linux/drivers/firmware/arm_scmi/protocols.h

/* SPDX-License-Identifier: GPL-2.0 */
/*
 * System Control and Management Interface (SCMI) Message Protocol
 * protocols common header file containing some definitions, structures
 * and function prototypes used in all the different SCMI protocols.
 *
 * Copyright (C) 2022 ARM Ltd.
 */
#ifndef _SCMI_PROTOCOLS_H
#define _SCMI_PROTOCOLS_H

#include <linux/bitfield.h>
#include <linux/completion.h>
#include <linux/device.h>
#include <linux/errno.h>
#include <linux/kernel.h>
#include <linux/hashtable.h>
#include <linux/list.h>
#include <linux/module.h>
#include <linux/refcount.h>
#include <linux/scmi_protocol.h>
#include <linux/spinlock.h>
#include <linux/types.h>

#include <linux/unaligned.h>

#define PROTOCOL_REV_MINOR_MASK
#define PROTOCOL_REV_MAJOR_MASK
#define PROTOCOL_REV_MAJOR(x)
#define PROTOCOL_REV_MINOR(x)

#define SCMI_PROTOCOL_VENDOR_BASE

enum scmi_common_cmd {};

/**
 * struct scmi_msg_resp_prot_version - Response for a message
 *
 * @minor_version: Minor version of the ABI that firmware supports
 * @major_version: Major version of the ABI that firmware supports
 *
 * In general, ABI version changes follow the rule that minor version increments
 * are backward compatible. Major revision changes in ABI may not be
 * backward compatible.
 *
 * Response to a generic message with message type SCMI_MSG_VERSION
 */
struct scmi_msg_resp_prot_version {};

/**
 * struct scmi_msg - Message(Tx/Rx) structure
 *
 * @buf: Buffer pointer
 * @len: Length of data in the Buffer
 */
struct scmi_msg {};

/**
 * struct scmi_msg_hdr - Message(Tx/Rx) header
 *
 * @id: The identifier of the message being sent
 * @protocol_id: The identifier of the protocol used to send @id message
 * @type: The SCMI type for this message
 * @seq: The token to identify the message. When a message returns, the
 *	platform returns the whole message header unmodified including the
 *	token
 * @status: Status of the transfer once it's complete
 * @poll_completion: Indicate if the transfer needs to be polled for
 *	completion or interrupt mode is used
 */
struct scmi_msg_hdr {};

/**
 * struct scmi_xfer - Structure representing a message flow
 *
 * @transfer_id: Unique ID for debug & profiling purpose
 * @hdr: Transmit message header
 * @tx: Transmit message
 * @rx: Receive message, the buffer should be pre-allocated to store
 *	message. If request-ACK protocol is used, we can reuse the same
 *	buffer for the rx path as we use for the tx path.
 * @done: command message transmit completion event
 * @async_done: pointer to delayed response message received event completion
 * @pending: True for xfers added to @pending_xfers hashtable
 * @node: An hlist_node reference used to store this xfer, alternatively, on
 *	  the free list @free_xfers or in the @pending_xfers hashtable
 * @users: A refcount to track the active users for this xfer.
 *	   This is meant to protect against the possibility that, when a command
 *	   transaction times out concurrently with the reception of a valid
 *	   response message, the xfer could be finally put on the TX path, and
 *	   so vanish, while on the RX path scmi_rx_callback() is still
 *	   processing it: in such a case this refcounting will ensure that, even
 *	   though the timed-out transaction will anyway cause the command
 *	   request to be reported as failed by time-out, the underlying xfer
 *	   cannot be discarded and possibly reused until the last one user on
 *	   the RX path has released it.
 * @busy: An atomic flag to ensure exclusive write access to this xfer
 * @state: The current state of this transfer, with states transitions deemed
 *	   valid being:
 *	    - SCMI_XFER_SENT_OK -> SCMI_XFER_RESP_OK [ -> SCMI_XFER_DRESP_OK ]
 *	    - SCMI_XFER_SENT_OK -> SCMI_XFER_DRESP_OK
 *	      (Missing synchronous response is assumed OK and ignored)
 * @flags: Optional flags associated to this xfer.
 * @lock: A spinlock to protect state and busy fields.
 * @priv: A pointer for transport private usage.
 */
struct scmi_xfer {};

struct scmi_xfer_ops;
struct scmi_proto_helpers_ops;

/**
 * struct scmi_protocol_handle  - Reference to an initialized protocol instance
 *
 * @dev: A reference to the associated SCMI instance device (handle->dev).
 * @xops: A reference to a struct holding refs to the core xfer operations that
 *	  can be used by the protocol implementation to generate SCMI messages.
 * @set_priv: A method to set protocol private data for this instance.
 * @get_priv: A method to get protocol private data previously set.
 *
 * This structure represents a protocol initialized against specific SCMI
 * instance and it will be used as follows:
 * - as a parameter fed from the core to the protocol initialization code so
 *   that it can access the core xfer operations to build and generate SCMI
 *   messages exclusively for the specific underlying protocol instance.
 * - as an opaque handle fed by an SCMI driver user when it tries to access
 *   this protocol through its own protocol operations.
 *   In this case this handle will be returned as an opaque object together
 *   with the related protocol operations when the SCMI driver tries to access
 *   the protocol.
 */
struct scmi_protocol_handle {};

/**
 * struct scmi_iterator_state  - Iterator current state descriptor
 * @desc_index: Starting index for the current mulit-part request.
 * @num_returned: Number of returned items in the last multi-part reply.
 * @num_remaining: Number of remaining items in the multi-part message.
 * @max_resources: Maximum acceptable number of items, configured by the caller
 *		   depending on the underlying resources that it is querying.
 * @loop_idx: The iterator loop index in the current multi-part reply.
 * @rx_len: Size in bytes of the currenly processed message; it can be used by
 *	    the user of the iterator to verify a reply size.
 * @priv: Optional pointer to some additional state-related private data setup
 *	  by the caller during the iterations.
 */
struct scmi_iterator_state {};

/**
 * struct scmi_iterator_ops  - Custom iterator operations
 * @prepare_message: An operation to provide the custom logic to fill in the
 *		     SCMI command request pointed by @message. @desc_index is
 *		     a reference to the next index to use in the multi-part
 *		     request.
 * @update_state: An operation to provide the custom logic to update the
 *		  iterator state from the actual message response.
 * @process_response: An operation to provide the custom logic needed to process
 *		      each chunk of the multi-part message.
 */
struct scmi_iterator_ops {};

struct scmi_fc_db_info {};

struct scmi_fc_info {};

/**
 * struct scmi_proto_helpers_ops  - References to common protocol helpers
 * @extended_name_get: A common helper function to retrieve extended naming
 *		       for the specified resource using the specified command.
 *		       Result is returned as a NULL terminated string in the
 *		       pre-allocated area pointed to by @name with maximum
 *		       capacity of @len bytes.
 * @iter_response_init: A common helper to initialize a generic iterator to
 *			parse multi-message responses: when run the iterator
 *			will take care to send the initial command request as
 *			specified by @msg_id and @tx_size and then to parse the
 *			multi-part responses using the custom operations
 *			provided in @ops.
 * @iter_response_run: A common helper to trigger the run of a previously
 *		       initialized iterator.
 * @protocol_msg_check: A common helper to check is a specific protocol message
 *			is supported.
 * @fastchannel_init: A common helper used to initialize FC descriptors by
 *		      gathering FC descriptions from the SCMI platform server.
 * @fastchannel_db_ring: A common helper to ring a FC doorbell.
 * @get_max_msg_size: A common helper to get the maximum message size.
 */
struct scmi_proto_helpers_ops {};

/**
 * struct scmi_xfer_ops  - References to the core SCMI xfer operations.
 * @version_get: Get this version protocol.
 * @xfer_get_init: Initialize one struct xfer if any xfer slot is free.
 * @reset_rx_to_maxsz: Reset rx size to max transport size.
 * @do_xfer: Do the SCMI transfer.
 * @do_xfer_with_response: Do the SCMI transfer waiting for a response.
 * @xfer_put: Free the xfer slot.
 *
 * Note that all this operations expect a protocol handle as first parameter;
 * they then internally use it to infer the underlying protocol number: this
 * way is not possible for a protocol implementation to forge messages for
 * another protocol.
 */
struct scmi_xfer_ops {};

scmi_prot_init_ph_fn_t;

/**
 * struct scmi_protocol  - Protocol descriptor
 * @id: Protocol ID.
 * @owner: Module reference if any.
 * @instance_init: Mandatory protocol initialization function.
 * @instance_deinit: Optional protocol de-initialization function.
 * @ops: Optional reference to the operations provided by the protocol and
 *	 exposed in scmi_protocol.h.
 * @events: An optional reference to the events supported by this protocol.
 * @supported_version: The highest version currently supported for this
 *		       protocol by the agent. Each protocol implementation
 *		       in the agent is supposed to downgrade to match the
 *		       protocol version supported by the platform.
 * @vendor_id: A firmware vendor string for vendor protocols matching.
 *	       Ignored when @id identifies a standard protocol, cannot be NULL
 *	       otherwise.
 * @sub_vendor_id: A firmware sub_vendor string for vendor protocols matching.
 *		   Ignored if NULL or when @id identifies a standard protocol.
 * @impl_ver: A firmware implementation version for vendor protocols matching.
 *	      Ignored if zero or if @id identifies a standard protocol.
 *
 * Note that vendor protocols matching at load time is performed by attempting
 * the closest match first against the tuple (vendor, sub_vendor, impl_ver)
 */
struct scmi_protocol {};

#define DEFINE_SCMI_PROTOCOL_REGISTER_UNREGISTER(name, proto)

#define DECLARE_SCMI_REGISTER_UNREGISTER(func)
DECLARE_SCMI_REGISTER_UNREGISTER(base);
DECLARE_SCMI_REGISTER_UNREGISTER(clock);
DECLARE_SCMI_REGISTER_UNREGISTER(perf);
DECLARE_SCMI_REGISTER_UNREGISTER(pinctrl);
DECLARE_SCMI_REGISTER_UNREGISTER(power);
DECLARE_SCMI_REGISTER_UNREGISTER(reset);
DECLARE_SCMI_REGISTER_UNREGISTER(sensors);
DECLARE_SCMI_REGISTER_UNREGISTER(voltage);
DECLARE_SCMI_REGISTER_UNREGISTER(system);
DECLARE_SCMI_REGISTER_UNREGISTER(powercap);

#endif /* _SCMI_PROTOCOLS_H */