linux/drivers/remoteproc/remoteproc_elf_loader.c

// SPDX-License-Identifier: GPL-2.0-only
/*
 * Remote Processor Framework ELF loader
 *
 * Copyright (C) 2011 Texas Instruments, Inc.
 * Copyright (C) 2011 Google, Inc.
 *
 * Ohad Ben-Cohen <[email protected]>
 * Brian Swetland <[email protected]>
 * Mark Grosen <[email protected]>
 * Fernando Guzman Lugo <[email protected]>
 * Suman Anna <[email protected]>
 * Robert Tivy <[email protected]>
 * Armando Uribe De Leon <[email protected]>
 * Sjur Brændeland <[email protected]>
 */

#define pr_fmt(fmt)

#include <linux/module.h>
#include <linux/firmware.h>
#include <linux/remoteproc.h>
#include <linux/elf.h>

#include "remoteproc_internal.h"
#include "remoteproc_elf_helpers.h"

/**
 * rproc_elf_sanity_check() - Sanity Check for ELF32/ELF64 firmware image
 * @rproc: the remote processor handle
 * @fw: the ELF firmware image
 *
 * Make sure this fw image is sane (ie a correct ELF32/ELF64 file).
 *
 * Return: 0 on success and -EINVAL upon any failure
 */
int rproc_elf_sanity_check(struct rproc *rproc, const struct firmware *fw)
{}
EXPORT_SYMBOL();

/**
 * rproc_elf_get_boot_addr() - Get rproc's boot address.
 * @rproc: the remote processor handle
 * @fw: the ELF firmware image
 *
 * Note that the boot address is not a configurable property of all remote
 * processors. Some will always boot at a specific hard-coded address.
 *
 * Return: entry point address of the ELF image
 *
 */
u64 rproc_elf_get_boot_addr(struct rproc *rproc, const struct firmware *fw)
{}
EXPORT_SYMBOL();

/**
 * rproc_elf_load_segments() - load firmware segments to memory
 * @rproc: remote processor which will be booted using these fw segments
 * @fw: the ELF firmware image
 *
 * This function loads the firmware segments to memory, where the remote
 * processor expects them.
 *
 * Some remote processors will expect their code and data to be placed
 * in specific device addresses, and can't have them dynamically assigned.
 *
 * We currently support only those kind of remote processors, and expect
 * the program header's paddr member to contain those addresses. We then go
 * through the physically contiguous "carveout" memory regions which we
 * allocated (and mapped) earlier on behalf of the remote processor,
 * and "translate" device address to kernel addresses, so we can copy the
 * segments where they are expected.
 *
 * Currently we only support remote processors that required carveout
 * allocations and got them mapped onto their iommus. Some processors
 * might be different: they might not have iommus, and would prefer to
 * directly allocate memory for every segment/resource. This is not yet
 * supported, though.
 *
 * Return: 0 on success and an appropriate error code otherwise
 */
int rproc_elf_load_segments(struct rproc *rproc, const struct firmware *fw)
{}
EXPORT_SYMBOL();

static const void *
find_table(struct device *dev, const struct firmware *fw)
{}

/**
 * rproc_elf_load_rsc_table() - load the resource table
 * @rproc: the rproc handle
 * @fw: the ELF firmware image
 *
 * This function finds the resource table inside the remote processor's
 * firmware, load it into the @cached_table and update @table_ptr.
 *
 * Return: 0 on success, negative errno on failure.
 */
int rproc_elf_load_rsc_table(struct rproc *rproc, const struct firmware *fw)
{}
EXPORT_SYMBOL();

/**
 * rproc_elf_find_loaded_rsc_table() - find the loaded resource table
 * @rproc: the rproc handle
 * @fw: the ELF firmware image
 *
 * This function finds the location of the loaded resource table. Don't
 * call this function if the table wasn't loaded yet - it's a bug if you do.
 *
 * Return: pointer to the resource table if it is found or NULL otherwise.
 * If the table wasn't loaded yet the result is unspecified.
 */
struct resource_table *rproc_elf_find_loaded_rsc_table(struct rproc *rproc,
						       const struct firmware *fw)
{}
EXPORT_SYMBOL();