linux/drivers/media/rc/rc-ir-raw.c

// SPDX-License-Identifier: GPL-2.0
// rc-ir-raw.c - handle IR pulse/space events
//
// Copyright (C) 2010 by Mauro Carvalho Chehab

#include <linux/export.h>
#include <linux/kthread.h>
#include <linux/mutex.h>
#include <linux/kmod.h>
#include <linux/sched.h>
#include "rc-core-priv.h"

/* Used to keep track of IR raw clients, protected by ir_raw_handler_lock */
static LIST_HEAD(ir_raw_client_list);

/* Used to handle IR raw handler extensions */
DEFINE_MUTEX();
static LIST_HEAD(ir_raw_handler_list);
static atomic64_t available_protocols =;

static int ir_raw_event_thread(void *data)
{}

/**
 * ir_raw_event_store() - pass a pulse/space duration to the raw ir decoders
 * @dev:	the struct rc_dev device descriptor
 * @ev:		the struct ir_raw_event descriptor of the pulse/space
 *
 * This routine (which may be called from an interrupt context) stores a
 * pulse/space duration for the raw ir decoding state machines. Pulses are
 * signalled as positive values and spaces as negative values. A zero value
 * will reset the decoding state machines.
 */
int ir_raw_event_store(struct rc_dev *dev, struct ir_raw_event *ev)
{}
EXPORT_SYMBOL_GPL();

/**
 * ir_raw_event_store_edge() - notify raw ir decoders of the start of a pulse/space
 * @dev:	the struct rc_dev device descriptor
 * @pulse:	true for pulse, false for space
 *
 * This routine (which may be called from an interrupt context) is used to
 * store the beginning of an ir pulse or space (or the start/end of ir
 * reception) for the raw ir decoding state machines. This is used by
 * hardware which does not provide durations directly but only interrupts
 * (or similar events) on state change.
 */
int ir_raw_event_store_edge(struct rc_dev *dev, bool pulse)
{}
EXPORT_SYMBOL_GPL();

/*
 * ir_raw_event_store_with_timeout() - pass a pulse/space duration to the raw
 *				       ir decoders, schedule decoding and
 *				       timeout
 * @dev:	the struct rc_dev device descriptor
 * @ev:		the struct ir_raw_event descriptor of the pulse/space
 *
 * This routine (which may be called from an interrupt context) stores a
 * pulse/space duration for the raw ir decoding state machines, schedules
 * decoding and generates a timeout.
 */
int ir_raw_event_store_with_timeout(struct rc_dev *dev, struct ir_raw_event *ev)
{}
EXPORT_SYMBOL_GPL();

/**
 * ir_raw_event_store_with_filter() - pass next pulse/space to decoders with some processing
 * @dev:	the struct rc_dev device descriptor
 * @ev:		the event that has occurred
 *
 * This routine (which may be called from an interrupt context) works
 * in similar manner to ir_raw_event_store_edge.
 * This routine is intended for devices with limited internal buffer
 * It automerges samples of same type, and handles timeouts. Returns non-zero
 * if the event was added, and zero if the event was ignored due to idle
 * processing.
 */
int ir_raw_event_store_with_filter(struct rc_dev *dev, struct ir_raw_event *ev)
{}
EXPORT_SYMBOL_GPL();

/**
 * ir_raw_event_set_idle() - provide hint to rc-core when the device is idle or not
 * @dev:	the struct rc_dev device descriptor
 * @idle:	whether the device is idle or not
 */
void ir_raw_event_set_idle(struct rc_dev *dev, bool idle)
{}
EXPORT_SYMBOL_GPL();

/**
 * ir_raw_event_handle() - schedules the decoding of stored ir data
 * @dev:	the struct rc_dev device descriptor
 *
 * This routine will tell rc-core to start decoding stored ir data.
 */
void ir_raw_event_handle(struct rc_dev *dev)
{}
EXPORT_SYMBOL_GPL();

/* used internally by the sysfs interface */
u64
ir_raw_get_allowed_protocols(void)
{}

static int change_protocol(struct rc_dev *dev, u64 *rc_proto)
{}

static void ir_raw_disable_protocols(struct rc_dev *dev, u64 protocols)
{}

/**
 * ir_raw_gen_manchester() - Encode data with Manchester (bi-phase) modulation.
 * @ev:		Pointer to pointer to next free event. *@ev is incremented for
 *		each raw event filled.
 * @max:	Maximum number of raw events to fill.
 * @timings:	Manchester modulation timings.
 * @n:		Number of bits of data.
 * @data:	Data bits to encode.
 *
 * Encodes the @n least significant bits of @data using Manchester (bi-phase)
 * modulation with the timing characteristics described by @timings, writing up
 * to @max raw IR events using the *@ev pointer.
 *
 * Returns:	0 on success.
 *		-ENOBUFS if there isn't enough space in the array to fit the
 *		full encoded data. In this case all @max events will have been
 *		written.
 */
int ir_raw_gen_manchester(struct ir_raw_event **ev, unsigned int max,
			  const struct ir_raw_timings_manchester *timings,
			  unsigned int n, u64 data)
{}
EXPORT_SYMBOL();

/**
 * ir_raw_gen_pd() - Encode data to raw events with pulse-distance modulation.
 * @ev:		Pointer to pointer to next free event. *@ev is incremented for
 *		each raw event filled.
 * @max:	Maximum number of raw events to fill.
 * @timings:	Pulse distance modulation timings.
 * @n:		Number of bits of data.
 * @data:	Data bits to encode.
 *
 * Encodes the @n least significant bits of @data using pulse-distance
 * modulation with the timing characteristics described by @timings, writing up
 * to @max raw IR events using the *@ev pointer.
 *
 * Returns:	0 on success.
 *		-ENOBUFS if there isn't enough space in the array to fit the
 *		full encoded data. In this case all @max events will have been
 *		written.
 */
int ir_raw_gen_pd(struct ir_raw_event **ev, unsigned int max,
		  const struct ir_raw_timings_pd *timings,
		  unsigned int n, u64 data)
{}
EXPORT_SYMBOL();

/**
 * ir_raw_gen_pl() - Encode data to raw events with pulse-length modulation.
 * @ev:		Pointer to pointer to next free event. *@ev is incremented for
 *		each raw event filled.
 * @max:	Maximum number of raw events to fill.
 * @timings:	Pulse distance modulation timings.
 * @n:		Number of bits of data.
 * @data:	Data bits to encode.
 *
 * Encodes the @n least significant bits of @data using space-distance
 * modulation with the timing characteristics described by @timings, writing up
 * to @max raw IR events using the *@ev pointer.
 *
 * Returns:	0 on success.
 *		-ENOBUFS if there isn't enough space in the array to fit the
 *		full encoded data. In this case all @max events will have been
 *		written.
 */
int ir_raw_gen_pl(struct ir_raw_event **ev, unsigned int max,
		  const struct ir_raw_timings_pl *timings,
		  unsigned int n, u64 data)
{}
EXPORT_SYMBOL();

/**
 * ir_raw_encode_scancode() - Encode a scancode as raw events
 *
 * @protocol:		protocol
 * @scancode:		scancode filter describing a single scancode
 * @events:		array of raw events to write into
 * @max:		max number of raw events
 *
 * Attempts to encode the scancode as raw events.
 *
 * Returns:	The number of events written.
 *		-ENOBUFS if there isn't enough space in the array to fit the
 *		encoding. In this case all @max events will have been written.
 *		-EINVAL if the scancode is ambiguous or invalid, or if no
 *		compatible encoder was found.
 */
int ir_raw_encode_scancode(enum rc_proto protocol, u32 scancode,
			   struct ir_raw_event *events, unsigned int max)
{}
EXPORT_SYMBOL();

/**
 * ir_raw_edge_handle() - Handle ir_raw_event_store_edge() processing
 *
 * @t:		timer_list
 *
 * This callback is armed by ir_raw_event_store_edge(). It does two things:
 * first of all, rather than calling ir_raw_event_handle() for each
 * edge and waking up the rc thread, 15 ms after the first edge
 * ir_raw_event_handle() is called. Secondly, generate a timeout event
 * no more IR is received after the rc_dev timeout.
 */
static void ir_raw_edge_handle(struct timer_list *t)
{}

/**
 * ir_raw_encode_carrier() - Get carrier used for protocol
 *
 * @protocol:		protocol
 *
 * Attempts to find the carrier for the specified protocol
 *
 * Returns:	The carrier in Hz
 *		-EINVAL if the protocol is invalid, or if no
 *		compatible encoder was found.
 */
int ir_raw_encode_carrier(enum rc_proto protocol)
{}
EXPORT_SYMBOL();

/*
 * Used to (un)register raw event clients
 */
int ir_raw_event_prepare(struct rc_dev *dev)
{}

int ir_raw_event_register(struct rc_dev *dev)
{}

void ir_raw_event_free(struct rc_dev *dev)
{}

void ir_raw_event_unregister(struct rc_dev *dev)
{}

/*
 * Extension interface - used to register the IR decoders
 */

int ir_raw_handler_register(struct ir_raw_handler *ir_raw_handler)
{}
EXPORT_SYMBOL();

void ir_raw_handler_unregister(struct ir_raw_handler *ir_raw_handler)
{}
EXPORT_SYMBOL();