linux/drivers/opp/core.c

// SPDX-License-Identifier: GPL-2.0-only
/*
 * Generic OPP Interface
 *
 * Copyright (C) 2009-2010 Texas Instruments Incorporated.
 *	Nishanth Menon
 *	Romit Dasgupta
 *	Kevin Hilman
 */

#define pr_fmt(fmt)

#include <linux/clk.h>
#include <linux/errno.h>
#include <linux/err.h>
#include <linux/device.h>
#include <linux/export.h>
#include <linux/pm_domain.h>
#include <linux/regulator/consumer.h>
#include <linux/slab.h>
#include <linux/xarray.h>

#include "opp.h"

/*
 * The root of the list of all opp-tables. All opp_table structures branch off
 * from here, with each opp_table containing the list of opps it supports in
 * various states of availability.
 */
LIST_HEAD();

/* Lock to allow exclusive modification to the device and opp lists */
DEFINE_MUTEX();
/* Flag indicating that opp_tables list is being updated at the moment */
static bool opp_tables_busy;

/* OPP ID allocator */
static DEFINE_XARRAY_ALLOC1(opp_configs);

static bool _find_opp_dev(const struct device *dev, struct opp_table *opp_table)
{}

static struct opp_table *_find_opp_table_unlocked(struct device *dev)
{}

/**
 * _find_opp_table() - find opp_table struct using device pointer
 * @dev:	device pointer used to lookup OPP table
 *
 * Search OPP table for one containing matching device.
 *
 * Return: pointer to 'struct opp_table' if found, otherwise -ENODEV or
 * -EINVAL based on type of error.
 *
 * The callers must call dev_pm_opp_put_opp_table() after the table is used.
 */
struct opp_table *_find_opp_table(struct device *dev)
{}

/*
 * Returns true if multiple clocks aren't there, else returns false with WARN.
 *
 * We don't force clk_count == 1 here as there are users who don't have a clock
 * representation in the OPP table and manage the clock configuration themselves
 * in an platform specific way.
 */
static bool assert_single_clk(struct opp_table *opp_table)
{}

/**
 * dev_pm_opp_get_voltage() - Gets the voltage corresponding to an opp
 * @opp:	opp for which voltage has to be returned for
 *
 * Return: voltage in micro volt corresponding to the opp, else
 * return 0
 *
 * This is useful only for devices with single power supply.
 */
unsigned long dev_pm_opp_get_voltage(struct dev_pm_opp *opp)
{}
EXPORT_SYMBOL_GPL();

/**
 * dev_pm_opp_get_supplies() - Gets the supply information corresponding to an opp
 * @opp:	opp for which voltage has to be returned for
 * @supplies:	Placeholder for copying the supply information.
 *
 * Return: negative error number on failure, 0 otherwise on success after
 * setting @supplies.
 *
 * This can be used for devices with any number of power supplies. The caller
 * must ensure the @supplies array must contain space for each regulator.
 */
int dev_pm_opp_get_supplies(struct dev_pm_opp *opp,
			    struct dev_pm_opp_supply *supplies)
{}
EXPORT_SYMBOL_GPL();

/**
 * dev_pm_opp_get_power() - Gets the power corresponding to an opp
 * @opp:	opp for which power has to be returned for
 *
 * Return: power in micro watt corresponding to the opp, else
 * return 0
 *
 * This is useful only for devices with single power supply.
 */
unsigned long dev_pm_opp_get_power(struct dev_pm_opp *opp)
{}
EXPORT_SYMBOL_GPL();

/**
 * dev_pm_opp_get_freq_indexed() - Gets the frequency corresponding to an
 *				   available opp with specified index
 * @opp: opp for which frequency has to be returned for
 * @index: index of the frequency within the required opp
 *
 * Return: frequency in hertz corresponding to the opp with specified index,
 * else return 0
 */
unsigned long dev_pm_opp_get_freq_indexed(struct dev_pm_opp *opp, u32 index)
{}
EXPORT_SYMBOL_GPL();

/**
 * dev_pm_opp_get_level() - Gets the level corresponding to an available opp
 * @opp:	opp for which level value has to be returned for
 *
 * Return: level read from device tree corresponding to the opp, else
 * return U32_MAX.
 */
unsigned int dev_pm_opp_get_level(struct dev_pm_opp *opp)
{}
EXPORT_SYMBOL_GPL();

/**
 * dev_pm_opp_get_required_pstate() - Gets the required performance state
 *                                    corresponding to an available opp
 * @opp:	opp for which performance state has to be returned for
 * @index:	index of the required opp
 *
 * Return: performance state read from device tree corresponding to the
 * required opp, else return U32_MAX.
 */
unsigned int dev_pm_opp_get_required_pstate(struct dev_pm_opp *opp,
					    unsigned int index)
{}
EXPORT_SYMBOL_GPL();

/**
 * dev_pm_opp_is_turbo() - Returns if opp is turbo OPP or not
 * @opp: opp for which turbo mode is being verified
 *
 * Turbo OPPs are not for normal use, and can be enabled (under certain
 * conditions) for short duration of times to finish high throughput work
 * quickly. Running on them for longer times may overheat the chip.
 *
 * Return: true if opp is turbo opp, else false.
 */
bool dev_pm_opp_is_turbo(struct dev_pm_opp *opp)
{}
EXPORT_SYMBOL_GPL();

/**
 * dev_pm_opp_get_max_clock_latency() - Get max clock latency in nanoseconds
 * @dev:	device for which we do this operation
 *
 * Return: This function returns the max clock latency in nanoseconds.
 */
unsigned long dev_pm_opp_get_max_clock_latency(struct device *dev)
{}
EXPORT_SYMBOL_GPL();

/**
 * dev_pm_opp_get_max_volt_latency() - Get max voltage latency in nanoseconds
 * @dev: device for which we do this operation
 *
 * Return: This function returns the max voltage latency in nanoseconds.
 */
unsigned long dev_pm_opp_get_max_volt_latency(struct device *dev)
{}
EXPORT_SYMBOL_GPL();

/**
 * dev_pm_opp_get_max_transition_latency() - Get max transition latency in
 *					     nanoseconds
 * @dev: device for which we do this operation
 *
 * Return: This function returns the max transition latency, in nanoseconds, to
 * switch from one OPP to other.
 */
unsigned long dev_pm_opp_get_max_transition_latency(struct device *dev)
{}
EXPORT_SYMBOL_GPL();

/**
 * dev_pm_opp_get_suspend_opp_freq() - Get frequency of suspend opp in Hz
 * @dev:	device for which we do this operation
 *
 * Return: This function returns the frequency of the OPP marked as suspend_opp
 * if one is available, else returns 0;
 */
unsigned long dev_pm_opp_get_suspend_opp_freq(struct device *dev)
{}
EXPORT_SYMBOL_GPL();

int _get_opp_count(struct opp_table *opp_table)
{}

/**
 * dev_pm_opp_get_opp_count() - Get number of opps available in the opp table
 * @dev:	device for which we do this operation
 *
 * Return: This function returns the number of available opps if there are any,
 * else returns 0 if none or the corresponding error value.
 */
int dev_pm_opp_get_opp_count(struct device *dev)
{}
EXPORT_SYMBOL_GPL();

/* Helpers to read keys */
static unsigned long _read_freq(struct dev_pm_opp *opp, int index)
{}

static unsigned long _read_level(struct dev_pm_opp *opp, int index)
{}

static unsigned long _read_bw(struct dev_pm_opp *opp, int index)
{}

/* Generic comparison helpers */
static bool _compare_exact(struct dev_pm_opp **opp, struct dev_pm_opp *temp_opp,
			   unsigned long opp_key, unsigned long key)
{}

static bool _compare_ceil(struct dev_pm_opp **opp, struct dev_pm_opp *temp_opp,
			  unsigned long opp_key, unsigned long key)
{}

static bool _compare_floor(struct dev_pm_opp **opp, struct dev_pm_opp *temp_opp,
			   unsigned long opp_key, unsigned long key)
{}

/* Generic key finding helpers */
static struct dev_pm_opp *_opp_table_find_key(struct opp_table *opp_table,
		unsigned long *key, int index, bool available,
		unsigned long (*read)(struct dev_pm_opp *opp, int index),
		bool (*compare)(struct dev_pm_opp **opp, struct dev_pm_opp *temp_opp,
				unsigned long opp_key, unsigned long key),
		bool (*assert)(struct opp_table *opp_table))
{}

static struct dev_pm_opp *
_find_key(struct device *dev, unsigned long *key, int index, bool available,
	  unsigned long (*read)(struct dev_pm_opp *opp, int index),
	  bool (*compare)(struct dev_pm_opp **opp, struct dev_pm_opp *temp_opp,
			  unsigned long opp_key, unsigned long key),
	  bool (*assert)(struct opp_table *opp_table))
{}

static struct dev_pm_opp *_find_key_exact(struct device *dev,
		unsigned long key, int index, bool available,
		unsigned long (*read)(struct dev_pm_opp *opp, int index),
		bool (*assert)(struct opp_table *opp_table))
{}

static struct dev_pm_opp *_opp_table_find_key_ceil(struct opp_table *opp_table,
		unsigned long *key, int index, bool available,
		unsigned long (*read)(struct dev_pm_opp *opp, int index),
		bool (*assert)(struct opp_table *opp_table))
{}

static struct dev_pm_opp *_find_key_ceil(struct device *dev, unsigned long *key,
		int index, bool available,
		unsigned long (*read)(struct dev_pm_opp *opp, int index),
		bool (*assert)(struct opp_table *opp_table))
{}

static struct dev_pm_opp *_find_key_floor(struct device *dev,
		unsigned long *key, int index, bool available,
		unsigned long (*read)(struct dev_pm_opp *opp, int index),
		bool (*assert)(struct opp_table *opp_table))
{}

/**
 * dev_pm_opp_find_freq_exact() - search for an exact frequency
 * @dev:		device for which we do this operation
 * @freq:		frequency to search for
 * @available:		true/false - match for available opp
 *
 * Return: Searches for exact match in the opp table and returns pointer to the
 * matching opp if found, else returns ERR_PTR in case of error and should
 * be handled using IS_ERR. Error return values can be:
 * EINVAL:	for bad pointer
 * ERANGE:	no match found for search
 * ENODEV:	if device not found in list of registered devices
 *
 * Note: available is a modifier for the search. if available=true, then the
 * match is for exact matching frequency and is available in the stored OPP
 * table. if false, the match is for exact frequency which is not available.
 *
 * This provides a mechanism to enable an opp which is not available currently
 * or the opposite as well.
 *
 * The callers are required to call dev_pm_opp_put() for the returned OPP after
 * use.
 */
struct dev_pm_opp *dev_pm_opp_find_freq_exact(struct device *dev,
		unsigned long freq, bool available)
{}
EXPORT_SYMBOL_GPL();

/**
 * dev_pm_opp_find_freq_exact_indexed() - Search for an exact freq for the
 *					 clock corresponding to the index
 * @dev:	Device for which we do this operation
 * @freq:	frequency to search for
 * @index:	Clock index
 * @available:	true/false - match for available opp
 *
 * Search for the matching exact OPP for the clock corresponding to the
 * specified index from a starting freq for a device.
 *
 * Return: matching *opp , else returns ERR_PTR in case of error and should be
 * handled using IS_ERR. Error return values can be:
 * EINVAL:	for bad pointer
 * ERANGE:	no match found for search
 * ENODEV:	if device not found in list of registered devices
 *
 * The callers are required to call dev_pm_opp_put() for the returned OPP after
 * use.
 */
struct dev_pm_opp *
dev_pm_opp_find_freq_exact_indexed(struct device *dev, unsigned long freq,
				   u32 index, bool available)
{}
EXPORT_SYMBOL_GPL();

static noinline struct dev_pm_opp *_find_freq_ceil(struct opp_table *opp_table,
						   unsigned long *freq)
{}

/**
 * dev_pm_opp_find_freq_ceil() - Search for an rounded ceil freq
 * @dev:	device for which we do this operation
 * @freq:	Start frequency
 *
 * Search for the matching ceil *available* OPP from a starting freq
 * for a device.
 *
 * Return: matching *opp and refreshes *freq accordingly, else returns
 * ERR_PTR in case of error and should be handled using IS_ERR. Error return
 * values can be:
 * EINVAL:	for bad pointer
 * ERANGE:	no match found for search
 * ENODEV:	if device not found in list of registered devices
 *
 * The callers are required to call dev_pm_opp_put() for the returned OPP after
 * use.
 */
struct dev_pm_opp *dev_pm_opp_find_freq_ceil(struct device *dev,
					     unsigned long *freq)
{}
EXPORT_SYMBOL_GPL();

/**
 * dev_pm_opp_find_freq_ceil_indexed() - Search for a rounded ceil freq for the
 *					 clock corresponding to the index
 * @dev:	Device for which we do this operation
 * @freq:	Start frequency
 * @index:	Clock index
 *
 * Search for the matching ceil *available* OPP for the clock corresponding to
 * the specified index from a starting freq for a device.
 *
 * Return: matching *opp and refreshes *freq accordingly, else returns
 * ERR_PTR in case of error and should be handled using IS_ERR. Error return
 * values can be:
 * EINVAL:	for bad pointer
 * ERANGE:	no match found for search
 * ENODEV:	if device not found in list of registered devices
 *
 * The callers are required to call dev_pm_opp_put() for the returned OPP after
 * use.
 */
struct dev_pm_opp *
dev_pm_opp_find_freq_ceil_indexed(struct device *dev, unsigned long *freq,
				  u32 index)
{}
EXPORT_SYMBOL_GPL();

/**
 * dev_pm_opp_find_freq_floor() - Search for a rounded floor freq
 * @dev:	device for which we do this operation
 * @freq:	Start frequency
 *
 * Search for the matching floor *available* OPP from a starting freq
 * for a device.
 *
 * Return: matching *opp and refreshes *freq accordingly, else returns
 * ERR_PTR in case of error and should be handled using IS_ERR. Error return
 * values can be:
 * EINVAL:	for bad pointer
 * ERANGE:	no match found for search
 * ENODEV:	if device not found in list of registered devices
 *
 * The callers are required to call dev_pm_opp_put() for the returned OPP after
 * use.
 */
struct dev_pm_opp *dev_pm_opp_find_freq_floor(struct device *dev,
					      unsigned long *freq)
{}
EXPORT_SYMBOL_GPL();

/**
 * dev_pm_opp_find_freq_floor_indexed() - Search for a rounded floor freq for the
 *					  clock corresponding to the index
 * @dev:	Device for which we do this operation
 * @freq:	Start frequency
 * @index:	Clock index
 *
 * Search for the matching floor *available* OPP for the clock corresponding to
 * the specified index from a starting freq for a device.
 *
 * Return: matching *opp and refreshes *freq accordingly, else returns
 * ERR_PTR in case of error and should be handled using IS_ERR. Error return
 * values can be:
 * EINVAL:	for bad pointer
 * ERANGE:	no match found for search
 * ENODEV:	if device not found in list of registered devices
 *
 * The callers are required to call dev_pm_opp_put() for the returned OPP after
 * use.
 */
struct dev_pm_opp *
dev_pm_opp_find_freq_floor_indexed(struct device *dev, unsigned long *freq,
				   u32 index)
{}
EXPORT_SYMBOL_GPL();

/**
 * dev_pm_opp_find_level_exact() - search for an exact level
 * @dev:		device for which we do this operation
 * @level:		level to search for
 *
 * Return: Searches for exact match in the opp table and returns pointer to the
 * matching opp if found, else returns ERR_PTR in case of error and should
 * be handled using IS_ERR. Error return values can be:
 * EINVAL:	for bad pointer
 * ERANGE:	no match found for search
 * ENODEV:	if device not found in list of registered devices
 *
 * The callers are required to call dev_pm_opp_put() for the returned OPP after
 * use.
 */
struct dev_pm_opp *dev_pm_opp_find_level_exact(struct device *dev,
					       unsigned int level)
{}
EXPORT_SYMBOL_GPL();

/**
 * dev_pm_opp_find_level_ceil() - search for an rounded up level
 * @dev:		device for which we do this operation
 * @level:		level to search for
 *
 * Return: Searches for rounded up match in the opp table and returns pointer
 * to the  matching opp if found, else returns ERR_PTR in case of error and
 * should be handled using IS_ERR. Error return values can be:
 * EINVAL:	for bad pointer
 * ERANGE:	no match found for search
 * ENODEV:	if device not found in list of registered devices
 *
 * The callers are required to call dev_pm_opp_put() for the returned OPP after
 * use.
 */
struct dev_pm_opp *dev_pm_opp_find_level_ceil(struct device *dev,
					      unsigned int *level)
{}
EXPORT_SYMBOL_GPL();

/**
 * dev_pm_opp_find_level_floor() - Search for a rounded floor level
 * @dev:	device for which we do this operation
 * @level:	Start level
 *
 * Search for the matching floor *available* OPP from a starting level
 * for a device.
 *
 * Return: matching *opp and refreshes *level accordingly, else returns
 * ERR_PTR in case of error and should be handled using IS_ERR. Error return
 * values can be:
 * EINVAL:	for bad pointer
 * ERANGE:	no match found for search
 * ENODEV:	if device not found in list of registered devices
 *
 * The callers are required to call dev_pm_opp_put() for the returned OPP after
 * use.
 */
struct dev_pm_opp *dev_pm_opp_find_level_floor(struct device *dev,
					       unsigned int *level)
{}
EXPORT_SYMBOL_GPL();

/**
 * dev_pm_opp_find_bw_ceil() - Search for a rounded ceil bandwidth
 * @dev:	device for which we do this operation
 * @bw:	start bandwidth
 * @index:	which bandwidth to compare, in case of OPPs with several values
 *
 * Search for the matching floor *available* OPP from a starting bandwidth
 * for a device.
 *
 * Return: matching *opp and refreshes *bw accordingly, else returns
 * ERR_PTR in case of error and should be handled using IS_ERR. Error return
 * values can be:
 * EINVAL:	for bad pointer
 * ERANGE:	no match found for search
 * ENODEV:	if device not found in list of registered devices
 *
 * The callers are required to call dev_pm_opp_put() for the returned OPP after
 * use.
 */
struct dev_pm_opp *dev_pm_opp_find_bw_ceil(struct device *dev, unsigned int *bw,
					   int index)
{}
EXPORT_SYMBOL_GPL();

/**
 * dev_pm_opp_find_bw_floor() - Search for a rounded floor bandwidth
 * @dev:	device for which we do this operation
 * @bw:	start bandwidth
 * @index:	which bandwidth to compare, in case of OPPs with several values
 *
 * Search for the matching floor *available* OPP from a starting bandwidth
 * for a device.
 *
 * Return: matching *opp and refreshes *bw accordingly, else returns
 * ERR_PTR in case of error and should be handled using IS_ERR. Error return
 * values can be:
 * EINVAL:	for bad pointer
 * ERANGE:	no match found for search
 * ENODEV:	if device not found in list of registered devices
 *
 * The callers are required to call dev_pm_opp_put() for the returned OPP after
 * use.
 */
struct dev_pm_opp *dev_pm_opp_find_bw_floor(struct device *dev,
					    unsigned int *bw, int index)
{}
EXPORT_SYMBOL_GPL();

static int _set_opp_voltage(struct device *dev, struct regulator *reg,
			    struct dev_pm_opp_supply *supply)
{}

static int
_opp_config_clk_single(struct device *dev, struct opp_table *opp_table,
		       struct dev_pm_opp *opp, void *data, bool scaling_down)
{}

/*
 * Simple implementation for configuring multiple clocks. Configure clocks in
 * the order in which they are present in the array while scaling up.
 */
int dev_pm_opp_config_clks_simple(struct device *dev,
		struct opp_table *opp_table, struct dev_pm_opp *opp, void *data,
		bool scaling_down)
{}
EXPORT_SYMBOL_GPL();

static int _opp_config_regulator_single(struct device *dev,
			struct dev_pm_opp *old_opp, struct dev_pm_opp *new_opp,
			struct regulator **regulators, unsigned int count)
{}

static int _set_opp_bw(const struct opp_table *opp_table,
		       struct dev_pm_opp *opp, struct device *dev)
{}

static int _set_opp_level(struct device *dev, struct dev_pm_opp *opp)
{}

/* This is only called for PM domain for now */
static int _set_required_opps(struct device *dev, struct opp_table *opp_table,
			      struct dev_pm_opp *opp, bool up)
{}

static void _find_current_opp(struct device *dev, struct opp_table *opp_table)
{}

static int _disable_opp_table(struct device *dev, struct opp_table *opp_table)
{}

static int _set_opp(struct device *dev, struct opp_table *opp_table,
		    struct dev_pm_opp *opp, void *clk_data, bool forced)
{}

/**
 * dev_pm_opp_set_rate() - Configure new OPP based on frequency
 * @dev:	 device for which we do this operation
 * @target_freq: frequency to achieve
 *
 * This configures the power-supplies to the levels specified by the OPP
 * corresponding to the target_freq, and programs the clock to a value <=
 * target_freq, as rounded by clk_round_rate(). Device wanting to run at fmax
 * provided by the opp, should have already rounded to the target OPP's
 * frequency.
 */
int dev_pm_opp_set_rate(struct device *dev, unsigned long target_freq)
{}
EXPORT_SYMBOL_GPL();

/**
 * dev_pm_opp_set_opp() - Configure device for OPP
 * @dev: device for which we do this operation
 * @opp: OPP to set to
 *
 * This configures the device based on the properties of the OPP passed to this
 * routine.
 *
 * Return: 0 on success, a negative error number otherwise.
 */
int dev_pm_opp_set_opp(struct device *dev, struct dev_pm_opp *opp)
{}
EXPORT_SYMBOL_GPL();

/* OPP-dev Helpers */
static void _remove_opp_dev(struct opp_device *opp_dev,
			    struct opp_table *opp_table)
{}

struct opp_device *_add_opp_dev(const struct device *dev,
				struct opp_table *opp_table)
{}

static struct opp_table *_allocate_opp_table(struct device *dev, int index)
{}

void _get_opp_table_kref(struct opp_table *opp_table)
{}

static struct opp_table *_update_opp_table_clk(struct device *dev,
					       struct opp_table *opp_table,
					       bool getclk)
{}

/*
 * We need to make sure that the OPP table for a device doesn't get added twice,
 * if this routine gets called in parallel with the same device pointer.
 *
 * The simplest way to enforce that is to perform everything (find existing
 * table and if not found, create a new one) under the opp_table_lock, so only
 * one creator gets access to the same. But that expands the critical section
 * under the lock and may end up causing circular dependencies with frameworks
 * like debugfs, interconnect or clock framework as they may be direct or
 * indirect users of OPP core.
 *
 * And for that reason we have to go for a bit tricky implementation here, which
 * uses the opp_tables_busy flag to indicate if another creator is in the middle
 * of adding an OPP table and others should wait for it to finish.
 */
struct opp_table *_add_opp_table_indexed(struct device *dev, int index,
					 bool getclk)
{}

static struct opp_table *_add_opp_table(struct device *dev, bool getclk)
{}

struct opp_table *dev_pm_opp_get_opp_table(struct device *dev)
{}
EXPORT_SYMBOL_GPL();

static void _opp_table_kref_release(struct kref *kref)
{}

void dev_pm_opp_put_opp_table(struct opp_table *opp_table)
{}
EXPORT_SYMBOL_GPL();

void _opp_free(struct dev_pm_opp *opp)
{}

static void _opp_kref_release(struct kref *kref)
{}

void dev_pm_opp_get(struct dev_pm_opp *opp)
{}

void dev_pm_opp_put(struct dev_pm_opp *opp)
{}
EXPORT_SYMBOL_GPL();

/**
 * dev_pm_opp_remove()  - Remove an OPP from OPP table
 * @dev:	device for which we do this operation
 * @freq:	OPP to remove with matching 'freq'
 *
 * This function removes an opp from the opp table.
 */
void dev_pm_opp_remove(struct device *dev, unsigned long freq)
{}
EXPORT_SYMBOL_GPL();

static struct dev_pm_opp *_opp_get_next(struct opp_table *opp_table,
					bool dynamic)
{}

/*
 * Can't call dev_pm_opp_put() from under the lock as debugfs removal needs to
 * happen lock less to avoid circular dependency issues. This routine must be
 * called without the opp_table->lock held.
 */
static void _opp_remove_all(struct opp_table *opp_table, bool dynamic)
{}

bool _opp_remove_all_static(struct opp_table *opp_table)
{}

/**
 * dev_pm_opp_remove_all_dynamic() - Remove all dynamically created OPPs
 * @dev:	device for which we do this operation
 *
 * This function removes all dynamically created OPPs from the opp table.
 */
void dev_pm_opp_remove_all_dynamic(struct device *dev)
{}
EXPORT_SYMBOL_GPL();

struct dev_pm_opp *_opp_allocate(struct opp_table *opp_table)
{}

static bool _opp_supported_by_regulators(struct dev_pm_opp *opp,
					 struct opp_table *opp_table)
{}

static int _opp_compare_rate(struct opp_table *opp_table,
			     struct dev_pm_opp *opp1, struct dev_pm_opp *opp2)
{}

static int _opp_compare_bw(struct opp_table *opp_table, struct dev_pm_opp *opp1,
			   struct dev_pm_opp *opp2)
{}

/*
 * Returns
 * 0: opp1 == opp2
 * 1: opp1 > opp2
 * -1: opp1 < opp2
 */
int _opp_compare_key(struct opp_table *opp_table, struct dev_pm_opp *opp1,
		     struct dev_pm_opp *opp2)
{}

static int _opp_is_duplicate(struct device *dev, struct dev_pm_opp *new_opp,
			     struct opp_table *opp_table,
			     struct list_head **head)
{}

void _required_opps_available(struct dev_pm_opp *opp, int count)
{}

/*
 * Returns:
 * 0: On success. And appropriate error message for duplicate OPPs.
 * -EBUSY: For OPP with same freq/volt and is available. The callers of
 *  _opp_add() must return 0 if they receive -EBUSY from it. This is to make
 *  sure we don't print error messages unnecessarily if different parts of
 *  kernel try to initialize the OPP table.
 * -EEXIST: For OPP with same freq but different volt or is unavailable. This
 *  should be considered an error by the callers of _opp_add().
 */
int _opp_add(struct device *dev, struct dev_pm_opp *new_opp,
	     struct opp_table *opp_table)
{}

/**
 * _opp_add_v1() - Allocate a OPP based on v1 bindings.
 * @opp_table:	OPP table
 * @dev:	device for which we do this operation
 * @data:	The OPP data for the OPP to add
 * @dynamic:	Dynamically added OPPs.
 *
 * This function adds an opp definition to the opp table and returns status.
 * The opp is made available by default and it can be controlled using
 * dev_pm_opp_enable/disable functions and may be removed by dev_pm_opp_remove.
 *
 * NOTE: "dynamic" parameter impacts OPPs added by the dev_pm_opp_of_add_table
 * and freed by dev_pm_opp_of_remove_table.
 *
 * Return:
 * 0		On success OR
 *		Duplicate OPPs (both freq and volt are same) and opp->available
 * -EEXIST	Freq are same and volt are different OR
 *		Duplicate OPPs (both freq and volt are same) and !opp->available
 * -ENOMEM	Memory allocation failure
 */
int _opp_add_v1(struct opp_table *opp_table, struct device *dev,
		struct dev_pm_opp_data *data, bool dynamic)
{}

/*
 * This is required only for the V2 bindings, and it enables a platform to
 * specify the hierarchy of versions it supports. OPP layer will then enable
 * OPPs, which are available for those versions, based on its 'opp-supported-hw'
 * property.
 */
static int _opp_set_supported_hw(struct opp_table *opp_table,
				 const u32 *versions, unsigned int count)
{}

static void _opp_put_supported_hw(struct opp_table *opp_table)
{}

/*
 * This is required only for the V2 bindings, and it enables a platform to
 * specify the extn to be used for certain property names. The properties to
 * which the extension will apply are opp-microvolt and opp-microamp. OPP core
 * should postfix the property name with -<name> while looking for them.
 */
static int _opp_set_prop_name(struct opp_table *opp_table, const char *name)
{}

static void _opp_put_prop_name(struct opp_table *opp_table)
{}

/*
 * In order to support OPP switching, OPP layer needs to know the name of the
 * device's regulators, as the core would be required to switch voltages as
 * well.
 *
 * This must be called before any OPPs are initialized for the device.
 */
static int _opp_set_regulators(struct opp_table *opp_table, struct device *dev,
			       const char * const names[])
{}

static void _opp_put_regulators(struct opp_table *opp_table)
{}

static void _put_clks(struct opp_table *opp_table, int count)
{}

/*
 * In order to support OPP switching, OPP layer needs to get pointers to the
 * clocks for the device. Simple cases work fine without using this routine
 * (i.e. by passing connection-id as NULL), but for a device with multiple
 * clocks available, the OPP core needs to know the exact names of the clks to
 * use.
 *
 * This must be called before any OPPs are initialized for the device.
 */
static int _opp_set_clknames(struct opp_table *opp_table, struct device *dev,
			     const char * const names[],
			     config_clks_t config_clks)
{}

static void _opp_put_clknames(struct opp_table *opp_table)
{}

/*
 * This is useful to support platforms with multiple regulators per device.
 *
 * This must be called before any OPPs are initialized for the device.
 */
static int _opp_set_config_regulators_helper(struct opp_table *opp_table,
		struct device *dev, config_regulators_t config_regulators)
{}

static void _opp_put_config_regulators_helper(struct opp_table *opp_table)
{}

static void _opp_detach_genpd(struct opp_table *opp_table)
{}

/*
 * Multiple generic power domains for a device are supported with the help of
 * virtual genpd devices, which are created for each consumer device - genpd
 * pair. These are the device structures which are attached to the power domain
 * and are required by the OPP core to set the performance state of the genpd.
 * The same API also works for the case where single genpd is available and so
 * we don't need to support that separately.
 *
 * This helper will normally be called by the consumer driver of the device
 * "dev", as only that has details of the genpd names.
 *
 * This helper needs to be called once with a list of all genpd to attach.
 * Otherwise the original device structure will be used instead by the OPP core.
 *
 * The order of entries in the names array must match the order in which
 * "required-opps" are added in DT.
 */
static int _opp_attach_genpd(struct opp_table *opp_table, struct device *dev,
			const char * const *names, struct device ***virt_devs)
{}

static int _opp_set_required_devs(struct opp_table *opp_table,
				  struct device *dev,
				  struct device **required_devs)
{}

static void _opp_put_required_devs(struct opp_table *opp_table)
{}

static void _opp_clear_config(struct opp_config_data *data)
{}

/**
 * dev_pm_opp_set_config() - Set OPP configuration for the device.
 * @dev: Device for which configuration is being set.
 * @config: OPP configuration.
 *
 * This allows all device OPP configurations to be performed at once.
 *
 * This must be called before any OPPs are initialized for the device. This may
 * be called multiple times for the same OPP table, for example once for each
 * CPU that share the same table. This must be balanced by the same number of
 * calls to dev_pm_opp_clear_config() in order to free the OPP table properly.
 *
 * This returns a token to the caller, which must be passed to
 * dev_pm_opp_clear_config() to free the resources later. The value of the
 * returned token will be >= 1 for success and negative for errors. The minimum
 * value of 1 is chosen here to make it easy for callers to manage the resource.
 */
int dev_pm_opp_set_config(struct device *dev, struct dev_pm_opp_config *config)
{}
EXPORT_SYMBOL_GPL();

/**
 * dev_pm_opp_clear_config() - Releases resources blocked for OPP configuration.
 * @token: The token returned by dev_pm_opp_set_config() previously.
 *
 * This allows all device OPP configurations to be cleared at once. This must be
 * called once for each call made to dev_pm_opp_set_config(), in order to free
 * the OPPs properly.
 *
 * Currently the first call itself ends up freeing all the OPP configurations,
 * while the later ones only drop the OPP table reference. This works well for
 * now as we would never want to use an half initialized OPP table and want to
 * remove the configurations together.
 */
void dev_pm_opp_clear_config(int token)
{}
EXPORT_SYMBOL_GPL();

static void devm_pm_opp_config_release(void *token)
{}

/**
 * devm_pm_opp_set_config() - Set OPP configuration for the device.
 * @dev: Device for which configuration is being set.
 * @config: OPP configuration.
 *
 * This allows all device OPP configurations to be performed at once.
 * This is a resource-managed variant of dev_pm_opp_set_config().
 *
 * Return: 0 on success and errorno otherwise.
 */
int devm_pm_opp_set_config(struct device *dev, struct dev_pm_opp_config *config)
{}
EXPORT_SYMBOL_GPL();

/**
 * dev_pm_opp_xlate_required_opp() - Find required OPP for @src_table OPP.
 * @src_table: OPP table which has @dst_table as one of its required OPP table.
 * @dst_table: Required OPP table of the @src_table.
 * @src_opp: OPP from the @src_table.
 *
 * This function returns the OPP (present in @dst_table) pointed out by the
 * "required-opps" property of the @src_opp (present in @src_table).
 *
 * The callers are required to call dev_pm_opp_put() for the returned OPP after
 * use.
 *
 * Return: pointer to 'struct dev_pm_opp' on success and errorno otherwise.
 */
struct dev_pm_opp *dev_pm_opp_xlate_required_opp(struct opp_table *src_table,
						 struct opp_table *dst_table,
						 struct dev_pm_opp *src_opp)
{}
EXPORT_SYMBOL_GPL();

/**
 * dev_pm_opp_xlate_performance_state() - Find required OPP's pstate for src_table.
 * @src_table: OPP table which has dst_table as one of its required OPP table.
 * @dst_table: Required OPP table of the src_table.
 * @pstate: Current performance state of the src_table.
 *
 * This Returns pstate of the OPP (present in @dst_table) pointed out by the
 * "required-opps" property of the OPP (present in @src_table) which has
 * performance state set to @pstate.
 *
 * Return: Zero or positive performance state on success, otherwise negative
 * value on errors.
 */
int dev_pm_opp_xlate_performance_state(struct opp_table *src_table,
				       struct opp_table *dst_table,
				       unsigned int pstate)
{}

/**
 * dev_pm_opp_add_dynamic()  - Add an OPP table from a table definitions
 * @dev:	The device for which we do this operation
 * @data:	The OPP data for the OPP to add
 *
 * This function adds an opp definition to the opp table and returns status.
 * The opp is made available by default and it can be controlled using
 * dev_pm_opp_enable/disable functions.
 *
 * Return:
 * 0		On success OR
 *		Duplicate OPPs (both freq and volt are same) and opp->available
 * -EEXIST	Freq are same and volt are different OR
 *		Duplicate OPPs (both freq and volt are same) and !opp->available
 * -ENOMEM	Memory allocation failure
 */
int dev_pm_opp_add_dynamic(struct device *dev, struct dev_pm_opp_data *data)
{}
EXPORT_SYMBOL_GPL();

/**
 * _opp_set_availability() - helper to set the availability of an opp
 * @dev:		device for which we do this operation
 * @freq:		OPP frequency to modify availability
 * @availability_req:	availability status requested for this opp
 *
 * Set the availability of an OPP, opp_{enable,disable} share a common logic
 * which is isolated here.
 *
 * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the
 * copy operation, returns 0 if no modification was done OR modification was
 * successful.
 */
static int _opp_set_availability(struct device *dev, unsigned long freq,
				 bool availability_req)
{}

/**
 * dev_pm_opp_adjust_voltage() - helper to change the voltage of an OPP
 * @dev:		device for which we do this operation
 * @freq:		OPP frequency to adjust voltage of
 * @u_volt:		new OPP target voltage
 * @u_volt_min:		new OPP min voltage
 * @u_volt_max:		new OPP max voltage
 *
 * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the
 * copy operation, returns 0 if no modifcation was done OR modification was
 * successful.
 */
int dev_pm_opp_adjust_voltage(struct device *dev, unsigned long freq,
			      unsigned long u_volt, unsigned long u_volt_min,
			      unsigned long u_volt_max)

{}
EXPORT_SYMBOL_GPL();

/**
 * dev_pm_opp_sync_regulators() - Sync state of voltage regulators
 * @dev:	device for which we do this operation
 *
 * Sync voltage state of the OPP table regulators.
 *
 * Return: 0 on success or a negative error value.
 */
int dev_pm_opp_sync_regulators(struct device *dev)
{}
EXPORT_SYMBOL_GPL();

/**
 * dev_pm_opp_enable() - Enable a specific OPP
 * @dev:	device for which we do this operation
 * @freq:	OPP frequency to enable
 *
 * Enables a provided opp. If the operation is valid, this returns 0, else the
 * corresponding error value. It is meant to be used for users an OPP available
 * after being temporarily made unavailable with dev_pm_opp_disable.
 *
 * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the
 * copy operation, returns 0 if no modification was done OR modification was
 * successful.
 */
int dev_pm_opp_enable(struct device *dev, unsigned long freq)
{}
EXPORT_SYMBOL_GPL();

/**
 * dev_pm_opp_disable() - Disable a specific OPP
 * @dev:	device for which we do this operation
 * @freq:	OPP frequency to disable
 *
 * Disables a provided opp. If the operation is valid, this returns
 * 0, else the corresponding error value. It is meant to be a temporary
 * control by users to make this OPP not available until the circumstances are
 * right to make it available again (with a call to dev_pm_opp_enable).
 *
 * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the
 * copy operation, returns 0 if no modification was done OR modification was
 * successful.
 */
int dev_pm_opp_disable(struct device *dev, unsigned long freq)
{}
EXPORT_SYMBOL_GPL();

/**
 * dev_pm_opp_register_notifier() - Register OPP notifier for the device
 * @dev:	Device for which notifier needs to be registered
 * @nb:		Notifier block to be registered
 *
 * Return: 0 on success or a negative error value.
 */
int dev_pm_opp_register_notifier(struct device *dev, struct notifier_block *nb)
{}
EXPORT_SYMBOL();

/**
 * dev_pm_opp_unregister_notifier() - Unregister OPP notifier for the device
 * @dev:	Device for which notifier needs to be unregistered
 * @nb:		Notifier block to be unregistered
 *
 * Return: 0 on success or a negative error value.
 */
int dev_pm_opp_unregister_notifier(struct device *dev,
				   struct notifier_block *nb)
{}
EXPORT_SYMBOL();

/**
 * dev_pm_opp_remove_table() - Free all OPPs associated with the device
 * @dev:	device pointer used to lookup OPP table.
 *
 * Free both OPPs created using static entries present in DT and the
 * dynamically added entries.
 */
void dev_pm_opp_remove_table(struct device *dev)
{}
EXPORT_SYMBOL_GPL();