linux/drivers/net/ethernet/sfc/siena/io.h

/* SPDX-License-Identifier: GPL-2.0-only */
/****************************************************************************
 * Driver for Solarflare network controllers and boards
 * Copyright 2005-2006 Fen Systems Ltd.
 * Copyright 2006-2013 Solarflare Communications Inc.
 */

#ifndef EFX_IO_H
#define EFX_IO_H

#include <linux/io.h>
#include <linux/spinlock.h>

/**************************************************************************
 *
 * NIC register I/O
 *
 **************************************************************************
 *
 * Notes on locking strategy for the Falcon architecture:
 *
 * Many CSRs are very wide and cannot be read or written atomically.
 * Writes from the host are buffered by the Bus Interface Unit (BIU)
 * up to 128 bits.  Whenever the host writes part of such a register,
 * the BIU collects the written value and does not write to the
 * underlying register until all 4 dwords have been written.  A
 * similar buffering scheme applies to host access to the NIC's 64-bit
 * SRAM.
 *
 * Writes to different CSRs and 64-bit SRAM words must be serialised,
 * since interleaved access can result in lost writes.  We use
 * efx_nic::biu_lock for this.
 *
 * We also serialise reads from 128-bit CSRs and SRAM with the same
 * spinlock.  This may not be necessary, but it doesn't really matter
 * as there are no such reads on the fast path.
 *
 * The DMA descriptor pointers (RX_DESC_UPD and TX_DESC_UPD) are
 * 128-bit but are special-cased in the BIU to avoid the need for
 * locking in the host:
 *
 * - They are write-only.
 * - The semantics of writing to these registers are such that
 *   replacing the low 96 bits with zero does not affect functionality.
 * - If the host writes to the last dword address of such a register
 *   (i.e. the high 32 bits) the underlying register will always be
 *   written.  If the collector and the current write together do not
 *   provide values for all 128 bits of the register, the low 96 bits
 *   will be written as zero.
 * - If the host writes to the address of any other part of such a
 *   register while the collector already holds values for some other
 *   register, the write is discarded and the collector maintains its
 *   current state.
 *
 * The EF10 architecture exposes very few registers to the host and
 * most of them are only 32 bits wide.  The only exceptions are the MC
 * doorbell register pair, which has its own latching, and
 * TX_DESC_UPD, which works in a similar way to the Falcon
 * architecture.
 */

#if BITS_PER_LONG == 64
#define EFX_USE_QWORD_IO
#endif

/* Hardware issue requires that only 64-bit naturally aligned writes
 * are seen by hardware. Its not strictly necessary to restrict to
 * x86_64 arch, but done for safety since unusual write combining behaviour
 * can break PIO.
 */
#ifdef CONFIG_X86_64
/* PIO is a win only if write-combining is possible */
#ifdef ioremap_wc
#define EFX_USE_PIO
#endif
#endif

static inline u32 efx_reg(struct efx_nic *efx, unsigned int reg)
{}

#ifdef EFX_USE_QWORD_IO
static inline void _efx_writeq(struct efx_nic *efx, __le64 value,
				  unsigned int reg)
{}
static inline __le64 _efx_readq(struct efx_nic *efx, unsigned int reg)
{}
#endif

static inline void _efx_writed(struct efx_nic *efx, __le32 value,
				  unsigned int reg)
{}
static inline __le32 _efx_readd(struct efx_nic *efx, unsigned int reg)
{}

/* Write a normal 128-bit CSR, locking as appropriate. */
static inline void efx_writeo(struct efx_nic *efx, const efx_oword_t *value,
			      unsigned int reg)
{}

/* Write 64-bit SRAM through the supplied mapping, locking as appropriate. */
static inline void efx_sram_writeq(struct efx_nic *efx, void __iomem *membase,
				   const efx_qword_t *value, unsigned int index)
{}

/* Write a 32-bit CSR or the last dword of a special 128-bit CSR */
static inline void efx_writed(struct efx_nic *efx, const efx_dword_t *value,
			      unsigned int reg)
{}

/* Read a 128-bit CSR, locking as appropriate. */
static inline void efx_reado(struct efx_nic *efx, efx_oword_t *value,
			     unsigned int reg)
{}

/* Read 64-bit SRAM through the supplied mapping, locking as appropriate. */
static inline void efx_sram_readq(struct efx_nic *efx, void __iomem *membase,
				  efx_qword_t *value, unsigned int index)
{}

/* Read a 32-bit CSR or SRAM */
static inline void efx_readd(struct efx_nic *efx, efx_dword_t *value,
				unsigned int reg)
{}

/* Write a 128-bit CSR forming part of a table */
static inline void
efx_writeo_table(struct efx_nic *efx, const efx_oword_t *value,
		 unsigned int reg, unsigned int index)
{}

/* Read a 128-bit CSR forming part of a table */
static inline void efx_reado_table(struct efx_nic *efx, efx_oword_t *value,
				     unsigned int reg, unsigned int index)
{}

/* default VI stride (step between per-VI registers) is 8K on EF10 and
 * 64K on EF100
 */
#define EFX_DEFAULT_VI_STRIDE
#define EF100_DEFAULT_VI_STRIDE

/* Calculate offset to page-mapped register */
static inline unsigned int efx_paged_reg(struct efx_nic *efx, unsigned int page,
					 unsigned int reg)
{}

/* Write the whole of RX_DESC_UPD or TX_DESC_UPD */
static inline void _efx_writeo_page(struct efx_nic *efx, efx_oword_t *value,
				    unsigned int reg, unsigned int page)
{}
#define efx_writeo_page(efx, value, reg, page)

/* Write a page-mapped 32-bit CSR (EVQ_RPTR, EVQ_TMR (EF10), or the
 * high bits of RX_DESC_UPD or TX_DESC_UPD)
 */
static inline void
_efx_writed_page(struct efx_nic *efx, const efx_dword_t *value,
		 unsigned int reg, unsigned int page)
{}
#define efx_writed_page(efx, value, reg, page)

/* Write TIMER_COMMAND.  This is a page-mapped 32-bit CSR, but a bug
 * in the BIU means that writes to TIMER_COMMAND[0] invalidate the
 * collector register.
 */
static inline void _efx_writed_page_locked(struct efx_nic *efx,
					   const efx_dword_t *value,
					   unsigned int reg,
					   unsigned int page)
{}
#define efx_writed_page_locked(efx, value, reg, page)

#endif /* EFX_IO_H */