linux/drivers/net/ipa/gsi.c

// SPDX-License-Identifier: GPL-2.0

/* Copyright (c) 2015-2018, The Linux Foundation. All rights reserved.
 * Copyright (C) 2018-2024 Linaro Ltd.
 */

#include <linux/bits.h>
#include <linux/bug.h>
#include <linux/completion.h>
#include <linux/interrupt.h>
#include <linux/mutex.h>
#include <linux/netdevice.h>
#include <linux/platform_device.h>
#include <linux/types.h>

#include "gsi.h"
#include "gsi_private.h"
#include "gsi_reg.h"
#include "gsi_trans.h"
#include "ipa_data.h"
#include "ipa_gsi.h"
#include "ipa_version.h"
#include "reg.h"

/**
 * DOC: The IPA Generic Software Interface
 *
 * The generic software interface (GSI) is an integral component of the IPA,
 * providing a well-defined communication layer between the AP subsystem
 * and the IPA core.  The modem uses the GSI layer as well.
 *
 *	--------	     ---------
 *	|      |	     |	     |
 *	|  AP  +<---.	.----+ Modem |
 *	|      +--. |	| .->+	     |
 *	|      |  | |	| |  |	     |
 *	--------  | |	| |  ---------
 *		  v |	v |
 *		--+-+---+-+--
 *		|    GSI    |
 *		|-----------|
 *		|	    |
 *		|    IPA    |
 *		|	    |
 *		-------------
 *
 * In the above diagram, the AP and Modem represent "execution environments"
 * (EEs), which are independent operating environments that use the IPA for
 * data transfer.
 *
 * Each EE uses a set of unidirectional GSI "channels," which allow transfer
 * of data to or from the IPA.  A channel is implemented as a ring buffer,
 * with a DRAM-resident array of "transfer elements" (TREs) available to
 * describe transfers to or from other EEs through the IPA.  A transfer
 * element can also contain an immediate command, requesting the IPA perform
 * actions other than data transfer.
 *
 * Each TRE refers to a block of data--also located in DRAM.  After writing
 * one or more TREs to a channel, the writer (either the IPA or an EE) writes
 * a doorbell register to inform the receiving side how many elements have
 * been written.
 *
 * Each channel has a GSI "event ring" associated with it.  An event ring
 * is implemented very much like a channel ring, but is always directed from
 * the IPA to an EE.  The IPA notifies an EE (such as the AP) about channel
 * events by adding an entry to the event ring associated with the channel.
 * The GSI then writes its doorbell for the event ring, causing the target
 * EE to be interrupted.  Each entry in an event ring contains a pointer
 * to the channel TRE whose completion the event represents.
 *
 * Each TRE in a channel ring has a set of flags.  One flag indicates whether
 * the completion of the transfer operation generates an entry (and possibly
 * an interrupt) in the channel's event ring.  Other flags allow transfer
 * elements to be chained together, forming a single logical transaction.
 * TRE flags are used to control whether and when interrupts are generated
 * to signal completion of channel transfers.
 *
 * Elements in channel and event rings are completed (or consumed) strictly
 * in order.  Completion of one entry implies the completion of all preceding
 * entries.  A single completion interrupt can therefore communicate the
 * completion of many transfers.
 *
 * Note that all GSI registers are little-endian, which is the assumed
 * endianness of I/O space accesses.  The accessor functions perform byte
 * swapping if needed (i.e., for a big endian CPU).
 */

/* Delay period for interrupt moderation (in 32KHz IPA internal timer ticks) */
#define GSI_EVT_RING_INT_MODT

#define GSI_CMD_TIMEOUT

#define GSI_CHANNEL_STOP_RETRIES
#define GSI_CHANNEL_MODEM_HALT_RETRIES
#define GSI_CHANNEL_MODEM_FLOW_RETRIES

#define GSI_MHI_EVENT_ID_START
#define GSI_MHI_EVENT_ID_END

#define GSI_ISR_MAX_ITER

/* An entry in an event ring */
struct gsi_event {};

/** gsi_channel_scratch_gpi - GPI protocol scratch register
 * @max_outstanding_tre:
 *	Defines the maximum number of TREs allowed in a single transaction
 *	on a channel (in bytes).  This determines the amount of prefetch
 *	performed by the hardware.  We configure this to equal the size of
 *	the TLV FIFO for the channel.
 * @outstanding_threshold:
 *	Defines the threshold (in bytes) determining when the sequencer
 *	should update the channel doorbell.  We configure this to equal
 *	the size of two TREs.
 */
struct gsi_channel_scratch_gpi {};

/** gsi_channel_scratch - channel scratch configuration area
 *
 * The exact interpretation of this register is protocol-specific.
 * We only use GPI channels; see struct gsi_channel_scratch_gpi, above.
 */
gsi_channel_scratch;

/* Check things that can be validated at build time. */
static void gsi_validate_build(void)
{}

/* Return the channel id associated with a given channel */
static u32 gsi_channel_id(struct gsi_channel *channel)
{}

/* An initialized channel has a non-null GSI pointer */
static bool gsi_channel_initialized(struct gsi_channel *channel)
{}

/* Encode the channel protocol for the CH_C_CNTXT_0 register */
static u32 ch_c_cntxt_0_type_encode(enum ipa_version version,
				    const struct reg *reg,
				    enum gsi_channel_type type)
{}

/* Update the GSI IRQ type register with the cached value */
static void gsi_irq_type_update(struct gsi *gsi, u32 val)
{}

static void gsi_irq_type_enable(struct gsi *gsi, enum gsi_irq_type_id type_id)
{}

static void gsi_irq_type_disable(struct gsi *gsi, enum gsi_irq_type_id type_id)
{}

/* Event ring commands are performed one at a time.  Their completion
 * is signaled by the event ring control GSI interrupt type, which is
 * only enabled when we issue an event ring command.  Only the event
 * ring being operated on has this interrupt enabled.
 */
static void gsi_irq_ev_ctrl_enable(struct gsi *gsi, u32 evt_ring_id)
{}

/* Disable event ring control interrupts */
static void gsi_irq_ev_ctrl_disable(struct gsi *gsi)
{}

/* Channel commands are performed one at a time.  Their completion is
 * signaled by the channel control GSI interrupt type, which is only
 * enabled when we issue a channel command.  Only the channel being
 * operated on has this interrupt enabled.
 */
static void gsi_irq_ch_ctrl_enable(struct gsi *gsi, u32 channel_id)
{}

/* Disable channel control interrupts */
static void gsi_irq_ch_ctrl_disable(struct gsi *gsi)
{}

static void gsi_irq_ieob_enable_one(struct gsi *gsi, u32 evt_ring_id)
{}

static void gsi_irq_ieob_disable(struct gsi *gsi, u32 event_mask)
{}

static void gsi_irq_ieob_disable_one(struct gsi *gsi, u32 evt_ring_id)
{}

/* Enable all GSI_interrupt types */
static void gsi_irq_enable(struct gsi *gsi)
{}

/* Disable all GSI interrupt types */
static void gsi_irq_disable(struct gsi *gsi)
{}

/* Return the virtual address associated with a ring index */
void *gsi_ring_virt(struct gsi_ring *ring, u32 index)
{}

/* Return the 32-bit DMA address associated with a ring index */
static u32 gsi_ring_addr(struct gsi_ring *ring, u32 index)
{}

/* Return the ring index of a 32-bit ring offset */
static u32 gsi_ring_index(struct gsi_ring *ring, u32 offset)
{}

/* Issue a GSI command by writing a value to a register, then wait for
 * completion to be signaled.  Returns true if the command completes
 * or false if it times out.
 */
static bool gsi_command(struct gsi *gsi, u32 reg, u32 val)
{}

/* Return the hardware's notion of the current state of an event ring */
static enum gsi_evt_ring_state
gsi_evt_ring_state(struct gsi *gsi, u32 evt_ring_id)
{}

/* Issue an event ring command and wait for it to complete */
static void gsi_evt_ring_command(struct gsi *gsi, u32 evt_ring_id,
				 enum gsi_evt_cmd_opcode opcode)
{}

/* Allocate an event ring in NOT_ALLOCATED state */
static int gsi_evt_ring_alloc_command(struct gsi *gsi, u32 evt_ring_id)
{}

/* Reset a GSI event ring in ALLOCATED or ERROR state. */
static void gsi_evt_ring_reset_command(struct gsi *gsi, u32 evt_ring_id)
{}

/* Issue a hardware de-allocation request for an allocated event ring */
static void gsi_evt_ring_de_alloc_command(struct gsi *gsi, u32 evt_ring_id)
{}

/* Fetch the current state of a channel from hardware */
static enum gsi_channel_state gsi_channel_state(struct gsi_channel *channel)
{}

/* Issue a channel command and wait for it to complete */
static void
gsi_channel_command(struct gsi_channel *channel, enum gsi_ch_cmd_opcode opcode)
{}

/* Allocate GSI channel in NOT_ALLOCATED state */
static int gsi_channel_alloc_command(struct gsi *gsi, u32 channel_id)
{}

/* Start an ALLOCATED channel */
static int gsi_channel_start_command(struct gsi_channel *channel)
{}

/* Stop a GSI channel in STARTED state */
static int gsi_channel_stop_command(struct gsi_channel *channel)
{}

/* Reset a GSI channel in ALLOCATED or ERROR state. */
static void gsi_channel_reset_command(struct gsi_channel *channel)
{}

/* Deallocate an ALLOCATED GSI channel */
static void gsi_channel_de_alloc_command(struct gsi *gsi, u32 channel_id)
{}

/* Ring an event ring doorbell, reporting the last entry processed by the AP.
 * The index argument (modulo the ring count) is the first unfilled entry, so
 * we supply one less than that with the doorbell.  Update the event ring
 * index field with the value provided.
 */
static void gsi_evt_ring_doorbell(struct gsi *gsi, u32 evt_ring_id, u32 index)
{}

/* Program an event ring for use */
static void gsi_evt_ring_program(struct gsi *gsi, u32 evt_ring_id)
{}

/* Find the transaction whose completion indicates a channel is quiesced */
static struct gsi_trans *gsi_channel_trans_last(struct gsi_channel *channel)
{}

/* Wait for transaction activity on a channel to complete */
static void gsi_channel_trans_quiesce(struct gsi_channel *channel)
{}

/* Program a channel for use; there is no gsi_channel_deprogram() */
static void gsi_channel_program(struct gsi_channel *channel, bool doorbell)
{}

static int __gsi_channel_start(struct gsi_channel *channel, bool resume)
{}

/* Start an allocated GSI channel */
int gsi_channel_start(struct gsi *gsi, u32 channel_id)
{}

static int gsi_channel_stop_retry(struct gsi_channel *channel)
{}

static int __gsi_channel_stop(struct gsi_channel *channel, bool suspend)
{}

/* Stop a started channel */
int gsi_channel_stop(struct gsi *gsi, u32 channel_id)
{}

/* Reset and reconfigure a channel, (possibly) enabling the doorbell engine */
void gsi_channel_reset(struct gsi *gsi, u32 channel_id, bool doorbell)
{}

/* Stop a started channel for suspend */
int gsi_channel_suspend(struct gsi *gsi, u32 channel_id)
{}

/* Resume a suspended channel (starting if stopped) */
int gsi_channel_resume(struct gsi *gsi, u32 channel_id)
{}

/* Prevent all GSI interrupts while suspended */
void gsi_suspend(struct gsi *gsi)
{}

/* Allow all GSI interrupts again when resuming */
void gsi_resume(struct gsi *gsi)
{}

void gsi_trans_tx_committed(struct gsi_trans *trans)
{}

void gsi_trans_tx_queued(struct gsi_trans *trans)
{}

/**
 * gsi_trans_tx_completed() - Report completed TX transactions
 * @trans:	TX channel transaction that has completed
 *
 * Report that a transaction on a TX channel has completed.  At the time a
 * transaction is committed, we record *in the transaction* its channel's
 * committed transaction and byte counts.  Transactions are completed in
 * order, and the difference between the channel's byte/transaction count
 * when the transaction was committed and when it completes tells us
 * exactly how much data has been transferred while the transaction was
 * pending.
 *
 * We report this information to the network stack, which uses it to manage
 * the rate at which data is sent to hardware.
 */
static void gsi_trans_tx_completed(struct gsi_trans *trans)
{}

/* Channel control interrupt handler */
static void gsi_isr_chan_ctrl(struct gsi *gsi)
{}

/* Event ring control interrupt handler */
static void gsi_isr_evt_ctrl(struct gsi *gsi)
{}

/* Global channel error interrupt handler */
static void
gsi_isr_glob_chan_err(struct gsi *gsi, u32 err_ee, u32 channel_id, u32 code)
{}

/* Global event error interrupt handler */
static void
gsi_isr_glob_evt_err(struct gsi *gsi, u32 err_ee, u32 evt_ring_id, u32 code)
{}

/* Global error interrupt handler */
static void gsi_isr_glob_err(struct gsi *gsi)
{}

/* Generic EE interrupt handler */
static void gsi_isr_gp_int1(struct gsi *gsi)
{}

/* Inter-EE interrupt handler */
static void gsi_isr_glob_ee(struct gsi *gsi)
{}

/* I/O completion interrupt event */
static void gsi_isr_ieob(struct gsi *gsi)
{}

/* General event interrupts represent serious problems, so report them */
static void gsi_isr_general(struct gsi *gsi)
{}

/**
 * gsi_isr() - Top level GSI interrupt service routine
 * @irq:	Interrupt number (ignored)
 * @dev_id:	GSI pointer supplied to request_irq()
 *
 * This is the main handler function registered for the GSI IRQ. Each type
 * of interrupt has a separate handler function that is called from here.
 */
static irqreturn_t gsi_isr(int irq, void *dev_id)
{}

/* Init function for GSI IRQ lookup; there is no gsi_irq_exit() */
static int gsi_irq_init(struct gsi *gsi, struct platform_device *pdev)
{}

/* Return the transaction associated with a transfer completion event */
static struct gsi_trans *
gsi_event_trans(struct gsi *gsi, struct gsi_event *event)
{}

/**
 * gsi_evt_ring_update() - Update transaction state from hardware
 * @gsi:		GSI pointer
 * @evt_ring_id:	Event ring ID
 * @index:		Event index in ring reported by hardware
 *
 * Events for RX channels contain the actual number of bytes received into
 * the buffer.  Every event has a transaction associated with it, and here
 * we update transactions to record their actual received lengths.
 *
 * When an event for a TX channel arrives we use information in the
 * transaction to report the number of requests and bytes that have
 * been transferred.
 *
 * This function is called whenever we learn that the GSI hardware has filled
 * new events since the last time we checked.  The ring's index field tells
 * the first entry in need of processing.  The index provided is the
 * first *unfilled* event in the ring (following the last filled one).
 *
 * Events are sequential within the event ring, and transactions are
 * sequential within the transaction array.
 *
 * Note that @index always refers to an element *within* the event ring.
 */
static void gsi_evt_ring_update(struct gsi *gsi, u32 evt_ring_id, u32 index)
{}

/* Initialize a ring, including allocating DMA memory for its entries */
static int gsi_ring_alloc(struct gsi *gsi, struct gsi_ring *ring, u32 count)
{}

/* Free a previously-allocated ring */
static void gsi_ring_free(struct gsi *gsi, struct gsi_ring *ring)
{}

/* Allocate an available event ring id */
static int gsi_evt_ring_id_alloc(struct gsi *gsi)
{}

/* Free a previously-allocated event ring id */
static void gsi_evt_ring_id_free(struct gsi *gsi, u32 evt_ring_id)
{}

/* Ring a channel doorbell, reporting the first un-filled entry */
void gsi_channel_doorbell(struct gsi_channel *channel)
{}

/* Consult hardware, move newly completed transactions to completed state */
void gsi_channel_update(struct gsi_channel *channel)
{}

/**
 * gsi_channel_poll_one() - Return a single completed transaction on a channel
 * @channel:	Channel to be polled
 *
 * Return:	Transaction pointer, or null if none are available
 *
 * This function returns the first of a channel's completed transactions.
 * If no transactions are in completed state, the hardware is consulted to
 * determine whether any new transactions have completed.  If so, they're
 * moved to completed state and the first such transaction is returned.
 * If there are no more completed transactions, a null pointer is returned.
 */
static struct gsi_trans *gsi_channel_poll_one(struct gsi_channel *channel)
{}

/**
 * gsi_channel_poll() - NAPI poll function for a channel
 * @napi:	NAPI structure for the channel
 * @budget:	Budget supplied by NAPI core
 *
 * Return:	Number of items polled (<= budget)
 *
 * Single transactions completed by hardware are polled until either
 * the budget is exhausted, or there are no more.  Each transaction
 * polled is passed to gsi_trans_complete(), to perform remaining
 * completion processing and retire/free the transaction.
 */
static int gsi_channel_poll(struct napi_struct *napi, int budget)
{}

/* The event bitmap represents which event ids are available for allocation.
 * Set bits are not available, clear bits can be used.  This function
 * initializes the map so all events supported by the hardware are available,
 * then precludes any reserved events from being allocated.
 */
static u32 gsi_event_bitmap_init(u32 evt_ring_max)
{}

/* Setup function for a single channel */
static int gsi_channel_setup_one(struct gsi *gsi, u32 channel_id)
{}

/* Inverse of gsi_channel_setup_one() */
static void gsi_channel_teardown_one(struct gsi *gsi, u32 channel_id)
{}

/* We use generic commands only to operate on modem channels.  We don't have
 * the ability to determine channel state for a modem channel, so we simply
 * issue the command and wait for it to complete.
 */
static int gsi_generic_command(struct gsi *gsi, u32 channel_id,
			       enum gsi_generic_cmd_opcode opcode,
			       u8 params)
{}

static int gsi_modem_channel_alloc(struct gsi *gsi, u32 channel_id)
{}

static void gsi_modem_channel_halt(struct gsi *gsi, u32 channel_id)
{}

/* Enable or disable flow control for a modem GSI TX channel (IPA v4.2+) */
void
gsi_modem_channel_flow_control(struct gsi *gsi, u32 channel_id, bool enable)
{}

/* Setup function for channels */
static int gsi_channel_setup(struct gsi *gsi)
{}

/* Inverse of gsi_channel_setup() */
static void gsi_channel_teardown(struct gsi *gsi)
{}

/* Turn off all GSI interrupts initially */
static int gsi_irq_setup(struct gsi *gsi)
{}

static void gsi_irq_teardown(struct gsi *gsi)
{}

/* Get # supported channel and event rings; there is no gsi_ring_teardown() */
static int gsi_ring_setup(struct gsi *gsi)
{}

/* Setup function for GSI.  GSI firmware must be loaded and initialized */
int gsi_setup(struct gsi *gsi)
{}

/* Inverse of gsi_setup() */
void gsi_teardown(struct gsi *gsi)
{}

/* Initialize a channel's event ring */
static int gsi_channel_evt_ring_init(struct gsi_channel *channel)
{}

/* Inverse of gsi_channel_evt_ring_init() */
static void gsi_channel_evt_ring_exit(struct gsi_channel *channel)
{}

static bool gsi_channel_data_valid(struct gsi *gsi, bool command,
				   const struct ipa_gsi_endpoint_data *data)
{}

/* Init function for a single channel */
static int gsi_channel_init_one(struct gsi *gsi,
				const struct ipa_gsi_endpoint_data *data,
				bool command)
{}

/* Inverse of gsi_channel_init_one() */
static void gsi_channel_exit_one(struct gsi_channel *channel)
{}

/* Init function for channels */
static int gsi_channel_init(struct gsi *gsi, u32 count,
			    const struct ipa_gsi_endpoint_data *data)
{}

/* Inverse of gsi_channel_init() */
static void gsi_channel_exit(struct gsi *gsi)
{}

/* Init function for GSI.  GSI hardware does not need to be "ready" */
int gsi_init(struct gsi *gsi, struct platform_device *pdev,
	     enum ipa_version version, u32 count,
	     const struct ipa_gsi_endpoint_data *data)
{}

/* Inverse of gsi_init() */
void gsi_exit(struct gsi *gsi)
{}

/* The maximum number of outstanding TREs on a channel.  This limits
 * a channel's maximum number of transactions outstanding (worst case
 * is one TRE per transaction).
 *
 * The absolute limit is the number of TREs in the channel's TRE ring,
 * and in theory we should be able use all of them.  But in practice,
 * doing that led to the hardware reporting exhaustion of event ring
 * slots for writing completion information.  So the hardware limit
 * would be (tre_count - 1).
 *
 * We reduce it a bit further though.  Transaction resource pools are
 * sized to be a little larger than this maximum, to allow resource
 * allocations to always be contiguous.  The number of entries in a
 * TRE ring buffer is a power of 2, and the extra resources in a pool
 * tends to nearly double the memory allocated for it.  Reducing the
 * maximum number of outstanding TREs allows the number of entries in
 * a pool to avoid crossing that power-of-2 boundary, and this can
 * substantially reduce pool memory requirements.  The number we
 * reduce it by matches the number added in gsi_trans_pool_init().
 */
u32 gsi_channel_tre_max(struct gsi *gsi, u32 channel_id)
{}