill level observed when a ring
 *	refill was triggered.
 * @recycle_count: RX buffer recycle counter.
 * @slow_fill: Timer used to defer ef4_nic_generate_fill_event().
 */
struct ef4_rx_queue {};

/**
 * struct ef4_channel - An Efx channel
 *
 * A channel comprises an event queue, at least one TX queue, at least
 * one RX queue, and an associated tasklet for processing the event
 * queue.
 *
 * @efx: Associated Efx NIC
 * @channel: Channel instance number
 * @type: Channel type definition
 * @eventq_init: Event queue initialised flag
 * @enabled: Channel enabled indicator
 * @irq: IRQ number (MSI and MSI-X only)
 * @irq_moderation_us: IRQ moderation value (in microseconds)
 * @napi_dev: Net device used with NAPI
 * @napi_str: NAPI control structure
 * @state: state for NAPI vs busy polling
 * @state_lock: lock protecting @state
 * @eventq: Event queue buffer
 * @eventq_mask: Event queue pointer mask
 * @eventq_read_ptr: Event queue read pointer
 * @event_test_cpu: Last CPU to handle interrupt or test event for this channel
 * @irq_count: Number of IRQs since last adaptive moderation decision
 * @irq_mod_score: IRQ moderation score
 * @rps_flow_id: Flow IDs of filters allocated for accelerated RFS,
 *      indexed by filter ID
 * @n_rx_tobe_disc: Count of RX_TOBE_DISC errors
 * @n_rx_ip_hdr_chksum_err: Count of RX IP header checksum errors
 * @n_rx_tcp_udp_chksum_err: Count of RX TCP and UDP checksum errors
 * @n_rx_mcast_mismatch: Count of unmatched multicast frames
 * @n_rx_frm_trunc: Count of RX_FRM_TRUNC errors
 * @n_rx_overlength: Count of RX_OVERLENGTH errors
 * @n_skbuff_leaks: Count of skbuffs leaked due to RX overrun
 * @n_rx_nodesc_trunc: Number of RX packets truncated and then dropped due to
 *	lack of descriptors
 * @n_rx_merge_events: Number of RX merged completion events
 * @n_rx_merge_packets: Number of RX packets completed by merged events
 * @rx_pkt_n_frags: Number of fragments in next packet to be delivered by
 *	__ef4_rx_packet(), or zero if there is none
 * @rx_pkt_index: Ring index of first buffer for next packet to be delivered
 *	by __ef4_rx_packet(), if @rx_pkt_n_frags != 0
 * @rx_queue: RX queue for this channel
 * @tx_queue: TX queues for this channel
 */
struct ef4_channel {};

/**
 * struct ef4_msi_context - Context for each MSI
 * @efx: The associated NIC
 * @index: Index of the channel/IRQ
 * @name: Name of the channel/IRQ
 *
 * Unlike &struct ef4_channel, this is never reallocated and is always
 * safe for the IRQ handler to access.
 */
struct ef4_msi_context {};

/**
 * struct ef4_channel_type - distinguishes traffic and extra channels
 * @handle_no_channel: Handle failure to allocate an extra channel
 * @pre_probe: Set up extra state prior to initialisation
 * @post_remove: Tear down extra state after finalisation, if allocated.
 *	May be called on channels that have not been probed.
 * @get_name: Generate the channel's name (used for its IRQ handler)
 * @copy: Copy the channel state prior to reallocation.  May be %NULL if
 *	reallocation is not supported.
 * @receive_skb: Handle an skb ready to be passed to netif_receive_skb()
 * @keep_eventq: Flag for whether event queue should be kept initialised
 *	while the device is stopped
 */
struct ef4_channel_type {};

enum ef4_led_mode {};

#define STRING_TABLE_LOOKUP(val, member)

extern const char *const ef4_loopback_mode_names[];
extern const unsigned int ef4_loopback_mode_max;
#define LOOPBACK_MODE(efx)

extern const char *const ef4_reset_type_names[];
extern const unsigned int ef4_reset_type_max;
#define RESET_TYPE(type)

enum ef4_int_mode {};
#define EF4_INT_MODE_USE_MSI(x)

enum nic_state {};

/* Forward declaration */
struct ef4_nic;

/* Pseudo bit-mask flow control field */
#define EF4_FC_RX
#define EF4_FC_TX
#define EF4_FC_AUTO

/**
 * struct ef4_link_state - Current state of the link
 * @up: Link is up
 * @fd: Link is full-duplex
 * @fc: Actual flow control flags
 * @speed: Link speed (Mbps)
 */
struct ef4_link_state {};

static inline bool ef4_link_state_equal(const struct ef4_link_state *left,
					const struct ef4_link_state *right)
{}

/**
 * struct ef4_phy_operations - Efx PHY operations table
 * @probe: Probe PHY and initialise efx->mdio.mode_support, efx->mdio.mmds,
 *	efx->loopback_modes.
 * @init: Initialise PHY
 * @fini: Shut down PHY
 * @reconfigure: Reconfigure PHY (e.g. for new link parameters)
 * @poll: Update @link_state and report whether it changed.
 *	Serialised by the mac_lock.
 * @get_link_ksettings: Get ethtool settings. Serialised by the mac_lock.
 * @set_link_ksettings: Set ethtool settings. Serialised by the mac_lock.
 * @set_npage_adv: Set abilities advertised in (Extended) Next Page
 *	(only needed where AN bit is set in mmds)
 * @test_alive: Test that PHY is 'alive' (online)
 * @test_name: Get the name of a PHY-specific test/result
 * @run_tests: Run tests and record results as appropriate (offline).
 *	Flags are the ethtool tests flags.
 */
struct ef4_phy_operations {};

/**
 * enum ef4_phy_mode - PHY operating mode flags
 * @PHY_MODE_NORMAL: on and should pass traffic
 * @PHY_MODE_TX_DISABLED: on with TX disabled
 * @PHY_MODE_LOW_POWER: set to low power through MDIO
 * @PHY_MODE_OFF: switched off through external control
 * @PHY_MODE_SPECIAL: on but will not pass traffic
 */
enum ef4_phy_mode {};

static inline bool ef4_phy_mode_disabled(enum ef4_phy_mode mode)
{}

/**
 * struct ef4_hw_stat_desc - Description of a hardware statistic
 * @name: Name of the statistic as visible through ethtool, or %NULL if
 *	it should not be exposed
 * @dma_width: Width in bits (0 for non-DMA statistics)
 * @offset: Offset within stats (ignored for non-DMA statistics)
 */
struct ef4_hw_stat_desc {};

/* Number of bits used in a multicast filter hash address */
#define EF4_MCAST_HASH_BITS

/* Number of (single-bit) entries in a multicast filter hash */
#define EF4_MCAST_HASH_ENTRIES

/* An Efx multicast filter hash */
ef4_multicast_hash;

/**
 * struct ef4_nic - an Efx NIC
 * @name: Device name (net device name or bus id before net device registered)
 * @pci_dev: The PCI device
 * @node: List node for maintaining primary/secondary function lists
 * @primary: &struct ef4_nic instance for the primary function of this
 *	controller.  May be the same structure, and may be %NULL if no
 *	primary function is bound.  Serialised by rtnl_lock.
 * @secondary_list: List of &struct ef4_nic instances for the secondary PCI
 *	functions of the controller, if this is for the primary function.
 *	Serialised by rtnl_lock.
 * @type: Controller type attributes
 * @legacy_irq: IRQ number
 * @workqueue: Workqueue for port reconfigures and the HW monitor.
 *	Work items do not hold and must not acquire RTNL.
 * @workqueue_name: Name of workqueue
 * @reset_work: Scheduled reset workitem
 * @membase_phys: Memory BAR value as physical address
 * @membase: Memory BAR value
 * @interrupt_mode: Interrupt mode
 * @timer_quantum_ns: Interrupt timer quantum, in nanoseconds
 * @timer_max_ns: Interrupt timer maximum value, in nanoseconds
 * @irq_rx_adaptive: Adaptive IRQ moderation enabled for RX event queues
 * @irq_rx_mod_step_us: Step size for IRQ moderation for RX event queues
 * @irq_rx_moderation_us: IRQ moderation time for RX event queues
 * @msg_enable: Log message enable flags
 * @state: Device state number (%STATE_*). Serialised by the rtnl_lock.
 * @reset_pending: Bitmask for pending resets
 * @tx_queue: TX DMA queues
 * @rx_queue: RX DMA queues
 * @channel: Channels
 * @msi_context: Context for each MSI
 * @extra_channel_types: Types of extra (non-traffic) channels that
 *	should be allocated for this NIC
 * @rxq_entries: Size of receive queues requested by user.
 * @txq_entries: Size of transmit queues requested by user.
 * @txq_stop_thresh: TX queue fill level at or above which we stop it.
 * @txq_wake_thresh: TX queue fill level at or below which we wake it.
 * @tx_dc_base: Base qword address in SRAM of TX queue descriptor caches
 * @rx_dc_base: Base qword address in SRAM of RX queue descriptor caches
 * @sram_lim_qw: Qword address limit of SRAM
 * @next_buffer_table: First available buffer table id
 * @n_channels: Number of channels in use
 * @n_rx_channels: Number of channels used for RX (= number of RX queues)
 * @n_tx_channels: Number of channels used for TX
 * @rx_ip_align: RX DMA address offset to have IP header aligned in
 *	accordance with NET_IP_ALIGN
 * @rx_dma_len: Current maximum RX DMA length
 * @rx_buffer_order: Order (log2) of number of pages for each RX buffer
 * @rx_buffer_truesize: Amortised allocation size of an RX buffer,
 *	for use in sk_buff::truesize
 * @rx_prefix_size: Size of RX prefix before packet data
 * @rx_packet_hash_offset: Offset of RX flow hash from start of packet data
 *	(valid only if @rx_prefix_size != 0; always negative)
 * @rx_packet_len_offset: Offset of RX packet length from start of packet data
 *	(valid only for NICs that set %EF4_RX_PKT_PREFIX_LEN; always negative)
 * @rx_packet_ts_offset: Offset of timestamp from start of packet data
 *	(valid only if channel->sync_timestamps_enabled; always negative)
 * @rx_hash_key: Toeplitz hash key for RSS
 * @rx_indir_table: Indirection table for RSS
 * @rx_scatter: Scatter mode enabled for receives
 * @int_error_count: Number of internal errors seen recently
 * @int_error_expire: Time at which error count will be expired
 * @irq_soft_enabled: Are IRQs soft-enabled? If not, IRQ handler will
 *	acknowledge but do nothing else.
 * @irq_status: Interrupt status buffer
 * @irq_zero_count: Number of legacy IRQs seen with queue flags == 0
 * @irq_level: IRQ level/index for IRQs not triggered by an event queue
 * @selftest_work: Work item for asynchronous self-test
 * @mtd_list: List of MTDs attached to the NIC
 * @nic_data: Hardware dependent state
 * @mac_lock: MAC access lock. Protects @port_enabled, @phy_mode,
 *	ef4_monitor() and ef4_reconfigure_port()
 * @port_enabled: Port enabled indicator.
 *	Serialises ef4_stop_all(), ef4_start_all(), ef4_monitor() and
 *	ef4_mac_work() with kernel interfaces. Safe to read under any
 *	one of the rtnl_lock, mac_lock, or netif_tx_lock, but all three must
 *	be held to modify it.
 * @port_initialized: Port initialized?
 * @net_dev: Operating system network device. Consider holding the rtnl lock
 * @fixed_features: Features which cannot be turned off
 * @stats_buffer: DMA buffer for statistics
 * @phy_type: PHY type
 * @phy_op: PHY interface
 * @phy_data: PHY private data (including PHY-specific stats)
 * @mdio: PHY MDIO interface
 * @phy_mode: PHY operating mode. Serialised by @mac_lock.
 * @link_advertising: Autonegotiation advertising flags
 * @link_state: Current state of the link
 * @n_link_state_changes: Number of times the link has changed state
 * @unicast_filter: Flag for Falcon-arch simple unicast filter.
 *	Protected by @mac_lock.
 * @multicast_hash: Multicast hash table for Falcon-arch.
 *	Protected by @mac_lock.
 * @wanted_fc: Wanted flow control flags
 * @fc_disable: When non-zero flow control is disabled. Typically used to
 *	ensure that network back pressure doesn't delay dma queue flushes.
 *	Serialised by the rtnl lock.
 * @mac_work: Work item for changing MAC promiscuity and multicast hash
 * @loopback_mode: Loopback status
 * @loopback_modes: Supported loopback mode bitmask
 * @loopback_selftest: Offline self-test private state
 * @filter_sem: Filter table rw_semaphore, for freeing the table
 * @filter_lock: Filter table lock, for mere content changes
 * @filter_state: Architecture-dependent filter table state
 * @rps_expire_channel: Next channel to check for expiry
 * @rps_expire_index: Next index to check for expiry in
 *	@rps_expire_channel's @rps_flow_id
 * @active_queues: Count of RX and TX queues that haven't been flushed and drained.
 * @rxq_flush_pending: Count of number of receive queues that need to be flushed.
 *	Decremented when the ef4_flush_rx_queue() is called.
 * @rxq_flush_outstanding: Count of number of RX flushes started but not yet
 *	completed (either success or failure). Not used when MCDI is used to
 *	flush receive queues.
 * @flush_wq: wait queue used by ef4_nic_flush_queues() to wait for flush completions.
 * @vpd_sn: Serial number read from VPD
 * @monitor_work: Hardware monitor workitem
 * @biu_lock: BIU (bus interface unit) lock
 * @last_irq_cpu: Last CPU to handle a possible test interrupt.  This
 *	field is used by ef4_test_interrupts() to verify that an
 *	interrupt has occurred.
 * @stats_lock: Statistics update lock. Must be held when calling
 *	ef4_nic_type::{update,start,stop}_stats.
 * @n_rx_noskb_drops: Count of RX packets dropped due to failure to allocate an skb
 *
 * This is stored in the private area of the &struct net_device.
 */
struct ef4_nic {};

static inline int ef4_dev_registered(struct ef4_nic *efx)
{}

static inline unsigned int ef4_port_num(struct ef4_nic *efx)
{}

struct ef4_mtd_partition {};

/**
 * struct ef4_nic_type - Efx device type definition
 * @mem_bar: Get the memory BAR
 * @mem_map_size: Get memory BAR mapped size
 * @probe: Probe the controller
 * @remove: Free resources allocated by probe()
 * @init: Initialise the controller
 * @dimension_resources: Dimension controller resources (buffer table,
 *	and VIs once the available interrupt resources are clear)
 * @fini: Shut down the controller
 * @monitor: Periodic function for polling link state and hardware monitor
 * @map_reset_reason: Map ethtool reset reason to a reset method
 * @map_reset_flags: Map ethtool reset flags to a reset method, if possible
 * @reset: Reset the controller hardware and possibly the PHY.  This will
 *	be called while the controller is uninitialised.
 * @probe_port: Probe the MAC and PHY
 * @remove_port: Free resources allocated by probe_port()
 * @handle_global_event: Handle a "global" event (may be %NULL)
 * @fini_dmaq: Flush and finalise DMA queues (RX and TX queues)
 * @prepare_flush: Prepare the hardware for flushing the DMA queues
 *	(for Falcon architecture)
 * @finish_flush: Clean up after flushing the DMA queues (for Falcon
 *	architecture)
 * @prepare_flr: Prepare for an FLR
 * @finish_flr: Clean up after an FLR
 * @describe_stats: Describe statistics for ethtool
 * @update_stats: Update statistics not provided by event handling.
 *	Either argument may be %NULL.
 * @start_stats: Start the regular fetching of statistics
 * @pull_stats: Pull stats from the NIC and wait until they arrive.
 * @stop_stats: Stop the regular fetching of statistics
 * @set_id_led: Set state of identifying LED or revert to automatic function
 * @push_irq_moderation: Apply interrupt moderation value
 * @reconfigure_port: Push loopback/power/txdis changes to the MAC and PHY
 * @prepare_enable_fc_tx: Prepare MAC to enable pause frame TX (may be %NULL)
 * @reconfigure_mac: Push MAC address, MTU, flow control and filter settings
 *	to the hardware.  Serialised by the mac_lock.
 * @check_mac_fault: Check MAC fault state. True if fault present.
 * @get_wol: Get WoL configuration from driver state
 * @set_wol: Push WoL configuration to the NIC
 * @resume_wol: Synchronise WoL state between driver and MC (e.g. after resume)
 * @test_chip: Test registers.  May use ef4_farch_test_registers(), and is
 *	expected to reset the NIC.
 * @test_nvram: Test validity of NVRAM contents
 * @irq_enable_master: Enable IRQs on the NIC.  Each event queue must
 *	be separately enabled after this.
 * @irq_test_generate: Generate a test IRQ
 * @irq_disable_non_ev: Disable non-event IRQs on the NIC.  Each event
 *	queue must be separately disabled before this.
 * @irq_handle_msi: Handle MSI for a channel.  The @dev_id argument is
 *	a pointer to the &struct ef4_msi_context for the channel.
 * @irq_handle_legacy: Handle legacy interrupt.  The @dev_id argument
 *	is a pointer to the &struct ef4_nic.
 * @tx_probe: Allocate resources for TX queue
 * @tx_init: Initialise TX queue on the NIC
 * @tx_remove: Free resources for TX queue
 * @tx_write: Write TX descriptors and doorbell
 * @rx_push_rss_config: Write RSS hash key and indirection table to the NIC
 * @rx_probe: Allocate resources for RX queue
 * @rx_init: Initialise RX queue on the NIC
 * @rx_remove: Free resources for RX queue
 * @rx_write: Write RX descriptors and doorbell
 * @rx_defer_refill: Generate a refill reminder event
 * @ev_probe: Allocate resources for event queue
 * @ev_init: Initialise event queue on the NIC
 * @ev_fini: Deinitialise event queue on the NIC
 * @ev_remove: Free resources for event queue
 * @ev_process: Process events for a queue, up to the given NAPI quota
 * @ev_read_ack: Acknowledge read events on a queue, rearming its IRQ
 * @ev_test_generate: Generate a test event
 * @filter_table_probe: Probe filter capabilities and set up filter software state
 * @filter_table_restore: Restore filters removed from hardware
 * @filter_table_remove: Remove filters from hardware and tear down software state
 * @filter_update_rx_scatter: Update filters after change to rx scatter setting
 * @filter_insert: add or replace a filter
 * @filter_remove_safe: remove a filter by ID, carefully
 * @filter_get_safe: retrieve a filter by ID, carefully
 * @filter_clear_rx: Remove all RX filters whose priority is less than or
 *	equal to the given priority and is not %EF4_FILTER_PRI_AUTO
 * @filter_count_rx_used: Get the number of filters in use at a given priority
 * @filter_get_rx_id_limit: Get maximum value of a filter id, plus 1
 * @filter_get_rx_ids: Get list of RX filters at a given priority
 * @filter_rfs_insert: Add or replace a filter for RFS.  This must be
 *	atomic.  The hardware change may be asynchronous but should
 *	not be delayed for long.  It may fail if this can't be done
 *	atomically.
 * @filter_rfs_expire_one: Consider expiring a filter inserted for RFS.
 *	This must check whether the specified table entry is used by RFS
 *	and that rps_may_expire_flow() returns true for it.
 * @mtd_probe: Probe and add MTD partitions associated with this net device,
 *	 using ef4_mtd_add()
 * @mtd_rename: Set an MTD partition name using the net device name
 * @mtd_read: Read from an MTD partition
 * @mtd_erase: Erase part of an MTD partition
 * @mtd_write: Write to an MTD partition
 * @mtd_sync: Wait for write-back to complete on MTD partition.  This
 *	also notifies the driver that a writer has finished using this
 *	partition.
 * @set_mac_address: Set the MAC address of the device
 * @revision: Hardware architecture revision
 * @txd_ptr_tbl_base: TX descriptor ring base address
 * @rxd_ptr_tbl_base: RX descriptor ring base address
 * @buf_tbl_base: Buffer table base address
 * @evq_ptr_tbl_base: Event queue pointer table base address
 * @evq_rptr_tbl_base: Event queue read-pointer table base address
 * @max_dma_mask: Maximum possible DMA mask
 * @rx_prefix_size: Size of RX prefix before packet data
 * @rx_hash_offset: Offset of RX flow hash within prefix
 * @rx_ts_offset: Offset of timestamp within prefix
 * @rx_buffer_padding: Size of padding at end of RX packet
 * @can_rx_scatter: NIC is able to scatter packets to multiple buffers
 * @always_rx_scatter: NIC will always scatter packets to multiple buffers
 * @max_interrupt_mode: Highest capability interrupt mode supported
 *	from &enum ef4_init_mode.
 * @timer_period_max: Maximum period of interrupt timer (in ticks)
 * @offload_features: net_device feature flags for protocol offload
 *	features implemented in hardware
 */
struct ef4_nic_type {};

/**************************************************************************
 *
 * Prototypes and inline functions
 *
 *************************************************************************/

static inline struct ef4_channel *
ef4_get_channel(struct ef4_nic *efx, unsigned index)
{}

/* Iterate over all used channels */
#define ef4_for_each_channel(_channel, _efx)

/* Iterate over all used channels in reverse */
#define ef4_for_each_channel_rev(_channel, _efx)

static inline struct ef4_tx_queue *
ef4_get_tx_queue(struct ef4_nic *efx, unsigned index, unsigned type)
{}

static inline bool ef4_channel_has_tx_queues(struct ef4_channel *channel)
{}

static inline struct ef4_tx_queue *
ef4_channel_get_tx_queue(struct ef4_channel *channel, unsigned type)
{}

static inline bool ef4_tx_queue_used(struct ef4_tx_queue *tx_queue)
{}

/* Iterate over all TX queues belonging to a channel */
#define ef4_for_each_channel_tx_queue(_tx_queue, _channel)

/* Iterate over all possible TX queues belonging to a channel */
#define ef4_for_each_possible_channel_tx_queue(_tx_queue, _channel)

static inline bool ef4_channel_has_rx_queue(struct ef4_channel *channel)
{}

static inline struct ef4_rx_queue *
ef4_channel_get_rx_queue(struct ef4_channel *channel)
{}

/* Iterate over all RX queues belonging to a channel */
#define ef4_for_each_channel_rx_queue(_rx_queue, _channel)

static inline struct ef4_channel *
ef4_rx_queue_channel(struct ef4_rx_queue *rx_queue)
{}

static inline int ef4_rx_queue_index(struct ef4_rx_queue *rx_queue)
{}

/* Returns a pointer to the specified receive buffer in the RX
 * descriptor queue.
 */
static inline struct ef4_rx_buffer *ef4_rx_buffer(struct ef4_rx_queue *rx_queue,
						  unsigned int index)
{}

/**
 * EF4_MAX_FRAME_LEN - calculate maximum frame length
 *
 * This calculates the maximum frame length that will be used for a
 * given MTU.  The frame length will be equal to the MTU plus a
 * constant amount of header space and padding.  This is the quantity
 * that the net driver will program into the MAC as the maximum frame
 * length.
 *
 * The 10G MAC requires 8-byte alignment on the frame
 * length, so we round up to the nearest 8.
 *
 * Re-clocking by the XGXS on RX can reduce an IPG to 32 bits (half an
 * XGMII cycle).  If the frame length reaches the maximum value in the
 * same cycle, the XMAC can miss the IPG altogether.  We work around
 * this by adding a further 16 bytes.
 */
#define EF4_FRAME_PAD
#define EF4_MAX_FRAME_LEN(mtu)

/* Get all supported features.
 * If a feature is not fixed, it is present in hw_features.
 * If a feature is fixed, it does not present in hw_features, but
 * always in features.
 */
static inline netdev_features_t ef4_supported_features(const struct ef4_nic *efx)
{}

/* Get the current TX queue insert index. */
static inline unsigned int
ef4_tx_queue_get_insert_index(const struct ef4_tx_queue *tx_queue)
{}

/* Get a TX buffer. */
static inline struct ef4_tx_buffer *
__ef4_tx_queue_get_insert_buffer(const struct ef4_tx_queue *tx_queue)
{}

/* Get a TX buffer, checking it's not currently in use. */
static inline struct ef4_tx_buffer *
ef4_tx_queue_get_insert_buffer(const struct ef4_tx_queue *tx_queue)
{}

#endif /* EF4_NET_DRIVER_H */