linux/drivers/regulator/helpers.c

// SPDX-License-Identifier: GPL-2.0-or-later
//
// helpers.c  --  Voltage/Current Regulator framework helper functions.
//
// Copyright 2007, 2008 Wolfson Microelectronics PLC.
// Copyright 2008 SlimLogic Ltd.

#include <linux/bitops.h>
#include <linux/delay.h>
#include <linux/err.h>
#include <linux/export.h>
#include <linux/kernel.h>
#include <linux/regmap.h>
#include <linux/regulator/consumer.h>
#include <linux/regulator/driver.h>

#include "internal.h"

/**
 * regulator_is_enabled_regmap - standard is_enabled() for regmap users
 *
 * @rdev: regulator to operate on
 *
 * Regulators that use regmap for their register I/O can set the
 * enable_reg and enable_mask fields in their descriptor and then use
 * this as their is_enabled operation, saving some code.
 */
int regulator_is_enabled_regmap(struct regulator_dev *rdev)
{}
EXPORT_SYMBOL_GPL();

/**
 * regulator_enable_regmap - standard enable() for regmap users
 *
 * @rdev: regulator to operate on
 *
 * Regulators that use regmap for their register I/O can set the
 * enable_reg and enable_mask fields in their descriptor and then use
 * this as their enable() operation, saving some code.
 */
int regulator_enable_regmap(struct regulator_dev *rdev)
{}
EXPORT_SYMBOL_GPL();

/**
 * regulator_disable_regmap - standard disable() for regmap users
 *
 * @rdev: regulator to operate on
 *
 * Regulators that use regmap for their register I/O can set the
 * enable_reg and enable_mask fields in their descriptor and then use
 * this as their disable() operation, saving some code.
 */
int regulator_disable_regmap(struct regulator_dev *rdev)
{}
EXPORT_SYMBOL_GPL();

static int regulator_range_selector_to_index(struct regulator_dev *rdev,
					     unsigned int rval)
{}

/**
 * regulator_get_voltage_sel_pickable_regmap - pickable range get_voltage_sel
 *
 * @rdev: regulator to operate on
 *
 * Regulators that use regmap for their register I/O and use pickable
 * ranges can set the vsel_reg, vsel_mask, vsel_range_reg and vsel_range_mask
 * fields in their descriptor and then use this as their get_voltage_sel
 * operation, saving some code.
 */
int regulator_get_voltage_sel_pickable_regmap(struct regulator_dev *rdev)
{}
EXPORT_SYMBOL_GPL();

static int write_separate_vsel_and_range(struct regulator_dev *rdev,
					 unsigned int sel, unsigned int range)
{}

/**
 * regulator_set_voltage_sel_pickable_regmap - pickable range set_voltage_sel
 *
 * @rdev: regulator to operate on
 * @sel: Selector to set
 *
 * Regulators that use regmap for their register I/O and use pickable
 * ranges can set the vsel_reg, vsel_mask, vsel_range_reg and vsel_range_mask
 * fields in their descriptor and then use this as their set_voltage_sel
 * operation, saving some code.
 */
int regulator_set_voltage_sel_pickable_regmap(struct regulator_dev *rdev,
					      unsigned int sel)
{}
EXPORT_SYMBOL_GPL();

/**
 * regulator_get_voltage_sel_regmap - standard get_voltage_sel for regmap users
 *
 * @rdev: regulator to operate on
 *
 * Regulators that use regmap for their register I/O can set the
 * vsel_reg and vsel_mask fields in their descriptor and then use this
 * as their get_voltage_sel operation, saving some code.
 */
int regulator_get_voltage_sel_regmap(struct regulator_dev *rdev)
{}
EXPORT_SYMBOL_GPL();

/**
 * regulator_set_voltage_sel_regmap - standard set_voltage_sel for regmap users
 *
 * @rdev: regulator to operate on
 * @sel: Selector to set
 *
 * Regulators that use regmap for their register I/O can set the
 * vsel_reg and vsel_mask fields in their descriptor and then use this
 * as their set_voltage_sel operation, saving some code.
 */
int regulator_set_voltage_sel_regmap(struct regulator_dev *rdev, unsigned sel)
{}
EXPORT_SYMBOL_GPL();

/**
 * regulator_map_voltage_iterate - map_voltage() based on list_voltage()
 *
 * @rdev: Regulator to operate on
 * @min_uV: Lower bound for voltage
 * @max_uV: Upper bound for voltage
 *
 * Drivers implementing set_voltage_sel() and list_voltage() can use
 * this as their map_voltage() operation.  It will find a suitable
 * voltage by calling list_voltage() until it gets something in bounds
 * for the requested voltages.
 */
int regulator_map_voltage_iterate(struct regulator_dev *rdev,
				  int min_uV, int max_uV)
{}
EXPORT_SYMBOL_GPL();

/**
 * regulator_map_voltage_ascend - map_voltage() for ascendant voltage list
 *
 * @rdev: Regulator to operate on
 * @min_uV: Lower bound for voltage
 * @max_uV: Upper bound for voltage
 *
 * Drivers that have ascendant voltage list can use this as their
 * map_voltage() operation.
 */
int regulator_map_voltage_ascend(struct regulator_dev *rdev,
				 int min_uV, int max_uV)
{}
EXPORT_SYMBOL_GPL();

/**
 * regulator_map_voltage_linear - map_voltage() for simple linear mappings
 *
 * @rdev: Regulator to operate on
 * @min_uV: Lower bound for voltage
 * @max_uV: Upper bound for voltage
 *
 * Drivers providing min_uV and uV_step in their regulator_desc can
 * use this as their map_voltage() operation.
 */
int regulator_map_voltage_linear(struct regulator_dev *rdev,
				 int min_uV, int max_uV)
{}
EXPORT_SYMBOL_GPL();

/**
 * regulator_map_voltage_linear_range - map_voltage() for multiple linear ranges
 *
 * @rdev: Regulator to operate on
 * @min_uV: Lower bound for voltage
 * @max_uV: Upper bound for voltage
 *
 * Drivers providing linear_ranges in their descriptor can use this as
 * their map_voltage() callback.
 */
int regulator_map_voltage_linear_range(struct regulator_dev *rdev,
				       int min_uV, int max_uV)
{}
EXPORT_SYMBOL_GPL();

/**
 * regulator_map_voltage_pickable_linear_range - map_voltage, pickable ranges
 *
 * @rdev: Regulator to operate on
 * @min_uV: Lower bound for voltage
 * @max_uV: Upper bound for voltage
 *
 * Drivers providing pickable linear_ranges in their descriptor can use
 * this as their map_voltage() callback.
 */
int regulator_map_voltage_pickable_linear_range(struct regulator_dev *rdev,
						int min_uV, int max_uV)
{}
EXPORT_SYMBOL_GPL();

/**
 * regulator_desc_list_voltage_linear - List voltages with simple calculation
 *
 * @desc: Regulator desc for regulator which volatges are to be listed
 * @selector: Selector to convert into a voltage
 *
 * Regulators with a simple linear mapping between voltages and
 * selectors can set min_uV and uV_step in the regulator descriptor
 * and then use this function prior regulator registration to list
 * the voltages. This is useful when voltages need to be listed during
 * device-tree parsing.
 */
int regulator_desc_list_voltage_linear(const struct regulator_desc *desc,
				       unsigned int selector)
{}
EXPORT_SYMBOL_GPL();

/**
 * regulator_list_voltage_linear - List voltages with simple calculation
 *
 * @rdev: Regulator device
 * @selector: Selector to convert into a voltage
 *
 * Regulators with a simple linear mapping between voltages and
 * selectors can set min_uV and uV_step in the regulator descriptor
 * and then use this function as their list_voltage() operation,
 */
int regulator_list_voltage_linear(struct regulator_dev *rdev,
				  unsigned int selector)
{}
EXPORT_SYMBOL_GPL();

/**
 * regulator_list_voltage_pickable_linear_range - pickable range list voltages
 *
 * @rdev: Regulator device
 * @selector: Selector to convert into a voltage
 *
 * list_voltage() operation, intended to be used by drivers utilizing pickable
 * ranges helpers.
 */
int regulator_list_voltage_pickable_linear_range(struct regulator_dev *rdev,
						 unsigned int selector)
{}
EXPORT_SYMBOL_GPL();

/**
 * regulator_desc_list_voltage_linear_range - List voltages for linear ranges
 *
 * @desc: Regulator desc for regulator which volatges are to be listed
 * @selector: Selector to convert into a voltage
 *
 * Regulators with a series of simple linear mappings between voltages
 * and selectors who have set linear_ranges in the regulator descriptor
 * can use this function prior regulator registration to list voltages.
 * This is useful when voltages need to be listed during device-tree
 * parsing.
 */
int regulator_desc_list_voltage_linear_range(const struct regulator_desc *desc,
					     unsigned int selector)
{}
EXPORT_SYMBOL_GPL();

/**
 * regulator_list_voltage_linear_range - List voltages for linear ranges
 *
 * @rdev: Regulator device
 * @selector: Selector to convert into a voltage
 *
 * Regulators with a series of simple linear mappings between voltages
 * and selectors can set linear_ranges in the regulator descriptor and
 * then use this function as their list_voltage() operation,
 */
int regulator_list_voltage_linear_range(struct regulator_dev *rdev,
					unsigned int selector)
{}
EXPORT_SYMBOL_GPL();

/**
 * regulator_list_voltage_table - List voltages with table based mapping
 *
 * @rdev: Regulator device
 * @selector: Selector to convert into a voltage
 *
 * Regulators with table based mapping between voltages and
 * selectors can set volt_table in the regulator descriptor
 * and then use this function as their list_voltage() operation.
 */
int regulator_list_voltage_table(struct regulator_dev *rdev,
				 unsigned int selector)
{}
EXPORT_SYMBOL_GPL();

/**
 * regulator_set_bypass_regmap - Default set_bypass() using regmap
 *
 * @rdev: device to operate on.
 * @enable: state to set.
 */
int regulator_set_bypass_regmap(struct regulator_dev *rdev, bool enable)
{}
EXPORT_SYMBOL_GPL();

/**
 * regulator_set_soft_start_regmap - Default set_soft_start() using regmap
 *
 * @rdev: device to operate on.
 */
int regulator_set_soft_start_regmap(struct regulator_dev *rdev)
{}
EXPORT_SYMBOL_GPL();

/**
 * regulator_set_pull_down_regmap - Default set_pull_down() using regmap
 *
 * @rdev: device to operate on.
 */
int regulator_set_pull_down_regmap(struct regulator_dev *rdev)
{}
EXPORT_SYMBOL_GPL();

/**
 * regulator_get_bypass_regmap - Default get_bypass() using regmap
 *
 * @rdev: device to operate on.
 * @enable: current state.
 */
int regulator_get_bypass_regmap(struct regulator_dev *rdev, bool *enable)
{}
EXPORT_SYMBOL_GPL();

/**
 * regulator_set_active_discharge_regmap - Default set_active_discharge()
 *					   using regmap
 *
 * @rdev: device to operate on.
 * @enable: state to set, 0 to disable and 1 to enable.
 */
int regulator_set_active_discharge_regmap(struct regulator_dev *rdev,
					  bool enable)
{}
EXPORT_SYMBOL_GPL();

/**
 * regulator_set_current_limit_regmap - set_current_limit for regmap users
 *
 * @rdev: regulator to operate on
 * @min_uA: Lower bound for current limit
 * @max_uA: Upper bound for current limit
 *
 * Regulators that use regmap for their register I/O can set curr_table,
 * csel_reg and csel_mask fields in their descriptor and then use this
 * as their set_current_limit operation, saving some code.
 */
int regulator_set_current_limit_regmap(struct regulator_dev *rdev,
				       int min_uA, int max_uA)
{}
EXPORT_SYMBOL_GPL();

/**
 * regulator_get_current_limit_regmap - get_current_limit for regmap users
 *
 * @rdev: regulator to operate on
 *
 * Regulators that use regmap for their register I/O can set the
 * csel_reg and csel_mask fields in their descriptor and then use this
 * as their get_current_limit operation, saving some code.
 */
int regulator_get_current_limit_regmap(struct regulator_dev *rdev)
{}
EXPORT_SYMBOL_GPL();

/**
 * regulator_bulk_set_supply_names - initialize the 'supply' fields in an array
 *                                   of regulator_bulk_data structs
 *
 * @consumers: array of regulator_bulk_data entries to initialize
 * @supply_names: array of supply name strings
 * @num_supplies: number of supply names to initialize
 *
 * Note: the 'consumers' array must be the size of 'num_supplies'.
 */
void regulator_bulk_set_supply_names(struct regulator_bulk_data *consumers,
				     const char *const *supply_names,
				     unsigned int num_supplies)
{}
EXPORT_SYMBOL_GPL();

/**
 * regulator_is_equal - test whether two regulators are the same
 *
 * @reg1: first regulator to operate on
 * @reg2: second regulator to operate on
 */
bool regulator_is_equal(struct regulator *reg1, struct regulator *reg2)
{}
EXPORT_SYMBOL_GPL();

/**
 * regulator_find_closest_bigger - helper to find offset in ramp delay table
 *
 * @target: targeted ramp_delay
 * @table: table with supported ramp delays
 * @num_sel: number of entries in the table
 * @sel: Pointer to store table offset
 *
 * This is the internal helper used by regulator_set_ramp_delay_regmap to
 * map ramp delay to register value. It should only be used directly if
 * regulator_set_ramp_delay_regmap cannot handle a specific device setup
 * (e.g. because the value is split over multiple registers).
 */
int regulator_find_closest_bigger(unsigned int target, const unsigned int *table,
				  unsigned int num_sel, unsigned int *sel)
{}
EXPORT_SYMBOL_GPL();

/**
 * regulator_set_ramp_delay_regmap - set_ramp_delay() helper
 *
 * @rdev: regulator to operate on
 * @ramp_delay: ramp-rate value given in units V/S (uV/uS)
 *
 * Regulators that use regmap for their register I/O can set the ramp_reg
 * and ramp_mask fields in their descriptor and then use this as their
 * set_ramp_delay operation, saving some code.
 */
int regulator_set_ramp_delay_regmap(struct regulator_dev *rdev, int ramp_delay)
{}
EXPORT_SYMBOL_GPL();