// SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause /* * Copyright (c) 2016-2018 Oracle. All rights reserved. * Copyright (c) 2014 Open Grid Computing, Inc. All rights reserved. * Copyright (c) 2005-2006 Network Appliance, Inc. All rights reserved. * * This software is available to you under a choice of one of two * licenses. You may choose to be licensed under the terms of the GNU * General Public License (GPL) Version 2, available from the file * COPYING in the main directory of this source tree, or the BSD-type * license below: * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials provided * with the distribution. * * Neither the name of the Network Appliance, Inc. nor the names of * its contributors may be used to endorse or promote products * derived from this software without specific prior written * permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * Author: Tom Tucker <[email protected]> */ /* Operation * * The main entry point is svc_rdma_recvfrom. This is called from * svc_recv when the transport indicates there is incoming data to * be read. "Data Ready" is signaled when an RDMA Receive completes, * or when a set of RDMA Reads complete. * * An svc_rqst is passed in. This structure contains an array of * free pages (rq_pages) that will contain the incoming RPC message. * * Short messages are moved directly into svc_rqst::rq_arg, and * the RPC Call is ready to be processed by the Upper Layer. * svc_rdma_recvfrom returns the length of the RPC Call message, * completing the reception of the RPC Call. * * However, when an incoming message has Read chunks, * svc_rdma_recvfrom must post RDMA Reads to pull the RPC Call's * data payload from the client. svc_rdma_recvfrom sets up the * RDMA Reads using pages in svc_rqst::rq_pages, which are * transferred to an svc_rdma_recv_ctxt for the duration of the * I/O. svc_rdma_recvfrom then returns zero, since the RPC message * is still not yet ready. * * When the Read chunk payloads have become available on the * server, "Data Ready" is raised again, and svc_recv calls * svc_rdma_recvfrom again. This second call may use a different * svc_rqst than the first one, thus any information that needs * to be preserved across these two calls is kept in an * svc_rdma_recv_ctxt. * * The second call to svc_rdma_recvfrom performs final assembly * of the RPC Call message, using the RDMA Read sink pages kept in * the svc_rdma_recv_ctxt. The xdr_buf is copied from the * svc_rdma_recv_ctxt to the second svc_rqst. The second call returns * the length of the completed RPC Call message. * * Page Management * * Pages under I/O must be transferred from the first svc_rqst to an * svc_rdma_recv_ctxt before the first svc_rdma_recvfrom call returns. * * The first svc_rqst supplies pages for RDMA Reads. These are moved * from rqstp::rq_pages into ctxt::pages. The consumed elements of * the rq_pages array are set to NULL and refilled with the first * svc_rdma_recvfrom call returns. * * During the second svc_rdma_recvfrom call, RDMA Read sink pages * are transferred from the svc_rdma_recv_ctxt to the second svc_rqst. */ #include <linux/slab.h> #include <linux/spinlock.h> #include <linux/unaligned.h> #include <rdma/ib_verbs.h> #include <rdma/rdma_cm.h> #include <linux/sunrpc/xdr.h> #include <linux/sunrpc/debug.h> #include <linux/sunrpc/rpc_rdma.h> #include <linux/sunrpc/svc_rdma.h> #include "xprt_rdma.h" #include <trace/events/rpcrdma.h> static void svc_rdma_wc_receive(struct ib_cq *cq, struct ib_wc *wc); static inline struct svc_rdma_recv_ctxt * svc_rdma_next_recv_ctxt(struct list_head *list) { … } static struct svc_rdma_recv_ctxt * svc_rdma_recv_ctxt_alloc(struct svcxprt_rdma *rdma) { … } static void svc_rdma_recv_ctxt_destroy(struct svcxprt_rdma *rdma, struct svc_rdma_recv_ctxt *ctxt) { … } /** * svc_rdma_recv_ctxts_destroy - Release all recv_ctxt's for an xprt * @rdma: svcxprt_rdma being torn down * */ void svc_rdma_recv_ctxts_destroy(struct svcxprt_rdma *rdma) { … } /** * svc_rdma_recv_ctxt_get - Allocate a recv_ctxt * @rdma: controlling svcxprt_rdma * * Returns a recv_ctxt or (rarely) NULL if none are available. */ struct svc_rdma_recv_ctxt *svc_rdma_recv_ctxt_get(struct svcxprt_rdma *rdma) { … } /** * svc_rdma_recv_ctxt_put - Return recv_ctxt to free list * @rdma: controlling svcxprt_rdma * @ctxt: object to return to the free list * */ void svc_rdma_recv_ctxt_put(struct svcxprt_rdma *rdma, struct svc_rdma_recv_ctxt *ctxt) { … } /** * svc_rdma_release_ctxt - Release transport-specific per-rqst resources * @xprt: the transport which owned the context * @vctxt: the context from rqstp->rq_xprt_ctxt or dr->xprt_ctxt * * Ensure that the recv_ctxt is released whether or not a Reply * was sent. For example, the client could close the connection, * or svc_process could drop an RPC, before the Reply is sent. */ void svc_rdma_release_ctxt(struct svc_xprt *xprt, void *vctxt) { … } static bool svc_rdma_refresh_recvs(struct svcxprt_rdma *rdma, unsigned int wanted) { … } /** * svc_rdma_post_recvs - Post initial set of Recv WRs * @rdma: fresh svcxprt_rdma * * Return values: * %true: Receive Queue initialization successful * %false: memory allocation or DMA error */ bool svc_rdma_post_recvs(struct svcxprt_rdma *rdma) { … } /** * svc_rdma_wc_receive - Invoked by RDMA provider for each polled Receive WC * @cq: Completion Queue context * @wc: Work Completion object * */ static void svc_rdma_wc_receive(struct ib_cq *cq, struct ib_wc *wc) { … } /** * svc_rdma_flush_recv_queues - Drain pending Receive work * @rdma: svcxprt_rdma being shut down * */ void svc_rdma_flush_recv_queues(struct svcxprt_rdma *rdma) { … } static void svc_rdma_build_arg_xdr(struct svc_rqst *rqstp, struct svc_rdma_recv_ctxt *ctxt) { … } /** * xdr_count_read_segments - Count number of Read segments in Read list * @rctxt: Ingress receive context * @p: Start of an un-decoded Read list * * Before allocating anything, ensure the ingress Read list is safe * to use. * * The segment count is limited to how many segments can fit in the * transport header without overflowing the buffer. That's about 40 * Read segments for a 1KB inline threshold. * * Return values: * %true: Read list is valid. @rctxt's xdr_stream is updated to point * to the first byte past the Read list. rc_read_pcl and * rc_call_pcl cl_count fields are set to the number of * Read segments in the list. * %false: Read list is corrupt. @rctxt's xdr_stream is left in an * unknown state. */ static bool xdr_count_read_segments(struct svc_rdma_recv_ctxt *rctxt, __be32 *p) { … } /* Sanity check the Read list. * * Sanity checks: * - Read list does not overflow Receive buffer. * - Chunk size limited by largest NFS data payload. * * Return values: * %true: Read list is valid. @rctxt's xdr_stream is updated * to point to the first byte past the Read list. * %false: Read list is corrupt. @rctxt's xdr_stream is left * in an unknown state. */ static bool xdr_check_read_list(struct svc_rdma_recv_ctxt *rctxt) { … } static bool xdr_check_write_chunk(struct svc_rdma_recv_ctxt *rctxt) { … } /** * xdr_count_write_chunks - Count number of Write chunks in Write list * @rctxt: Received header and decoding state * @p: start of an un-decoded Write list * * Before allocating anything, ensure the ingress Write list is * safe to use. * * Return values: * %true: Write list is valid. @rctxt's xdr_stream is updated * to point to the first byte past the Write list, and * the number of Write chunks is in rc_write_pcl.cl_count. * %false: Write list is corrupt. @rctxt's xdr_stream is left * in an indeterminate state. */ static bool xdr_count_write_chunks(struct svc_rdma_recv_ctxt *rctxt, __be32 *p) { … } /* Sanity check the Write list. * * Implementation limits: * - This implementation currently supports only one Write chunk. * * Sanity checks: * - Write list does not overflow Receive buffer. * - Chunk size limited by largest NFS data payload. * * Return values: * %true: Write list is valid. @rctxt's xdr_stream is updated * to point to the first byte past the Write list. * %false: Write list is corrupt. @rctxt's xdr_stream is left * in an unknown state. */ static bool xdr_check_write_list(struct svc_rdma_recv_ctxt *rctxt) { … } /* Sanity check the Reply chunk. * * Sanity checks: * - Reply chunk does not overflow Receive buffer. * - Chunk size limited by largest NFS data payload. * * Return values: * %true: Reply chunk is valid. @rctxt's xdr_stream is updated * to point to the first byte past the Reply chunk. * %false: Reply chunk is corrupt. @rctxt's xdr_stream is left * in an unknown state. */ static bool xdr_check_reply_chunk(struct svc_rdma_recv_ctxt *rctxt) { … } /* RPC-over-RDMA Version One private extension: Remote Invalidation. * Responder's choice: requester signals it can handle Send With * Invalidate, and responder chooses one R_key to invalidate. * * If there is exactly one distinct R_key in the received transport * header, set rc_inv_rkey to that R_key. Otherwise, set it to zero. */ static void svc_rdma_get_inv_rkey(struct svcxprt_rdma *rdma, struct svc_rdma_recv_ctxt *ctxt) { … } /** * svc_rdma_xdr_decode_req - Decode the transport header * @rq_arg: xdr_buf containing ingress RPC/RDMA message * @rctxt: state of decoding * * On entry, xdr->head[0].iov_base points to first byte of the * RPC-over-RDMA transport header. * * On successful exit, head[0] points to first byte past the * RPC-over-RDMA header. For RDMA_MSG, this is the RPC message. * * The length of the RPC-over-RDMA header is returned. * * Assumptions: * - The transport header is entirely contained in the head iovec. */ static int svc_rdma_xdr_decode_req(struct xdr_buf *rq_arg, struct svc_rdma_recv_ctxt *rctxt) { … } static void svc_rdma_send_error(struct svcxprt_rdma *rdma, struct svc_rdma_recv_ctxt *rctxt, int status) { … } /* By convention, backchannel calls arrive via rdma_msg type * messages, and never populate the chunk lists. This makes * the RPC/RDMA header small and fixed in size, so it is * straightforward to check the RPC header's direction field. */ static bool svc_rdma_is_reverse_direction_reply(struct svc_xprt *xprt, struct svc_rdma_recv_ctxt *rctxt) { … } /* Finish constructing the RPC Call message in rqstp::rq_arg. * * The incoming RPC/RDMA message is an RDMA_MSG type message * with a single Read chunk (only the upper layer data payload * was conveyed via RDMA Read). */ static void svc_rdma_read_complete_one(struct svc_rqst *rqstp, struct svc_rdma_recv_ctxt *ctxt) { … } /* Finish constructing the RPC Call message in rqstp::rq_arg. * * The incoming RPC/RDMA message is an RDMA_MSG type message * with payload in multiple Read chunks and no PZRC. */ static void svc_rdma_read_complete_multiple(struct svc_rqst *rqstp, struct svc_rdma_recv_ctxt *ctxt) { … } /* Finish constructing the RPC Call message in rqstp::rq_arg. * * The incoming RPC/RDMA message is an RDMA_NOMSG type message * (the RPC message body was conveyed via RDMA Read). */ static void svc_rdma_read_complete_pzrc(struct svc_rqst *rqstp, struct svc_rdma_recv_ctxt *ctxt) { … } static noinline void svc_rdma_read_complete(struct svc_rqst *rqstp, struct svc_rdma_recv_ctxt *ctxt) { … } /** * svc_rdma_recvfrom - Receive an RPC call * @rqstp: request structure into which to receive an RPC Call * * Returns: * The positive number of bytes in the RPC Call message, * %0 if there were no Calls ready to return, * %-EINVAL if the Read chunk data is too large, * %-ENOMEM if rdma_rw context pool was exhausted, * %-ENOTCONN if posting failed (connection is lost), * %-EIO if rdma_rw initialization failed (DMA mapping, etc). * * Called in a loop when XPT_DATA is set. XPT_DATA is cleared only * when there are no remaining ctxt's to process. * * The next ctxt is removed from the "receive" lists. * * - If the ctxt completes a Receive, then construct the Call * message from the contents of the Receive buffer. * * - If there are no Read chunks in this message, then finish * assembling the Call message and return the number of bytes * in the message. * * - If there are Read chunks in this message, post Read WRs to * pull that payload. When the Read WRs complete, build the * full message and return the number of bytes in it. */ int svc_rdma_recvfrom(struct svc_rqst *rqstp) { … }