// SPDX-License-Identifier: GPL-2.0-or-later /* * NET Generic infrastructure for Network protocols. * * Authors: Arnaldo Carvalho de Melo <[email protected]> * * From code originally in include/net/tcp.h */ #include <linux/module.h> #include <linux/random.h> #include <linux/slab.h> #include <linux/string.h> #include <linux/tcp.h> #include <linux/vmalloc.h> #include <net/request_sock.h> /* * Maximum number of SYN_RECV sockets in queue per LISTEN socket. * One SYN_RECV socket costs about 80bytes on a 32bit machine. * It would be better to replace it with a global counter for all sockets * but then some measure against one socket starving all other sockets * would be needed. * * The minimum value of it is 128. Experiments with real servers show that * it is absolutely not enough even at 100conn/sec. 256 cures most * of problems. * This value is adjusted to 128 for low memory machines, * and it will increase in proportion to the memory of machine. * Note : Dont forget somaxconn that may limit backlog too. */ void reqsk_queue_alloc(struct request_sock_queue *queue) { … } /* * This function is called to set a Fast Open socket's "fastopen_rsk" field * to NULL when a TFO socket no longer needs to access the request_sock. * This happens only after 3WHS has been either completed or aborted (e.g., * RST is received). * * Before TFO, a child socket is created only after 3WHS is completed, * hence it never needs to access the request_sock. things get a lot more * complex with TFO. A child socket, accepted or not, has to access its * request_sock for 3WHS processing, e.g., to retransmit SYN-ACK pkts, * until 3WHS is either completed or aborted. Afterwards the req will stay * until either the child socket is accepted, or in the rare case when the * listener is closed before the child is accepted. * * In short, a request socket is only freed after BOTH 3WHS has completed * (or aborted) and the child socket has been accepted (or listener closed). * When a child socket is accepted, its corresponding req->sk is set to * NULL since it's no longer needed. More importantly, "req->sk == NULL" * will be used by the code below to determine if a child socket has been * accepted or not, and the check is protected by the fastopenq->lock * described below. * * Note that fastopen_rsk is only accessed from the child socket's context * with its socket lock held. But a request_sock (req) can be accessed by * both its child socket through fastopen_rsk, and a listener socket through * icsk_accept_queue.rskq_accept_head. To protect the access a simple spin * lock per listener "icsk->icsk_accept_queue.fastopenq->lock" is created. * only in the rare case when both the listener and the child locks are held, * e.g., in inet_csk_listen_stop() do we not need to acquire the lock. * The lock also protects other fields such as fastopenq->qlen, which is * decremented by this function when fastopen_rsk is no longer needed. * * Note that another solution was to simply use the existing socket lock * from the listener. But first socket lock is difficult to use. It is not * a simple spin lock - one must consider sock_owned_by_user() and arrange * to use sk_add_backlog() stuff. But what really makes it infeasible is the * locking hierarchy violation. E.g., inet_csk_listen_stop() may try to * acquire a child's lock while holding listener's socket lock. A corner * case might also exist in tcp_v4_hnd_req() that will trigger this locking * order. * * This function also sets "treq->tfo_listener" to false. * treq->tfo_listener is used by the listener so it is protected by the * fastopenq->lock in this function. */ void reqsk_fastopen_remove(struct sock *sk, struct request_sock *req, bool reset) { … }