linux/drivers/md/raid5.h

/* SPDX-License-Identifier: GPL-2.0 */
#ifndef _RAID5_H
#define _RAID5_H

#include <linux/raid/xor.h>
#include <linux/dmaengine.h>
#include <linux/local_lock.h>

/*
 *
 * Each stripe contains one buffer per device.  Each buffer can be in
 * one of a number of states stored in "flags".  Changes between
 * these states happen *almost* exclusively under the protection of the
 * STRIPE_ACTIVE flag.  Some very specific changes can happen in bi_end_io, and
 * these are not protected by STRIPE_ACTIVE.
 *
 * The flag bits that are used to represent these states are:
 *   R5_UPTODATE and R5_LOCKED
 *
 * State Empty == !UPTODATE, !LOCK
 *        We have no data, and there is no active request
 * State Want == !UPTODATE, LOCK
 *        A read request is being submitted for this block
 * State Dirty == UPTODATE, LOCK
 *        Some new data is in this buffer, and it is being written out
 * State Clean == UPTODATE, !LOCK
 *        We have valid data which is the same as on disc
 *
 * The possible state transitions are:
 *
 *  Empty -> Want   - on read or write to get old data for  parity calc
 *  Empty -> Dirty  - on compute_parity to satisfy write/sync request.
 *  Empty -> Clean  - on compute_block when computing a block for failed drive
 *  Want  -> Empty  - on failed read
 *  Want  -> Clean  - on successful completion of read request
 *  Dirty -> Clean  - on successful completion of write request
 *  Dirty -> Clean  - on failed write
 *  Clean -> Dirty  - on compute_parity to satisfy write/sync (RECONSTRUCT or RMW)
 *
 * The Want->Empty, Want->Clean, Dirty->Clean, transitions
 * all happen in b_end_io at interrupt time.
 * Each sets the Uptodate bit before releasing the Lock bit.
 * This leaves one multi-stage transition:
 *    Want->Dirty->Clean
 * This is safe because thinking that a Clean buffer is actually dirty
 * will at worst delay some action, and the stripe will be scheduled
 * for attention after the transition is complete.
 *
 * There is one possibility that is not covered by these states.  That
 * is if one drive has failed and there is a spare being rebuilt.  We
 * can't distinguish between a clean block that has been generated
 * from parity calculations, and a clean block that has been
 * successfully written to the spare ( or to parity when resyncing).
 * To distinguish these states we have a stripe bit STRIPE_INSYNC that
 * is set whenever a write is scheduled to the spare, or to the parity
 * disc if there is no spare.  A sync request clears this bit, and
 * when we find it set with no buffers locked, we know the sync is
 * complete.
 *
 * Buffers for the md device that arrive via make_request are attached
 * to the appropriate stripe in one of two lists linked on b_reqnext.
 * One list (bh_read) for read requests, one (bh_write) for write.
 * There should never be more than one buffer on the two lists
 * together, but we are not guaranteed of that so we allow for more.
 *
 * If a buffer is on the read list when the associated cache buffer is
 * Uptodate, the data is copied into the read buffer and it's b_end_io
 * routine is called.  This may happen in the end_request routine only
 * if the buffer has just successfully been read.  end_request should
 * remove the buffers from the list and then set the Uptodate bit on
 * the buffer.  Other threads may do this only if they first check
 * that the Uptodate bit is set.  Once they have checked that they may
 * take buffers off the read queue.
 *
 * When a buffer on the write list is committed for write it is copied
 * into the cache buffer, which is then marked dirty, and moved onto a
 * third list, the written list (bh_written).  Once both the parity
 * block and the cached buffer are successfully written, any buffer on
 * a written list can be returned with b_end_io.
 *
 * The write list and read list both act as fifos.  The read list,
 * write list and written list are protected by the device_lock.
 * The device_lock is only for list manipulations and will only be
 * held for a very short time.  It can be claimed from interrupts.
 *
 *
 * Stripes in the stripe cache can be on one of two lists (or on
 * neither).  The "inactive_list" contains stripes which are not
 * currently being used for any request.  They can freely be reused
 * for another stripe.  The "handle_list" contains stripes that need
 * to be handled in some way.  Both of these are fifo queues.  Each
 * stripe is also (potentially) linked to a hash bucket in the hash
 * table so that it can be found by sector number.  Stripes that are
 * not hashed must be on the inactive_list, and will normally be at
 * the front.  All stripes start life this way.
 *
 * The inactive_list, handle_list and hash bucket lists are all protected by the
 * device_lock.
 *  - stripes have a reference counter. If count==0, they are on a list.
 *  - If a stripe might need handling, STRIPE_HANDLE is set.
 *  - When refcount reaches zero, then if STRIPE_HANDLE it is put on
 *    handle_list else inactive_list
 *
 * This, combined with the fact that STRIPE_HANDLE is only ever
 * cleared while a stripe has a non-zero count means that if the
 * refcount is 0 and STRIPE_HANDLE is set, then it is on the
 * handle_list and if recount is 0 and STRIPE_HANDLE is not set, then
 * the stripe is on inactive_list.
 *
 * The possible transitions are:
 *  activate an unhashed/inactive stripe (get_active_stripe())
 *     lockdev check-hash unlink-stripe cnt++ clean-stripe hash-stripe unlockdev
 *  activate a hashed, possibly active stripe (get_active_stripe())
 *     lockdev check-hash if(!cnt++)unlink-stripe unlockdev
 *  attach a request to an active stripe (add_stripe_bh())
 *     lockdev attach-buffer unlockdev
 *  handle a stripe (handle_stripe())
 *     setSTRIPE_ACTIVE,  clrSTRIPE_HANDLE ...
 *		(lockdev check-buffers unlockdev) ..
 *		change-state ..
 *		record io/ops needed clearSTRIPE_ACTIVE schedule io/ops
 *  release an active stripe (release_stripe())
 *     lockdev if (!--cnt) { if  STRIPE_HANDLE, add to handle_list else add to inactive-list } unlockdev
 *
 * The refcount counts each thread that have activated the stripe,
 * plus raid5d if it is handling it, plus one for each active request
 * on a cached buffer, and plus one if the stripe is undergoing stripe
 * operations.
 *
 * The stripe operations are:
 * -copying data between the stripe cache and user application buffers
 * -computing blocks to save a disk access, or to recover a missing block
 * -updating the parity on a write operation (reconstruct write and
 *  read-modify-write)
 * -checking parity correctness
 * -running i/o to disk
 * These operations are carried out by raid5_run_ops which uses the async_tx
 * api to (optionally) offload operations to dedicated hardware engines.
 * When requesting an operation handle_stripe sets the pending bit for the
 * operation and increments the count.  raid5_run_ops is then run whenever
 * the count is non-zero.
 * There are some critical dependencies between the operations that prevent some
 * from being requested while another is in flight.
 * 1/ Parity check operations destroy the in cache version of the parity block,
 *    so we prevent parity dependent operations like writes and compute_blocks
 *    from starting while a check is in progress.  Some dma engines can perform
 *    the check without damaging the parity block, in these cases the parity
 *    block is re-marked up to date (assuming the check was successful) and is
 *    not re-read from disk.
 * 2/ When a write operation is requested we immediately lock the affected
 *    blocks, and mark them as not up to date.  This causes new read requests
 *    to be held off, as well as parity checks and compute block operations.
 * 3/ Once a compute block operation has been requested handle_stripe treats
 *    that block as if it is up to date.  raid5_run_ops guaruntees that any
 *    operation that is dependent on the compute block result is initiated after
 *    the compute block completes.
 */

/*
 * Operations state - intermediate states that are visible outside of
 *   STRIPE_ACTIVE.
 * In general _idle indicates nothing is running, _run indicates a data
 * processing operation is active, and _result means the data processing result
 * is stable and can be acted upon.  For simple operations like biofill and
 * compute that only have an _idle and _run state they are indicated with
 * sh->state flags (STRIPE_BIOFILL_RUN and STRIPE_COMPUTE_RUN)
 */
/**
 * enum check_states - handles syncing / repairing a stripe
 * @check_state_idle - check operations are quiesced
 * @check_state_run - check operation is running
 * @check_state_result - set outside lock when check result is valid
 * @check_state_compute_run - check failed and we are repairing
 * @check_state_compute_result - set outside lock when compute result is valid
 */
enum check_states {};

/**
 * enum reconstruct_states - handles writing or expanding a stripe
 */
enum reconstruct_states {};

#define DEFAULT_STRIPE_SIZE
struct stripe_head {};

/* stripe_head_state - collects and tracks the dynamic state of a stripe_head
 *     for handle_stripe.
 */
struct stripe_head_state {};

/* Flags for struct r5dev.flags */
enum r5dev_flags {};

/*
 * Stripe state
 */
enum {};

#define STRIPE_EXPAND_SYNC_FLAGS
/*
 * Operation request flags
 */
enum {};

/*
 * RAID parity calculation preferences
 */
enum {};

/*
 * Pages requested from set_syndrome_sources()
 */
enum {};
/*
 * Plugging:
 *
 * To improve write throughput, we need to delay the handling of some
 * stripes until there has been a chance that several write requests
 * for the one stripe have all been collected.
 * In particular, any write request that would require pre-reading
 * is put on a "delayed" queue until there are no stripes currently
 * in a pre-read phase.  Further, if the "delayed" queue is empty when
 * a stripe is put on it then we "plug" the queue and do not process it
 * until an unplug call is made. (the unplug_io_fn() is called).
 *
 * When preread is initiated on a stripe, we set PREREAD_ACTIVE and add
 * it to the count of prereading stripes.
 * When write is initiated, or the stripe refcnt == 0 (just in case) we
 * clear the PREREAD_ACTIVE flag and decrement the count
 * Whenever the 'handle' queue is empty and the device is not plugged, we
 * move any strips from delayed to handle and clear the DELAYED flag and set
 * PREREAD_ACTIVE.
 * In stripe_handle, if we find pre-reading is necessary, we do it if
 * PREREAD_ACTIVE is set, else we set DELAYED which will send it to the delayed queue.
 * HANDLE gets cleared if stripe_handle leaves nothing locked.
 */

/* Note: disk_info.rdev can be set to NULL asynchronously by raid5_remove_disk.
 * There are three safe ways to access disk_info.rdev.
 * 1/ when holding mddev->reconfig_mutex
 * 2/ when resync/recovery/reshape is known to be happening - i.e. in code that
 *    is called as part of performing resync/recovery/reshape.
 * 3/ while holding rcu_read_lock(), use rcu_dereference to get the pointer
 *    and if it is non-NULL, increment rdev->nr_pending before dropping the RCU
 *    lock.
 * When .rdev is set to NULL, the nr_pending count checked again and if
 * it has been incremented, the pointer is put back in .rdev.
 */

struct disk_info {};

/*
 * Stripe cache
 */

#define NR_STRIPES

#if PAGE_SIZE == DEFAULT_STRIPE_SIZE
#define STRIPE_SIZE
#define STRIPE_SHIFT
#define STRIPE_SECTORS
#endif

#define IO_THRESHOLD
#define BYPASS_THRESHOLD
#define NR_HASH
#define HASH_MASK
#define MAX_STRIPE_BATCH

/* NOTE NR_STRIPE_HASH_LOCKS must remain below 64.
 * This is because we sometimes take all the spinlocks
 * and creating that much locking depth can cause
 * problems.
 */
#define NR_STRIPE_HASH_LOCKS
#define STRIPE_HASH_LOCKS_MASK

struct r5worker {};

struct r5worker_group {};

/*
 * r5c journal modes of the array: write-back or write-through.
 * write-through mode has identical behavior as existing log only
 * implementation.
 */
enum r5c_journal_mode {};

enum r5_cache_state {};

#define PENDING_IO_MAX
#define PENDING_IO_ONE_FLUSH
struct r5pending_data {};

struct raid5_percpu {};

struct r5conf {};

#if PAGE_SIZE == DEFAULT_STRIPE_SIZE
#define RAID5_STRIPE_SIZE(conf)
#define RAID5_STRIPE_SHIFT(conf)
#define RAID5_STRIPE_SECTORS(conf)
#else
#define RAID5_STRIPE_SIZE
#define RAID5_STRIPE_SHIFT
#define RAID5_STRIPE_SECTORS
#endif

/* bio's attached to a stripe+device for I/O are linked together in bi_sector
 * order without overlap.  There may be several bio's per stripe+device, and
 * a bio could span several devices.
 * When walking this list for a particular stripe+device, we must never proceed
 * beyond a bio that extends past this device, as the next bio might no longer
 * be valid.
 * This function is used to determine the 'next' bio in the list, given the
 * sector of the current stripe+device
 */
static inline struct bio *r5_next_bio(struct r5conf *conf, struct bio *bio, sector_t sector)
{}

/*
 * Our supported algorithms
 */
#define ALGORITHM_LEFT_ASYMMETRIC
#define ALGORITHM_RIGHT_ASYMMETRIC
#define ALGORITHM_LEFT_SYMMETRIC
#define ALGORITHM_RIGHT_SYMMETRIC

/* Define non-rotating (raid4) algorithms.  These allow
 * conversion of raid4 to raid5.
 */
#define ALGORITHM_PARITY_0
#define ALGORITHM_PARITY_N

/* DDF RAID6 layouts differ from md/raid6 layouts in two ways.
 * Firstly, the exact positioning of the parity block is slightly
 * different between the 'LEFT_*' modes of md and the "_N_*" modes
 * of DDF.
 * Secondly, or order of datablocks over which the Q syndrome is computed
 * is different.
 * Consequently we have different layouts for DDF/raid6 than md/raid6.
 * These layouts are from the DDFv1.2 spec.
 * Interestingly DDFv1.2-Errata-A does not specify N_CONTINUE but
 * leaves RLQ=3 as 'Vendor Specific'
 */

#define ALGORITHM_ROTATING_ZERO_RESTART
#define ALGORITHM_ROTATING_N_RESTART
#define ALGORITHM_ROTATING_N_CONTINUE

/* For every RAID5 algorithm we define a RAID6 algorithm
 * with exactly the same layout for data and parity, and
 * with the Q block always on the last device (N-1).
 * This allows trivial conversion from RAID5 to RAID6
 */
#define ALGORITHM_LEFT_ASYMMETRIC_6
#define ALGORITHM_RIGHT_ASYMMETRIC_6
#define ALGORITHM_LEFT_SYMMETRIC_6
#define ALGORITHM_RIGHT_SYMMETRIC_6
#define ALGORITHM_PARITY_0_6
#define ALGORITHM_PARITY_N_6

static inline int algorithm_valid_raid5(int layout)
{}
static inline int algorithm_valid_raid6(int layout)
{}

static inline int algorithm_is_DDF(int layout)
{}

#if PAGE_SIZE != DEFAULT_STRIPE_SIZE
/*
 * Return offset of the corresponding page for r5dev.
 */
static inline int raid5_get_page_offset(struct stripe_head *sh, int disk_idx)
{
	return (disk_idx % sh->stripes_per_page) * RAID5_STRIPE_SIZE(sh->raid_conf);
}

/*
 * Return corresponding page address for r5dev.
 */
static inline struct page *
raid5_get_dev_page(struct stripe_head *sh, int disk_idx)
{
	return sh->pages[disk_idx / sh->stripes_per_page];
}
#endif

void md_raid5_kick_device(struct r5conf *conf);
int raid5_set_cache_size(struct mddev *mddev, int size);
sector_t raid5_compute_blocknr(struct stripe_head *sh, int i, int previous);
void raid5_release_stripe(struct stripe_head *sh);
sector_t raid5_compute_sector(struct r5conf *conf, sector_t r_sector,
		int previous, int *dd_idx, struct stripe_head *sh);

struct stripe_request_ctx;
/* get stripe from previous generation (when reshaping) */
#define R5_GAS_PREVIOUS
/* do not block waiting for a free stripe */
#define R5_GAS_NOBLOCK
/* do not block waiting for quiesce to be released */
#define R5_GAS_NOQUIESCE
struct stripe_head *raid5_get_active_stripe(struct r5conf *conf,
		struct stripe_request_ctx *ctx, sector_t sector,
		unsigned int flags);

int raid5_calc_degraded(struct r5conf *conf);
int r5c_journal_mode_set(struct mddev *mddev, int journal_mode);
#endif