linux/drivers/platform/surface/aggregator/controller.c

// SPDX-License-Identifier: GPL-2.0+
/*
 * Main SSAM/SSH controller structure and functionality.
 *
 * Copyright (C) 2019-2022 Maximilian Luz <[email protected]>
 */

#include <linux/acpi.h>
#include <linux/atomic.h>
#include <linux/completion.h>
#include <linux/gpio/consumer.h>
#include <linux/interrupt.h>
#include <linux/kref.h>
#include <linux/limits.h>
#include <linux/list.h>
#include <linux/lockdep.h>
#include <linux/mutex.h>
#include <linux/rculist.h>
#include <linux/rbtree.h>
#include <linux/rwsem.h>
#include <linux/serdev.h>
#include <linux/slab.h>
#include <linux/spinlock.h>
#include <linux/srcu.h>
#include <linux/types.h>
#include <linux/workqueue.h>

#include <linux/surface_aggregator/controller.h>
#include <linux/surface_aggregator/serial_hub.h>

#include "controller.h"
#include "ssh_msgb.h"
#include "ssh_request_layer.h"

#include "trace.h"


/* -- Safe counters. -------------------------------------------------------- */

/**
 * ssh_seq_reset() - Reset/initialize sequence ID counter.
 * @c: The counter to reset.
 */
static void ssh_seq_reset(struct ssh_seq_counter *c)
{}

/**
 * ssh_seq_next() - Get next sequence ID.
 * @c: The counter providing the sequence IDs.
 *
 * Return: Returns the next sequence ID of the counter.
 */
static u8 ssh_seq_next(struct ssh_seq_counter *c)
{}

/**
 * ssh_rqid_reset() - Reset/initialize request ID counter.
 * @c: The counter to reset.
 */
static void ssh_rqid_reset(struct ssh_rqid_counter *c)
{}

/**
 * ssh_rqid_next() - Get next request ID.
 * @c: The counter providing the request IDs.
 *
 * Return: Returns the next request ID of the counter, skipping any reserved
 * request IDs.
 */
static u16 ssh_rqid_next(struct ssh_rqid_counter *c)
{}


/* -- Event notifier/callbacks. --------------------------------------------- */
/*
 * The notifier system is based on linux/notifier.h, specifically the SRCU
 * implementation. The difference to that is, that some bits of the notifier
 * call return value can be tracked across multiple calls. This is done so
 * that handling of events can be tracked and a warning can be issued in case
 * an event goes unhandled. The idea of that warning is that it should help
 * discover and identify new/currently unimplemented features.
 */

/**
 * ssam_event_matches_notifier() - Test if an event matches a notifier.
 * @n: The event notifier to test against.
 * @event: The event to test.
 *
 * Return: Returns %true if the given event matches the given notifier
 * according to the rules set in the notifier's event mask, %false otherwise.
 */
static bool ssam_event_matches_notifier(const struct ssam_event_notifier *n,
					const struct ssam_event *event)
{}

/**
 * ssam_nfblk_call_chain() - Call event notifier callbacks of the given chain.
 * @nh:    The notifier head for which the notifier callbacks should be called.
 * @event: The event data provided to the callbacks.
 *
 * Call all registered notifier callbacks in order of their priority until
 * either no notifier is left or a notifier returns a value with the
 * %SSAM_NOTIF_STOP bit set. Note that this bit is automatically set via
 * ssam_notifier_from_errno() on any non-zero error value.
 *
 * Return: Returns the notifier status value, which contains the notifier
 * status bits (%SSAM_NOTIF_HANDLED and %SSAM_NOTIF_STOP) as well as a
 * potential error value returned from the last executed notifier callback.
 * Use ssam_notifier_to_errno() to convert this value to the original error
 * value.
 */
static int ssam_nfblk_call_chain(struct ssam_nf_head *nh, struct ssam_event *event)
{}

/**
 * ssam_nfblk_insert() - Insert a new notifier block into the given notifier
 * list.
 * @nh: The notifier head into which the block should be inserted.
 * @nb: The notifier block to add.
 *
 * Note: This function must be synchronized by the caller with respect to other
 * insert, find, and/or remove calls by holding ``struct ssam_nf.lock``.
 *
 * Return: Returns zero on success, %-EEXIST if the notifier block has already
 * been registered.
 */
static int ssam_nfblk_insert(struct ssam_nf_head *nh, struct ssam_notifier_block *nb)
{}

/**
 * ssam_nfblk_find() - Check if a notifier block is registered on the given
 * notifier head.
 * list.
 * @nh: The notifier head on which to search.
 * @nb: The notifier block to search for.
 *
 * Note: This function must be synchronized by the caller with respect to other
 * insert, find, and/or remove calls by holding ``struct ssam_nf.lock``.
 *
 * Return: Returns true if the given notifier block is registered on the given
 * notifier head, false otherwise.
 */
static bool ssam_nfblk_find(struct ssam_nf_head *nh, struct ssam_notifier_block *nb)
{}

/**
 * ssam_nfblk_remove() - Remove a notifier block from its notifier list.
 * @nb: The notifier block to be removed.
 *
 * Note: This function must be synchronized by the caller with respect to
 * other insert, find, and/or remove calls by holding ``struct ssam_nf.lock``.
 * Furthermore, the caller _must_ ensure SRCU synchronization by calling
 * synchronize_srcu() with ``nh->srcu`` after leaving the critical section, to
 * ensure that the removed notifier block is not in use any more.
 */
static void ssam_nfblk_remove(struct ssam_notifier_block *nb)
{}

/**
 * ssam_nf_head_init() - Initialize the given notifier head.
 * @nh: The notifier head to initialize.
 */
static int ssam_nf_head_init(struct ssam_nf_head *nh)
{}

/**
 * ssam_nf_head_destroy() - Deinitialize the given notifier head.
 * @nh: The notifier head to deinitialize.
 */
static void ssam_nf_head_destroy(struct ssam_nf_head *nh)
{}


/* -- Event/notification registry. ------------------------------------------ */

/**
 * struct ssam_nf_refcount_key - Key used for event activation reference
 * counting.
 * @reg: The registry via which the event is enabled/disabled.
 * @id:  The ID uniquely describing the event.
 */
struct ssam_nf_refcount_key {};

/**
 * struct ssam_nf_refcount_entry - RB-tree entry for reference counting event
 * activations.
 * @node:     The node of this entry in the rb-tree.
 * @key:      The key of the event.
 * @refcount: The reference-count of the event.
 * @flags:    The flags used when enabling the event.
 */
struct ssam_nf_refcount_entry {};

/**
 * ssam_nf_refcount_inc() - Increment reference-/activation-count of the given
 * event.
 * @nf:  The notifier system reference.
 * @reg: The registry used to enable/disable the event.
 * @id:  The event ID.
 *
 * Increments the reference-/activation-count associated with the specified
 * event type/ID, allocating a new entry for this event ID if necessary. A
 * newly allocated entry will have a refcount of one.
 *
 * Note: ``nf->lock`` must be held when calling this function.
 *
 * Return: Returns the refcount entry on success. Returns an error pointer
 * with %-ENOSPC if there have already been %INT_MAX events of the specified
 * ID and type registered, or %-ENOMEM if the entry could not be allocated.
 */
static struct ssam_nf_refcount_entry *
ssam_nf_refcount_inc(struct ssam_nf *nf, struct ssam_event_registry reg,
		     struct ssam_event_id id)
{}

/**
 * ssam_nf_refcount_dec() - Decrement reference-/activation-count of the given
 * event.
 * @nf:  The notifier system reference.
 * @reg: The registry used to enable/disable the event.
 * @id:  The event ID.
 *
 * Decrements the reference-/activation-count of the specified event,
 * returning its entry. If the returned entry has a refcount of zero, the
 * caller is responsible for freeing it using kfree().
 *
 * Note: ``nf->lock`` must be held when calling this function.
 *
 * Return: Returns the refcount entry on success or %NULL if the entry has not
 * been found.
 */
static struct ssam_nf_refcount_entry *
ssam_nf_refcount_dec(struct ssam_nf *nf, struct ssam_event_registry reg,
		     struct ssam_event_id id)
{}

/**
 * ssam_nf_refcount_dec_free() - Decrement reference-/activation-count of the
 * given event and free its entry if the reference count reaches zero.
 * @nf:  The notifier system reference.
 * @reg: The registry used to enable/disable the event.
 * @id:  The event ID.
 *
 * Decrements the reference-/activation-count of the specified event, freeing
 * its entry if it reaches zero.
 *
 * Note: ``nf->lock`` must be held when calling this function.
 */
static void ssam_nf_refcount_dec_free(struct ssam_nf *nf,
				      struct ssam_event_registry reg,
				      struct ssam_event_id id)
{}

/**
 * ssam_nf_refcount_empty() - Test if the notification system has any
 * enabled/active events.
 * @nf: The notification system.
 */
static bool ssam_nf_refcount_empty(struct ssam_nf *nf)
{}

/**
 * ssam_nf_call() - Call notification callbacks for the provided event.
 * @nf:    The notifier system
 * @dev:   The associated device, only used for logging.
 * @rqid:  The request ID of the event.
 * @event: The event provided to the callbacks.
 *
 * Execute registered callbacks in order of their priority until either no
 * callback is left or a callback returns a value with the %SSAM_NOTIF_STOP
 * bit set. Note that this bit is set automatically when converting non-zero
 * error values via ssam_notifier_from_errno() to notifier values.
 *
 * Also note that any callback that could handle an event should return a value
 * with bit %SSAM_NOTIF_HANDLED set, indicating that the event does not go
 * unhandled/ignored. In case no registered callback could handle an event,
 * this function will emit a warning.
 *
 * In case a callback failed, this function will emit an error message.
 */
static void ssam_nf_call(struct ssam_nf *nf, struct device *dev, u16 rqid,
			 struct ssam_event *event)
{}

/**
 * ssam_nf_init() - Initialize the notifier system.
 * @nf: The notifier system to initialize.
 */
static int ssam_nf_init(struct ssam_nf *nf)
{}

/**
 * ssam_nf_destroy() - Deinitialize the notifier system.
 * @nf: The notifier system to deinitialize.
 */
static void ssam_nf_destroy(struct ssam_nf *nf)
{}


/* -- Event/async request completion system. -------------------------------- */

#define SSAM_CPLT_WQ_NAME

/*
 * SSAM_CPLT_WQ_BATCH - Maximum number of event item completions executed per
 * work execution. Used to prevent livelocking of the workqueue. Value chosen
 * via educated guess, may be adjusted.
 */
#define SSAM_CPLT_WQ_BATCH

/*
 * SSAM_EVENT_ITEM_CACHE_PAYLOAD_LEN - Maximum payload length for a cached
 * &struct ssam_event_item.
 *
 * This length has been chosen to be accommodate standard touchpad and
 * keyboard input events. Events with larger payloads will be allocated
 * separately.
 */
#define SSAM_EVENT_ITEM_CACHE_PAYLOAD_LEN

static struct kmem_cache *ssam_event_item_cache;

/**
 * ssam_event_item_cache_init() - Initialize the event item cache.
 */
int ssam_event_item_cache_init(void)
{}

/**
 * ssam_event_item_cache_destroy() - Deinitialize the event item cache.
 */
void ssam_event_item_cache_destroy(void)
{}

static void __ssam_event_item_free_cached(struct ssam_event_item *item)
{}

static void __ssam_event_item_free_generic(struct ssam_event_item *item)
{}

/**
 * ssam_event_item_free() - Free the provided event item.
 * @item: The event item to free.
 */
static void ssam_event_item_free(struct ssam_event_item *item)
{}

/**
 * ssam_event_item_alloc() - Allocate an event item with the given payload size.
 * @len:   The event payload length.
 * @flags: The flags used for allocation.
 *
 * Allocate an event item with the given payload size, preferring allocation
 * from the event item cache if the payload is small enough (i.e. smaller than
 * %SSAM_EVENT_ITEM_CACHE_PAYLOAD_LEN). Sets the item operations and payload
 * length values. The item free callback (``ops.free``) should not be
 * overwritten after this call.
 *
 * Return: Returns the newly allocated event item.
 */
static struct ssam_event_item *ssam_event_item_alloc(size_t len, gfp_t flags)
{}

/**
 * ssam_event_queue_push() - Push an event item to the event queue.
 * @q:    The event queue.
 * @item: The item to add.
 */
static void ssam_event_queue_push(struct ssam_event_queue *q,
				  struct ssam_event_item *item)
{}

/**
 * ssam_event_queue_pop() - Pop the next event item from the event queue.
 * @q: The event queue.
 *
 * Returns and removes the next event item from the queue. Returns %NULL If
 * there is no event item left.
 */
static struct ssam_event_item *ssam_event_queue_pop(struct ssam_event_queue *q)
{}

/**
 * ssam_event_queue_is_empty() - Check if the event queue is empty.
 * @q: The event queue.
 */
static bool ssam_event_queue_is_empty(struct ssam_event_queue *q)
{}

/**
 * ssam_cplt_get_event_queue() - Get the event queue for the given parameters.
 * @cplt: The completion system on which to look for the queue.
 * @tid:  The target ID of the queue.
 * @rqid: The request ID representing the event ID for which to get the queue.
 *
 * Return: Returns the event queue corresponding to the event type described
 * by the given parameters. If the request ID does not represent an event,
 * this function returns %NULL. If the target ID is not supported, this
 * function will fall back to the default target ID (``tid = 1``).
 */
static
struct ssam_event_queue *ssam_cplt_get_event_queue(struct ssam_cplt *cplt,
						   u8 tid, u16 rqid)
{}

/**
 * ssam_cplt_submit() - Submit a work item to the completion system workqueue.
 * @cplt: The completion system.
 * @work: The work item to submit.
 */
static bool ssam_cplt_submit(struct ssam_cplt *cplt, struct work_struct *work)
{}

/**
 * ssam_cplt_submit_event() - Submit an event to the completion system.
 * @cplt: The completion system.
 * @item: The event item to submit.
 *
 * Submits the event to the completion system by queuing it on the event item
 * queue and queuing the respective event queue work item on the completion
 * workqueue, which will eventually complete the event.
 *
 * Return: Returns zero on success, %-EINVAL if there is no event queue that
 * can handle the given event item.
 */
static int ssam_cplt_submit_event(struct ssam_cplt *cplt,
				  struct ssam_event_item *item)
{}

/**
 * ssam_cplt_flush() - Flush the completion system.
 * @cplt: The completion system.
 *
 * Flush the completion system by waiting until all currently submitted work
 * items have been completed.
 *
 * Note: This function does not guarantee that all events will have been
 * handled once this call terminates. In case of a larger number of
 * to-be-completed events, the event queue work function may re-schedule its
 * work item, which this flush operation will ignore.
 *
 * This operation is only intended to, during normal operation prior to
 * shutdown, try to complete most events and requests to get them out of the
 * system while the system is still fully operational. It does not aim to
 * provide any guarantee that all of them have been handled.
 */
static void ssam_cplt_flush(struct ssam_cplt *cplt)
{}

static void ssam_event_queue_work_fn(struct work_struct *work)
{}

/**
 * ssam_event_queue_init() - Initialize an event queue.
 * @cplt: The completion system on which the queue resides.
 * @evq:  The event queue to initialize.
 */
static void ssam_event_queue_init(struct ssam_cplt *cplt,
				  struct ssam_event_queue *evq)
{}

/**
 * ssam_cplt_init() - Initialize completion system.
 * @cplt: The completion system to initialize.
 * @dev:  The device used for logging.
 */
static int ssam_cplt_init(struct ssam_cplt *cplt, struct device *dev)
{}

/**
 * ssam_cplt_destroy() - Deinitialize the completion system.
 * @cplt: The completion system to deinitialize.
 *
 * Deinitialize the given completion system and ensure that all pending, i.e.
 * yet-to-be-completed, event items and requests have been handled.
 */
static void ssam_cplt_destroy(struct ssam_cplt *cplt)
{}


/* -- Main SSAM device structures. ------------------------------------------ */

/**
 * ssam_controller_device() - Get the &struct device associated with this
 * controller.
 * @c: The controller for which to get the device.
 *
 * Return: Returns the &struct device associated with this controller,
 * providing its lower-level transport.
 */
struct device *ssam_controller_device(struct ssam_controller *c)
{}
EXPORT_SYMBOL_GPL();

static void __ssam_controller_release(struct kref *kref)
{}

/**
 * ssam_controller_get() - Increment reference count of controller.
 * @c: The controller.
 *
 * Return: Returns the controller provided as input.
 */
struct ssam_controller *ssam_controller_get(struct ssam_controller *c)
{}
EXPORT_SYMBOL_GPL();

/**
 * ssam_controller_put() - Decrement reference count of controller.
 * @c: The controller.
 */
void ssam_controller_put(struct ssam_controller *c)
{}
EXPORT_SYMBOL_GPL();

/**
 * ssam_controller_statelock() - Lock the controller against state transitions.
 * @c: The controller to lock.
 *
 * Lock the controller against state transitions. Holding this lock guarantees
 * that the controller will not transition between states, i.e. if the
 * controller is in state "started", when this lock has been acquired, it will
 * remain in this state at least until the lock has been released.
 *
 * Multiple clients may concurrently hold this lock. In other words: The
 * ``statelock`` functions represent the read-lock part of a r/w-semaphore.
 * Actions causing state transitions of the controller must be executed while
 * holding the write-part of this r/w-semaphore (see ssam_controller_lock()
 * and ssam_controller_unlock() for that).
 *
 * See ssam_controller_stateunlock() for the corresponding unlock function.
 */
void ssam_controller_statelock(struct ssam_controller *c)
{}
EXPORT_SYMBOL_GPL();

/**
 * ssam_controller_stateunlock() - Unlock controller state transitions.
 * @c: The controller to unlock.
 *
 * See ssam_controller_statelock() for the corresponding lock function.
 */
void ssam_controller_stateunlock(struct ssam_controller *c)
{}
EXPORT_SYMBOL_GPL();

/**
 * ssam_controller_lock() - Acquire the main controller lock.
 * @c: The controller to lock.
 *
 * This lock must be held for any state transitions, including transition to
 * suspend/resumed states and during shutdown. See ssam_controller_statelock()
 * for more details on controller locking.
 *
 * See ssam_controller_unlock() for the corresponding unlock function.
 */
void ssam_controller_lock(struct ssam_controller *c)
{}

/*
 * ssam_controller_unlock() - Release the main controller lock.
 * @c: The controller to unlock.
 *
 * See ssam_controller_lock() for the corresponding lock function.
 */
void ssam_controller_unlock(struct ssam_controller *c)
{}

static void ssam_handle_event(struct ssh_rtl *rtl,
			      const struct ssh_command *cmd,
			      const struct ssam_span *data)
{}

static const struct ssh_rtl_ops ssam_rtl_ops =;

static bool ssam_notifier_is_empty(struct ssam_controller *ctrl);
static void ssam_notifier_unregister_all(struct ssam_controller *ctrl);

#define SSAM_SSH_DSM_REVISION

/* d5e383e1-d892-4a76-89fc-f6aaae7ed5b5 */
static const guid_t SSAM_SSH_DSM_GUID =;

enum ssh_dsm_fn {};

static int ssam_dsm_get_functions(acpi_handle handle, u64 *funcs)
{}

static int ssam_dsm_load_u32(acpi_handle handle, u64 funcs, u64 func, u32 *ret)
{}

/**
 * ssam_controller_caps_load_from_acpi() - Load controller capabilities from
 * ACPI _DSM.
 * @handle: The handle of the ACPI controller/SSH device.
 * @caps:   Where to store the capabilities in.
 *
 * Initializes the given controller capabilities with default values, then
 * checks and, if the respective _DSM functions are available, loads the
 * actual capabilities from the _DSM.
 *
 * Return: Returns zero on success, a negative error code on failure.
 */
static
int ssam_controller_caps_load_from_acpi(acpi_handle handle,
					struct ssam_controller_caps *caps)
{}

/**
 * ssam_controller_caps_load_from_of() - Load controller capabilities from OF/DT.
 * @dev:  A pointer to the controller device
 * @caps: Where to store the capabilities in.
 *
 * Return: Returns zero on success, a negative error code on failure.
 */
static int ssam_controller_caps_load_from_of(struct device *dev, struct ssam_controller_caps *caps)
{}

/**
 * ssam_controller_caps_load() - Load controller capabilities
 * @dev:  A pointer to the controller device
 * @caps: Where to store the capabilities in.
 *
 * Return: Returns zero on success, a negative error code on failure.
 */
static int ssam_controller_caps_load(struct device *dev, struct ssam_controller_caps *caps)
{}

/**
 * ssam_controller_init() - Initialize SSAM controller.
 * @ctrl:   The controller to initialize.
 * @serdev: The serial device representing the underlying data transport.
 *
 * Initializes the given controller. Does neither start receiver nor
 * transmitter threads. After this call, the controller has to be hooked up to
 * the serdev core separately via &struct serdev_device_ops, relaying calls to
 * ssam_controller_receive_buf() and ssam_controller_write_wakeup(). Once the
 * controller has been hooked up, transmitter and receiver threads may be
 * started via ssam_controller_start(). These setup steps need to be completed
 * before controller can be used for requests.
 */
int ssam_controller_init(struct ssam_controller *ctrl,
			 struct serdev_device *serdev)
{}

/**
 * ssam_controller_start() - Start the receiver and transmitter threads of the
 * controller.
 * @ctrl: The controller.
 *
 * Note: When this function is called, the controller should be properly
 * hooked up to the serdev core via &struct serdev_device_ops. Please refer
 * to ssam_controller_init() for more details on controller initialization.
 *
 * This function must be called with the main controller lock held (i.e. by
 * calling ssam_controller_lock()).
 */
int ssam_controller_start(struct ssam_controller *ctrl)
{}

/*
 * SSAM_CTRL_SHUTDOWN_FLUSH_TIMEOUT - Timeout for flushing requests during
 * shutdown.
 *
 * Chosen to be larger than one full request timeout, including packets timing
 * out. This value should give ample time to complete any outstanding requests
 * during normal operation and account for the odd package timeout.
 */
#define SSAM_CTRL_SHUTDOWN_FLUSH_TIMEOUT

/**
 * ssam_controller_shutdown() - Shut down the controller.
 * @ctrl: The controller.
 *
 * Shuts down the controller by flushing all pending requests and stopping the
 * transmitter and receiver threads. All requests submitted after this call
 * will fail with %-ESHUTDOWN. While it is discouraged to do so, this function
 * is safe to use in parallel with ongoing request submission.
 *
 * In the course of this shutdown procedure, all currently registered
 * notifiers will be unregistered. It is, however, strongly recommended to not
 * rely on this behavior, and instead the party registering the notifier
 * should unregister it before the controller gets shut down, e.g. via the
 * SSAM bus which guarantees client devices to be removed before a shutdown.
 *
 * Note that events may still be pending after this call, but, due to the
 * notifiers being unregistered, these events will be dropped when the
 * controller is subsequently destroyed via ssam_controller_destroy().
 *
 * This function must be called with the main controller lock held (i.e. by
 * calling ssam_controller_lock()).
 */
void ssam_controller_shutdown(struct ssam_controller *ctrl)
{}

/**
 * ssam_controller_destroy() - Destroy the controller and free its resources.
 * @ctrl: The controller.
 *
 * Ensures that all resources associated with the controller get freed. This
 * function should only be called after the controller has been stopped via
 * ssam_controller_shutdown(). In general, this function should not be called
 * directly. The only valid place to call this function directly is during
 * initialization, before the controller has been fully initialized and passed
 * to other processes. This function is called automatically when the
 * reference count of the controller reaches zero.
 *
 * This function must be called with the main controller lock held (i.e. by
 * calling ssam_controller_lock()).
 */
void ssam_controller_destroy(struct ssam_controller *ctrl)
{}

/**
 * ssam_controller_suspend() - Suspend the controller.
 * @ctrl: The controller to suspend.
 *
 * Marks the controller as suspended. Note that display-off and D0-exit
 * notifications have to be sent manually before transitioning the controller
 * into the suspended state via this function.
 *
 * See ssam_controller_resume() for the corresponding resume function.
 *
 * Return: Returns %-EINVAL if the controller is currently not in the
 * "started" state.
 */
int ssam_controller_suspend(struct ssam_controller *ctrl)
{}

/**
 * ssam_controller_resume() - Resume the controller from suspend.
 * @ctrl: The controller to resume.
 *
 * Resume the controller from the suspended state it was put into via
 * ssam_controller_suspend(). This function does not issue display-on and
 * D0-entry notifications. If required, those have to be sent manually after
 * this call.
 *
 * Return: Returns %-EINVAL if the controller is currently not suspended.
 */
int ssam_controller_resume(struct ssam_controller *ctrl)
{}


/* -- Top-level request interface ------------------------------------------- */

/**
 * ssam_request_write_data() - Construct and write SAM request message to
 * buffer.
 * @buf:  The buffer to write the data to.
 * @ctrl: The controller via which the request will be sent.
 * @spec: The request data and specification.
 *
 * Constructs a SAM/SSH request message and writes it to the provided buffer.
 * The request and transport counters, specifically RQID and SEQ, will be set
 * in this call. These counters are obtained from the controller. It is thus
 * only valid to send the resulting message via the controller specified here.
 *
 * For calculation of the required buffer size, refer to the
 * SSH_COMMAND_MESSAGE_LENGTH() macro.
 *
 * Return: Returns the number of bytes used in the buffer on success. Returns
 * %-EINVAL if the payload length provided in the request specification is too
 * large (larger than %SSH_COMMAND_MAX_PAYLOAD_SIZE) or if the provided buffer
 * is too small.
 */
ssize_t ssam_request_write_data(struct ssam_span *buf,
				struct ssam_controller *ctrl,
				const struct ssam_request *spec)
{}
EXPORT_SYMBOL_GPL();

static void ssam_request_sync_complete(struct ssh_request *rqst,
				       const struct ssh_command *cmd,
				       const struct ssam_span *data, int status)
{}

static void ssam_request_sync_release(struct ssh_request *rqst)
{}

static const struct ssh_request_ops ssam_request_sync_ops =;

/**
 * ssam_request_sync_alloc() - Allocate a synchronous request.
 * @payload_len: The length of the request payload.
 * @flags:       Flags used for allocation.
 * @rqst:        Where to store the pointer to the allocated request.
 * @buffer:      Where to store the buffer descriptor for the message buffer of
 *               the request.
 *
 * Allocates a synchronous request with corresponding message buffer. The
 * request still needs to be initialized ssam_request_sync_init() before
 * it can be submitted, and the message buffer data must still be set to the
 * returned buffer via ssam_request_sync_set_data() after it has been filled,
 * if need be with adjusted message length.
 *
 * After use, the request and its corresponding message buffer should be freed
 * via ssam_request_sync_free(). The buffer must not be freed separately.
 *
 * Return: Returns zero on success, %-ENOMEM if the request could not be
 * allocated.
 */
int ssam_request_sync_alloc(size_t payload_len, gfp_t flags,
			    struct ssam_request_sync **rqst,
			    struct ssam_span *buffer)
{}
EXPORT_SYMBOL_GPL();

/**
 * ssam_request_sync_free() - Free a synchronous request.
 * @rqst: The request to be freed.
 *
 * Free a synchronous request and its corresponding buffer allocated with
 * ssam_request_sync_alloc(). Do not use for requests allocated on the stack
 * or via any other function.
 *
 * Warning: The caller must ensure that the request is not in use any more.
 * I.e. the caller must ensure that it has the only reference to the request
 * and the request is not currently pending. This means that the caller has
 * either never submitted the request, request submission has failed, or the
 * caller has waited until the submitted request has been completed via
 * ssam_request_sync_wait().
 */
void ssam_request_sync_free(struct ssam_request_sync *rqst)
{}
EXPORT_SYMBOL_GPL();

/**
 * ssam_request_sync_init() - Initialize a synchronous request struct.
 * @rqst:  The request to initialize.
 * @flags: The request flags.
 *
 * Initializes the given request struct. Does not initialize the request
 * message data. This has to be done explicitly after this call via
 * ssam_request_sync_set_data() and the actual message data has to be written
 * via ssam_request_write_data().
 *
 * Return: Returns zero on success or %-EINVAL if the given flags are invalid.
 */
int ssam_request_sync_init(struct ssam_request_sync *rqst,
			   enum ssam_request_flags flags)
{}
EXPORT_SYMBOL_GPL();

/**
 * ssam_request_sync_submit() - Submit a synchronous request.
 * @ctrl: The controller with which to submit the request.
 * @rqst: The request to submit.
 *
 * Submit a synchronous request. The request has to be initialized and
 * properly set up, including response buffer (may be %NULL if no response is
 * expected) and command message data. This function does not wait for the
 * request to be completed.
 *
 * If this function succeeds, ssam_request_sync_wait() must be used to ensure
 * that the request has been completed before the response data can be
 * accessed and/or the request can be freed. On failure, the request may
 * immediately be freed.
 *
 * This function may only be used if the controller is active, i.e. has been
 * initialized and not suspended.
 */
int ssam_request_sync_submit(struct ssam_controller *ctrl,
			     struct ssam_request_sync *rqst)
{}
EXPORT_SYMBOL_GPL();

/**
 * ssam_request_do_sync() - Execute a synchronous request.
 * @ctrl: The controller via which the request will be submitted.
 * @spec: The request specification and payload.
 * @rsp:  The response buffer.
 *
 * Allocates a synchronous request with its message data buffer on the heap
 * via ssam_request_sync_alloc(), fully initializes it via the provided
 * request specification, submits it, and finally waits for its completion
 * before freeing it and returning its status.
 *
 * Return: Returns the status of the request or any failure during setup.
 */
int ssam_request_do_sync(struct ssam_controller *ctrl,
			 const struct ssam_request *spec,
			 struct ssam_response *rsp)
{}
EXPORT_SYMBOL_GPL();

/**
 * ssam_request_do_sync_with_buffer() - Execute a synchronous request with the
 * provided buffer as back-end for the message buffer.
 * @ctrl: The controller via which the request will be submitted.
 * @spec: The request specification and payload.
 * @rsp:  The response buffer.
 * @buf:  The buffer for the request message data.
 *
 * Allocates a synchronous request struct on the stack, fully initializes it
 * using the provided buffer as message data buffer, submits it, and then
 * waits for its completion before returning its status. The
 * SSH_COMMAND_MESSAGE_LENGTH() macro can be used to compute the required
 * message buffer size.
 *
 * This function does essentially the same as ssam_request_do_sync(), but
 * instead of dynamically allocating the request and message data buffer, it
 * uses the provided message data buffer and stores the (small) request struct
 * on the heap.
 *
 * Return: Returns the status of the request or any failure during setup.
 */
int ssam_request_do_sync_with_buffer(struct ssam_controller *ctrl,
				     const struct ssam_request *spec,
				     struct ssam_response *rsp,
				     struct ssam_span *buf)
{}
EXPORT_SYMBOL_GPL();


/* -- Internal SAM requests. ------------------------------------------------ */

SSAM_DEFINE_SYNC_REQUEST_R(ssam_ssh_get_firmware_version, __le32, {
	.target_category = SSAM_SSH_TC_SAM,
	.target_id       = SSAM_SSH_TID_SAM,
	.command_id      = 0x13,
	.instance_id     = 0x00,
});

SSAM_DEFINE_SYNC_REQUEST_R(ssam_ssh_notif_display_off, u8, {
	.target_category = SSAM_SSH_TC_SAM,
	.target_id       = SSAM_SSH_TID_SAM,
	.command_id      = 0x15,
	.instance_id     = 0x00,
});

SSAM_DEFINE_SYNC_REQUEST_R(ssam_ssh_notif_display_on, u8, {
	.target_category = SSAM_SSH_TC_SAM,
	.target_id       = SSAM_SSH_TID_SAM,
	.command_id      = 0x16,
	.instance_id     = 0x00,
});

SSAM_DEFINE_SYNC_REQUEST_R(ssam_ssh_notif_d0_exit, u8, {
	.target_category = SSAM_SSH_TC_SAM,
	.target_id       = SSAM_SSH_TID_SAM,
	.command_id      = 0x33,
	.instance_id     = 0x00,
});

SSAM_DEFINE_SYNC_REQUEST_R(ssam_ssh_notif_d0_entry, u8, {
	.target_category = SSAM_SSH_TC_SAM,
	.target_id       = SSAM_SSH_TID_SAM,
	.command_id      = 0x34,
	.instance_id     = 0x00,
});

/**
 * struct ssh_notification_params - Command payload to enable/disable SSH
 * notifications.
 * @target_category: The target category for which notifications should be
 *                   enabled/disabled.
 * @flags:           Flags determining how notifications are being sent.
 * @request_id:      The request ID that is used to send these notifications.
 * @instance_id:     The specific instance in the given target category for
 *                   which notifications should be enabled.
 */
struct ssh_notification_params {} __packed;

static_assert();

static int __ssam_ssh_event_request(struct ssam_controller *ctrl,
				    struct ssam_event_registry reg, u8 cid,
				    struct ssam_event_id id, u8 flags)
{}

/**
 * ssam_ssh_event_enable() - Enable SSH event.
 * @ctrl:  The controller for which to enable the event.
 * @reg:   The event registry describing what request to use for enabling and
 *         disabling the event.
 * @id:    The event identifier.
 * @flags: The event flags.
 *
 * Enables the specified event on the EC. This function does not manage
 * reference counting of enabled events and is basically only a wrapper for
 * the raw EC request. If the specified event is already enabled, the EC will
 * ignore this request.
 *
 * Return: Returns the status of the executed SAM request (zero on success and
 * negative on direct failure) or %-EPROTO if the request response indicates a
 * failure.
 */
static int ssam_ssh_event_enable(struct ssam_controller *ctrl,
				 struct ssam_event_registry reg,
				 struct ssam_event_id id, u8 flags)
{}

/**
 * ssam_ssh_event_disable() - Disable SSH event.
 * @ctrl:  The controller for which to disable the event.
 * @reg:   The event registry describing what request to use for enabling and
 *         disabling the event (must be same as used when enabling the event).
 * @id:    The event identifier.
 * @flags: The event flags (likely ignored for disabling of events).
 *
 * Disables the specified event on the EC. This function does not manage
 * reference counting of enabled events and is basically only a wrapper for
 * the raw EC request. If the specified event is already disabled, the EC will
 * ignore this request.
 *
 * Return: Returns the status of the executed SAM request (zero on success and
 * negative on direct failure) or %-EPROTO if the request response indicates a
 * failure.
 */
static int ssam_ssh_event_disable(struct ssam_controller *ctrl,
				  struct ssam_event_registry reg,
				  struct ssam_event_id id, u8 flags)
{}


/* -- Wrappers for internal SAM requests. ----------------------------------- */

/**
 * ssam_get_firmware_version() - Get the SAM/EC firmware version.
 * @ctrl:    The controller.
 * @version: Where to store the version number.
 *
 * Return: Returns zero on success or the status of the executed SAM request
 * if that request failed.
 */
int ssam_get_firmware_version(struct ssam_controller *ctrl, u32 *version)
{}

/**
 * ssam_ctrl_notif_display_off() - Notify EC that the display has been turned
 * off.
 * @ctrl: The controller.
 *
 * Notify the EC that the display has been turned off and the driver may enter
 * a lower-power state. This will prevent events from being sent directly.
 * Rather, the EC signals an event by pulling the wakeup GPIO high for as long
 * as there are pending events. The events then need to be manually released,
 * one by one, via the GPIO callback request. All pending events accumulated
 * during this state can also be released by issuing the display-on
 * notification, e.g. via ssam_ctrl_notif_display_on(), which will also reset
 * the GPIO.
 *
 * On some devices, specifically ones with an integrated keyboard, the keyboard
 * backlight will be turned off by this call.
 *
 * This function will only send the display-off notification command if
 * display notifications are supported by the EC. Currently all known devices
 * support these notifications.
 *
 * Use ssam_ctrl_notif_display_on() to reverse the effects of this function.
 *
 * Return: Returns zero on success or if no request has been executed, the
 * status of the executed SAM request if that request failed, or %-EPROTO if
 * an unexpected response has been received.
 */
int ssam_ctrl_notif_display_off(struct ssam_controller *ctrl)
{}

/**
 * ssam_ctrl_notif_display_on() - Notify EC that the display has been turned on.
 * @ctrl: The controller.
 *
 * Notify the EC that the display has been turned back on and the driver has
 * exited its lower-power state. This notification is the counterpart to the
 * display-off notification sent via ssam_ctrl_notif_display_off() and will
 * reverse its effects, including resetting events to their default behavior.
 *
 * This function will only send the display-on notification command if display
 * notifications are supported by the EC. Currently all known devices support
 * these notifications.
 *
 * See ssam_ctrl_notif_display_off() for more details.
 *
 * Return: Returns zero on success or if no request has been executed, the
 * status of the executed SAM request if that request failed, or %-EPROTO if
 * an unexpected response has been received.
 */
int ssam_ctrl_notif_display_on(struct ssam_controller *ctrl)
{}

/**
 * ssam_ctrl_notif_d0_exit() - Notify EC that the driver/device exits the D0
 * power state.
 * @ctrl: The controller
 *
 * Notifies the EC that the driver prepares to exit the D0 power state in
 * favor of a lower-power state. Exact effects of this function related to the
 * EC are currently unknown.
 *
 * This function will only send the D0-exit notification command if D0-state
 * notifications are supported by the EC. Only newer Surface generations
 * support these notifications.
 *
 * Use ssam_ctrl_notif_d0_entry() to reverse the effects of this function.
 *
 * Return: Returns zero on success or if no request has been executed, the
 * status of the executed SAM request if that request failed, or %-EPROTO if
 * an unexpected response has been received.
 */
int ssam_ctrl_notif_d0_exit(struct ssam_controller *ctrl)
{}

/**
 * ssam_ctrl_notif_d0_entry() - Notify EC that the driver/device enters the D0
 * power state.
 * @ctrl: The controller
 *
 * Notifies the EC that the driver has exited a lower-power state and entered
 * the D0 power state. Exact effects of this function related to the EC are
 * currently unknown.
 *
 * This function will only send the D0-entry notification command if D0-state
 * notifications are supported by the EC. Only newer Surface generations
 * support these notifications.
 *
 * See ssam_ctrl_notif_d0_exit() for more details.
 *
 * Return: Returns zero on success or if no request has been executed, the
 * status of the executed SAM request if that request failed, or %-EPROTO if
 * an unexpected response has been received.
 */
int ssam_ctrl_notif_d0_entry(struct ssam_controller *ctrl)
{}


/* -- Top-level event registry interface. ----------------------------------- */

/**
 * ssam_nf_refcount_enable() - Enable event for reference count entry if it has
 * not already been enabled.
 * @ctrl:  The controller to enable the event on.
 * @entry: The reference count entry for the event to be enabled.
 * @flags: The flags used for enabling the event on the EC.
 *
 * Enable the event associated with the given reference count entry if the
 * reference count equals one, i.e. the event has not previously been enabled.
 * If the event has already been enabled (i.e. reference count not equal to
 * one), check that the flags used for enabling match and warn about this if
 * they do not.
 *
 * This does not modify the reference count itself, which is done with
 * ssam_nf_refcount_inc() / ssam_nf_refcount_dec().
 *
 * Note: ``nf->lock`` must be held when calling this function.
 *
 * Return: Returns zero on success. If the event is enabled by this call,
 * returns the status of the event-enable EC command.
 */
static int ssam_nf_refcount_enable(struct ssam_controller *ctrl,
				   struct ssam_nf_refcount_entry *entry, u8 flags)
{}

/**
 * ssam_nf_refcount_disable_free() - Disable event for reference count entry if
 * it is no longer in use and free the corresponding entry.
 * @ctrl:  The controller to disable the event on.
 * @entry: The reference count entry for the event to be disabled.
 * @flags: The flags used for enabling the event on the EC.
 * @ec:    Flag specifying if the event should actually be disabled on the EC.
 *
 * If ``ec`` equals ``true`` and the reference count equals zero (i.e. the
 * event is no longer requested by any client), the specified event will be
 * disabled on the EC via the corresponding request.
 *
 * If ``ec`` equals ``false``, no request will be sent to the EC and the event
 * can be considered in a detached state (i.e. no longer used but still
 * enabled). Disabling an event via this method may be required for
 * hot-removable devices, where event disable requests may time out after the
 * device has been physically removed.
 *
 * In both cases, if the reference count equals zero, the corresponding
 * reference count entry will be freed. The reference count entry must not be
 * used any more after a call to this function.
 *
 * Also checks if the flags used for disabling the event match the flags used
 * for enabling the event and warns if they do not (regardless of reference
 * count).
 *
 * This does not modify the reference count itself, which is done with
 * ssam_nf_refcount_inc() / ssam_nf_refcount_dec().
 *
 * Note: ``nf->lock`` must be held when calling this function.
 *
 * Return: Returns zero on success. If the event is disabled by this call,
 * returns the status of the event-enable EC command.
 */
static int ssam_nf_refcount_disable_free(struct ssam_controller *ctrl,
					 struct ssam_nf_refcount_entry *entry, u8 flags, bool ec)
{}

/**
 * ssam_notifier_register() - Register an event notifier.
 * @ctrl: The controller to register the notifier on.
 * @n:    The event notifier to register.
 *
 * Register an event notifier. Increment the usage counter of the associated
 * SAM event if the notifier is not marked as an observer. If the event is not
 * marked as an observer and is currently not enabled, it will be enabled
 * during this call. If the notifier is marked as an observer, no attempt will
 * be made at enabling any event and no reference count will be modified.
 *
 * Notifiers marked as observers do not need to be associated with one specific
 * event, i.e. as long as no event matching is performed, only the event target
 * category needs to be set.
 *
 * Return: Returns zero on success, %-ENOSPC if there have already been
 * %INT_MAX notifiers for the event ID/type associated with the notifier block
 * registered, %-ENOMEM if the corresponding event entry could not be
 * allocated. If this is the first time that a notifier block is registered
 * for the specific associated event, returns the status of the event-enable
 * EC-command.
 */
int ssam_notifier_register(struct ssam_controller *ctrl, struct ssam_event_notifier *n)
{}
EXPORT_SYMBOL_GPL();

/**
 * __ssam_notifier_unregister() - Unregister an event notifier.
 * @ctrl:    The controller the notifier has been registered on.
 * @n:       The event notifier to unregister.
 * @disable: Whether to disable the corresponding event on the EC.
 *
 * Unregister an event notifier. Decrement the usage counter of the associated
 * SAM event if the notifier is not marked as an observer. If the usage counter
 * reaches zero and ``disable`` equals ``true``, the event will be disabled.
 *
 * Useful for hot-removable devices, where communication may fail once the
 * device has been physically removed. In that case, specifying ``disable`` as
 * ``false`` avoids communication with the EC.
 *
 * Return: Returns zero on success, %-ENOENT if the given notifier block has
 * not been registered on the controller. If the given notifier block was the
 * last one associated with its specific event, returns the status of the
 * event-disable EC-command.
 */
int __ssam_notifier_unregister(struct ssam_controller *ctrl, struct ssam_event_notifier *n,
			       bool disable)
{}
EXPORT_SYMBOL_GPL();

/**
 * ssam_controller_event_enable() - Enable the specified event.
 * @ctrl:  The controller to enable the event for.
 * @reg:   The event registry to use for enabling the event.
 * @id:    The event ID specifying the event to be enabled.
 * @flags: The SAM event flags used for enabling the event.
 *
 * Increment the event reference count of the specified event. If the event has
 * not been enabled previously, it will be enabled by this call.
 *
 * Note: In general, ssam_notifier_register() with a non-observer notifier
 * should be preferred for enabling/disabling events, as this will guarantee
 * proper ordering and event forwarding in case of errors during event
 * enabling/disabling.
 *
 * Return: Returns zero on success, %-ENOSPC if the reference count for the
 * specified event has reached its maximum, %-ENOMEM if the corresponding event
 * entry could not be allocated. If this is the first time that this event has
 * been enabled (i.e. the reference count was incremented from zero to one by
 * this call), returns the status of the event-enable EC-command.
 */
int ssam_controller_event_enable(struct ssam_controller *ctrl,
				 struct ssam_event_registry reg,
				 struct ssam_event_id id, u8 flags)
{}
EXPORT_SYMBOL_GPL();

/**
 * ssam_controller_event_disable() - Disable the specified event.
 * @ctrl:  The controller to disable the event for.
 * @reg:   The event registry to use for disabling the event.
 * @id:    The event ID specifying the event to be disabled.
 * @flags: The flags used when enabling the event.
 *
 * Decrement the reference count of the specified event. If the reference count
 * reaches zero, the event will be disabled.
 *
 * Note: In general, ssam_notifier_register()/ssam_notifier_unregister() with a
 * non-observer notifier should be preferred for enabling/disabling events, as
 * this will guarantee proper ordering and event forwarding in case of errors
 * during event enabling/disabling.
 *
 * Return: Returns zero on success, %-ENOENT if the given event has not been
 * enabled on the controller. If the reference count of the event reaches zero
 * during this call, returns the status of the event-disable EC-command.
 */
int ssam_controller_event_disable(struct ssam_controller *ctrl,
				  struct ssam_event_registry reg,
				  struct ssam_event_id id, u8 flags)
{}
EXPORT_SYMBOL_GPL();

/**
 * ssam_notifier_disable_registered() - Disable events for all registered
 * notifiers.
 * @ctrl: The controller for which to disable the notifiers/events.
 *
 * Disables events for all currently registered notifiers. In case of an error
 * (EC command failing), all previously disabled events will be restored and
 * the error code returned.
 *
 * This function is intended to disable all events prior to hibernation entry.
 * See ssam_notifier_restore_registered() to restore/re-enable all events
 * disabled with this function.
 *
 * Note that this function will not disable events for notifiers registered
 * after calling this function. It should thus be made sure that no new
 * notifiers are going to be added after this call and before the corresponding
 * call to ssam_notifier_restore_registered().
 *
 * Return: Returns zero on success. In case of failure returns the error code
 * returned by the failed EC command to disable an event.
 */
int ssam_notifier_disable_registered(struct ssam_controller *ctrl)
{}

/**
 * ssam_notifier_restore_registered() - Restore/re-enable events for all
 * registered notifiers.
 * @ctrl: The controller for which to restore the notifiers/events.
 *
 * Restores/re-enables all events for which notifiers have been registered on
 * the given controller. In case of a failure, the error is logged and the
 * function continues to try and enable the remaining events.
 *
 * This function is intended to restore/re-enable all registered events after
 * hibernation. See ssam_notifier_disable_registered() for the counter part
 * disabling the events and more details.
 */
void ssam_notifier_restore_registered(struct ssam_controller *ctrl)
{}

/**
 * ssam_notifier_is_empty() - Check if there are any registered notifiers.
 * @ctrl: The controller to check on.
 *
 * Return: Returns %true if there are currently no notifiers registered on the
 * controller, %false otherwise.
 */
static bool ssam_notifier_is_empty(struct ssam_controller *ctrl)
{}

/**
 * ssam_notifier_unregister_all() - Unregister all currently registered
 * notifiers.
 * @ctrl: The controller to unregister the notifiers on.
 *
 * Unregisters all currently registered notifiers. This function is used to
 * ensure that all notifiers will be unregistered and associated
 * entries/resources freed when the controller is being shut down.
 */
static void ssam_notifier_unregister_all(struct ssam_controller *ctrl)
{}


/* -- Wakeup IRQ. ----------------------------------------------------------- */

static irqreturn_t ssam_irq_handle(int irq, void *dev_id)
{}

/**
 * ssam_irq_setup() - Set up SAM EC wakeup-GPIO interrupt.
 * @ctrl: The controller for which the IRQ should be set up.
 *
 * Set up an IRQ for the wakeup-GPIO pin of the SAM EC. This IRQ can be used
 * to wake the device from a low power state.
 *
 * Note that this IRQ can only be triggered while the EC is in the display-off
 * state. In this state, events are not sent to the host in the usual way.
 * Instead the wakeup-GPIO gets pulled to "high" as long as there are pending
 * events and these events need to be released one-by-one via the GPIO
 * callback request, either until there are no events left and the GPIO is
 * reset, or all at once by transitioning the EC out of the display-off state,
 * which will also clear the GPIO.
 *
 * Not all events, however, should trigger a full system wakeup. Instead the
 * driver should, if necessary, inspect and forward each event to the
 * corresponding subsystem, which in turn should decide if the system needs to
 * be woken up. This logic has not been implemented yet, thus wakeup by this
 * IRQ should be disabled by default to avoid spurious wake-ups, caused, for
 * example, by the remaining battery percentage changing. Refer to comments in
 * this function and comments in the corresponding IRQ handler for more
 * details on how this should be implemented.
 *
 * See also ssam_ctrl_notif_display_off() and ssam_ctrl_notif_display_off()
 * for functions to transition the EC into and out of the display-off state as
 * well as more details on it.
 *
 * The IRQ is disabled by default and has to be enabled before it can wake up
 * the device from suspend via ssam_irq_arm_for_wakeup(). On teardown, the IRQ
 * should be freed via ssam_irq_free().
 */
int ssam_irq_setup(struct ssam_controller *ctrl)
{}

/**
 * ssam_irq_free() - Free SAM EC wakeup-GPIO interrupt.
 * @ctrl: The controller for which the IRQ should be freed.
 *
 * Free the wakeup-GPIO IRQ previously set-up via ssam_irq_setup().
 */
void ssam_irq_free(struct ssam_controller *ctrl)
{}

/**
 * ssam_irq_arm_for_wakeup() - Arm the EC IRQ for wakeup, if enabled.
 * @ctrl: The controller for which the IRQ should be armed.
 *
 * Sets up the IRQ so that it can be used to wake the device. Specifically,
 * this function enables the irq and then, if the device is allowed to wake up
 * the system, calls enable_irq_wake(). See ssam_irq_disarm_wakeup() for the
 * corresponding function to disable the IRQ.
 *
 * This function is intended to arm the IRQ before entering S2idle suspend.
 *
 * Note: calls to ssam_irq_arm_for_wakeup() and ssam_irq_disarm_wakeup() must
 * be balanced.
 */
int ssam_irq_arm_for_wakeup(struct ssam_controller *ctrl)
{}

/**
 * ssam_irq_disarm_wakeup() - Disarm the wakeup IRQ.
 * @ctrl: The controller for which the IRQ should be disarmed.
 *
 * Disarm the IRQ previously set up for wake via ssam_irq_arm_for_wakeup().
 *
 * This function is intended to disarm the IRQ after exiting S2idle suspend.
 *
 * Note: calls to ssam_irq_arm_for_wakeup() and ssam_irq_disarm_wakeup() must
 * be balanced.
 */
void ssam_irq_disarm_wakeup(struct ssam_controller *ctrl)
{}