linux/drivers/md/bcache/btree.h

/* SPDX-License-Identifier: GPL-2.0 */
#ifndef _BCACHE_BTREE_H
#define _BCACHE_BTREE_H

/*
 * THE BTREE:
 *
 * At a high level, bcache's btree is relatively standard b+ tree. All keys and
 * pointers are in the leaves; interior nodes only have pointers to the child
 * nodes.
 *
 * In the interior nodes, a struct bkey always points to a child btree node, and
 * the key is the highest key in the child node - except that the highest key in
 * an interior node is always MAX_KEY. The size field refers to the size on disk
 * of the child node - this would allow us to have variable sized btree nodes
 * (handy for keeping the depth of the btree 1 by expanding just the root).
 *
 * Btree nodes are themselves log structured, but this is hidden fairly
 * thoroughly. Btree nodes on disk will in practice have extents that overlap
 * (because they were written at different times), but in memory we never have
 * overlapping extents - when we read in a btree node from disk, the first thing
 * we do is resort all the sets of keys with a mergesort, and in the same pass
 * we check for overlapping extents and adjust them appropriately.
 *
 * struct btree_op is a central interface to the btree code. It's used for
 * specifying read vs. write locking, and the embedded closure is used for
 * waiting on IO or reserve memory.
 *
 * BTREE CACHE:
 *
 * Btree nodes are cached in memory; traversing the btree might require reading
 * in btree nodes which is handled mostly transparently.
 *
 * bch_btree_node_get() looks up a btree node in the cache and reads it in from
 * disk if necessary. This function is almost never called directly though - the
 * btree() macro is used to get a btree node, call some function on it, and
 * unlock the node after the function returns.
 *
 * The root is special cased - it's taken out of the cache's lru (thus pinning
 * it in memory), so we can find the root of the btree by just dereferencing a
 * pointer instead of looking it up in the cache. This makes locking a bit
 * tricky, since the root pointer is protected by the lock in the btree node it
 * points to - the btree_root() macro handles this.
 *
 * In various places we must be able to allocate memory for multiple btree nodes
 * in order to make forward progress. To do this we use the btree cache itself
 * as a reserve; if __get_free_pages() fails, we'll find a node in the btree
 * cache we can reuse. We can't allow more than one thread to be doing this at a
 * time, so there's a lock, implemented by a pointer to the btree_op closure -
 * this allows the btree_root() macro to implicitly release this lock.
 *
 * BTREE IO:
 *
 * Btree nodes never have to be explicitly read in; bch_btree_node_get() handles
 * this.
 *
 * For writing, we have two btree_write structs embeddded in struct btree - one
 * write in flight, and one being set up, and we toggle between them.
 *
 * Writing is done with a single function -  bch_btree_write() really serves two
 * different purposes and should be broken up into two different functions. When
 * passing now = false, it merely indicates that the node is now dirty - calling
 * it ensures that the dirty keys will be written at some point in the future.
 *
 * When passing now = true, bch_btree_write() causes a write to happen
 * "immediately" (if there was already a write in flight, it'll cause the write
 * to happen as soon as the previous write completes). It returns immediately
 * though - but it takes a refcount on the closure in struct btree_op you passed
 * to it, so a closure_sync() later can be used to wait for the write to
 * complete.
 *
 * This is handy because btree_split() and garbage collection can issue writes
 * in parallel, reducing the amount of time they have to hold write locks.
 *
 * LOCKING:
 *
 * When traversing the btree, we may need write locks starting at some level -
 * inserting a key into the btree will typically only require a write lock on
 * the leaf node.
 *
 * This is specified with the lock field in struct btree_op; lock = 0 means we
 * take write locks at level <= 0, i.e. only leaf nodes. bch_btree_node_get()
 * checks this field and returns the node with the appropriate lock held.
 *
 * If, after traversing the btree, the insertion code discovers it has to split
 * then it must restart from the root and take new locks - to do this it changes
 * the lock field and returns -EINTR, which causes the btree_root() macro to
 * loop.
 *
 * Handling cache misses require a different mechanism for upgrading to a write
 * lock. We do cache lookups with only a read lock held, but if we get a cache
 * miss and we wish to insert this data into the cache, we have to insert a
 * placeholder key to detect races - otherwise, we could race with a write and
 * overwrite the data that was just written to the cache with stale data from
 * the backing device.
 *
 * For this we use a sequence number that write locks and unlocks increment - to
 * insert the check key it unlocks the btree node and then takes a write lock,
 * and fails if the sequence number doesn't match.
 */

#include "bset.h"
#include "debug.h"

struct btree_write {};

struct btree {};




#define BTREE_FLAG(flag)

enum btree_flags {};

BTREE_FLAG(io_error);
BTREE_FLAG(dirty);
BTREE_FLAG(write_idx);
BTREE_FLAG(journal_flush);

static inline struct btree_write *btree_current_write(struct btree *b)
{}

static inline struct btree_write *btree_prev_write(struct btree *b)
{}

static inline struct bset *btree_bset_first(struct btree *b)
{}

static inline struct bset *btree_bset_last(struct btree *b)
{}

static inline unsigned int bset_block_offset(struct btree *b, struct bset *i)
{}

static inline void set_gc_sectors(struct cache_set *c)
{}

void bkey_put(struct cache_set *c, struct bkey *k);

/* Looping macros */

#define for_each_cached_btree(b, c, iter)

/* Recursing down the btree */

struct btree_op {};

struct btree_check_state;
struct btree_check_info {};

#define BCH_BTR_CHKTHREAD_MAX
struct btree_check_state {};

static inline void bch_btree_op_init(struct btree_op *op, int write_lock_level)
{}

static inline void rw_lock(bool w, struct btree *b, int level)
{}

static inline void rw_unlock(bool w, struct btree *b)
{}

void bch_btree_node_read_done(struct btree *b);
void __bch_btree_node_write(struct btree *b, struct closure *parent);
void bch_btree_node_write(struct btree *b, struct closure *parent);

void bch_btree_set_root(struct btree *b);
struct btree *__bch_btree_node_alloc(struct cache_set *c, struct btree_op *op,
				     int level, bool wait,
				     struct btree *parent);
struct btree *bch_btree_node_get(struct cache_set *c, struct btree_op *op,
				 struct bkey *k, int level, bool write,
				 struct btree *parent);

int bch_btree_insert_check_key(struct btree *b, struct btree_op *op,
			       struct bkey *check_key);
int bch_btree_insert(struct cache_set *c, struct keylist *keys,
		     atomic_t *journal_ref, struct bkey *replace_key);

int bch_gc_thread_start(struct cache_set *c);
void bch_initial_gc_finish(struct cache_set *c);
void bch_moving_gc(struct cache_set *c);
int bch_btree_check(struct cache_set *c);
void bch_initial_mark_key(struct cache_set *c, int level, struct bkey *k);
void bch_cannibalize_unlock(struct cache_set *c);

static inline void wake_up_gc(struct cache_set *c)
{}

static inline void force_wake_up_gc(struct cache_set *c)
{}

/*
 * These macros are for recursing down the btree - they handle the details of
 * locking and looking up nodes in the cache for you. They're best treated as
 * mere syntax when reading code that uses them.
 *
 * op->lock determines whether we take a read or a write lock at a given depth.
 * If you've got a read lock and find that you need a write lock (i.e. you're
 * going to have to split), set op->lock and return -EINTR; btree_root() will
 * call you again and you'll have the correct lock.
 */

/**
 * btree - recurse down the btree on a specified key
 * @fn:		function to call, which will be passed the child node
 * @key:	key to recurse on
 * @b:		parent btree node
 * @op:		pointer to struct btree_op
 */
#define bcache_btree(fn, key, b, op, ...)

/**
 * btree_root - call a function on the root of the btree
 * @fn:		function to call, which will be passed the child node
 * @c:		cache set
 * @op:		pointer to struct btree_op
 */
#define bcache_btree_root(fn, c, op, ...)

#define MAP_DONE
#define MAP_CONTINUE

#define MAP_ALL_NODES
#define MAP_LEAF_NODES

#define MAP_END_KEY

btree_map_nodes_fn;
int __bch_btree_map_nodes(struct btree_op *op, struct cache_set *c,
			  struct bkey *from, btree_map_nodes_fn *fn, int flags);

static inline int bch_btree_map_nodes(struct btree_op *op, struct cache_set *c,
				      struct bkey *from, btree_map_nodes_fn *fn)
{}

static inline int bch_btree_map_leaf_nodes(struct btree_op *op,
					   struct cache_set *c,
					   struct bkey *from,
					   btree_map_nodes_fn *fn)
{}

btree_map_keys_fn;
int bch_btree_map_keys(struct btree_op *op, struct cache_set *c,
		       struct bkey *from, btree_map_keys_fn *fn, int flags);
int bch_btree_map_keys_recurse(struct btree *b, struct btree_op *op,
			       struct bkey *from, btree_map_keys_fn *fn,
			       int flags);

keybuf_pred_fn;

void bch_keybuf_init(struct keybuf *buf);
void bch_refill_keybuf(struct cache_set *c, struct keybuf *buf,
		       struct bkey *end, keybuf_pred_fn *pred);
bool bch_keybuf_check_overlapping(struct keybuf *buf, struct bkey *start,
				  struct bkey *end);
void bch_keybuf_del(struct keybuf *buf, struct keybuf_key *w);
struct keybuf_key *bch_keybuf_next(struct keybuf *buf);
struct keybuf_key *bch_keybuf_next_rescan(struct cache_set *c,
					  struct keybuf *buf,
					  struct bkey *end,
					  keybuf_pred_fn *pred);
void bch_update_bucket_in_use(struct cache_set *c, struct gc_stat *stats);
#endif