linux/arch/x86/include/asm/kvm_host.h

/* SPDX-License-Identifier: GPL-2.0-only */
/*
 * Kernel-based Virtual Machine driver for Linux
 *
 * This header defines architecture specific interfaces, x86 version
 */

#ifndef _ASM_X86_KVM_HOST_H
#define _ASM_X86_KVM_HOST_H

#include <linux/types.h>
#include <linux/mm.h>
#include <linux/mmu_notifier.h>
#include <linux/tracepoint.h>
#include <linux/cpumask.h>
#include <linux/irq_work.h>
#include <linux/irq.h>
#include <linux/workqueue.h>

#include <linux/kvm.h>
#include <linux/kvm_para.h>
#include <linux/kvm_types.h>
#include <linux/perf_event.h>
#include <linux/pvclock_gtod.h>
#include <linux/clocksource.h>
#include <linux/irqbypass.h>
#include <linux/hyperv.h>
#include <linux/kfifo.h>

#include <asm/apic.h>
#include <asm/pvclock-abi.h>
#include <asm/desc.h>
#include <asm/mtrr.h>
#include <asm/msr-index.h>
#include <asm/asm.h>
#include <asm/kvm_page_track.h>
#include <asm/kvm_vcpu_regs.h>
#include <asm/hyperv-tlfs.h>
#include <asm/reboot.h>

#define __KVM_HAVE_ARCH_VCPU_DEBUGFS

/*
 * CONFIG_KVM_MAX_NR_VCPUS is defined iff CONFIG_KVM!=n, provide a dummy max if
 * KVM is disabled (arbitrarily use the default from CONFIG_KVM_MAX_NR_VCPUS).
 */
#ifdef CONFIG_KVM_MAX_NR_VCPUS
#define KVM_MAX_VCPUS
#else
#define KVM_MAX_VCPUS
#endif

/*
 * In x86, the VCPU ID corresponds to the APIC ID, and APIC IDs
 * might be larger than the actual number of VCPUs because the
 * APIC ID encodes CPU topology information.
 *
 * In the worst case, we'll need less than one extra bit for the
 * Core ID, and less than one extra bit for the Package (Die) ID,
 * so ratio of 4 should be enough.
 */
#define KVM_VCPU_ID_RATIO
#define KVM_MAX_VCPU_IDS

/* memory slots that are not exposed to userspace */
#define KVM_INTERNAL_MEM_SLOTS

#define KVM_HALT_POLL_NS_DEFAULT

#define KVM_IRQCHIP_NUM_PINS

#define KVM_DIRTY_LOG_MANUAL_CAPS

#define KVM_BUS_LOCK_DETECTION_VALID_MODE

#define KVM_X86_NOTIFY_VMEXIT_VALID_BITS

/* x86-specific vcpu->requests bit members */
#define KVM_REQ_MIGRATE_TIMER
#define KVM_REQ_REPORT_TPR_ACCESS
#define KVM_REQ_TRIPLE_FAULT
#define KVM_REQ_MMU_SYNC
#define KVM_REQ_CLOCK_UPDATE
#define KVM_REQ_LOAD_MMU_PGD
#define KVM_REQ_EVENT
#define KVM_REQ_APF_HALT
#define KVM_REQ_STEAL_UPDATE
#define KVM_REQ_NMI
#define KVM_REQ_PMU
#define KVM_REQ_PMI
#ifdef CONFIG_KVM_SMM
#define KVM_REQ_SMI
#endif
#define KVM_REQ_MASTERCLOCK_UPDATE
#define KVM_REQ_MCLOCK_INPROGRESS
#define KVM_REQ_SCAN_IOAPIC
#define KVM_REQ_GLOBAL_CLOCK_UPDATE
#define KVM_REQ_APIC_PAGE_RELOAD
#define KVM_REQ_HV_CRASH
#define KVM_REQ_IOAPIC_EOI_EXIT
#define KVM_REQ_HV_RESET
#define KVM_REQ_HV_EXIT
#define KVM_REQ_HV_STIMER
#define KVM_REQ_LOAD_EOI_EXITMAP
#define KVM_REQ_GET_NESTED_STATE_PAGES
#define KVM_REQ_APICV_UPDATE
#define KVM_REQ_TLB_FLUSH_CURRENT
#define KVM_REQ_TLB_FLUSH_GUEST
#define KVM_REQ_APF_READY
#define KVM_REQ_MSR_FILTER_CHANGED
#define KVM_REQ_UPDATE_CPU_DIRTY_LOGGING
#define KVM_REQ_MMU_FREE_OBSOLETE_ROOTS
#define KVM_REQ_HV_TLB_FLUSH
#define KVM_REQ_UPDATE_PROTECTED_GUEST_STATE

#define CR0_RESERVED_BITS

#define CR4_RESERVED_BITS

#define CR8_RESERVED_BITS



#define INVALID_PAGE
#define VALID_PAGE(x)

/* KVM Hugepage definitions for x86 */
#define KVM_MAX_HUGEPAGE_LEVEL
#define KVM_NR_PAGE_SIZES
#define KVM_HPAGE_GFN_SHIFT(x)
#define KVM_HPAGE_SHIFT(x)
#define KVM_HPAGE_SIZE(x)
#define KVM_HPAGE_MASK(x)
#define KVM_PAGES_PER_HPAGE(x)

#define KVM_MEMSLOT_PAGES_TO_MMU_PAGES_RATIO
#define KVM_MIN_ALLOC_MMU_PAGES
#define KVM_MMU_HASH_SHIFT
#define KVM_NUM_MMU_PAGES
#define KVM_MIN_FREE_MMU_PAGES
#define KVM_REFILL_PAGES
#define KVM_MAX_CPUID_ENTRIES
#define KVM_NR_VAR_MTRR

#define ASYNC_PF_PER_VCPU

enum kvm_reg {};

enum {};

enum exit_fastpath_completion {};
fastpath_t;

struct x86_emulate_ctxt;
struct x86_exception;
kvm_smram;
enum x86_intercept;
enum x86_intercept_stage;

#define KVM_NR_DB_REGS

#define DR6_BUS_LOCK
#define DR6_BD
#define DR6_BS
#define DR6_BT
#define DR6_RTM
/*
 * DR6_ACTIVE_LOW combines fixed-1 and active-low bits.
 * We can regard all the bits in DR6_FIXED_1 as active_low bits;
 * they will never be 0 for now, but when they are defined
 * in the future it will require no code change.
 *
 * DR6_ACTIVE_LOW is also used as the init/reset value for DR6.
 */
#define DR6_ACTIVE_LOW
#define DR6_VOLATILE
#define DR6_FIXED_1

#define DR7_BP_EN_MASK
#define DR7_GE
#define DR7_GD
#define DR7_FIXED_1
#define DR7_VOLATILE

#define KVM_GUESTDBG_VALID_MASK

#define PFERR_PRESENT_MASK
#define PFERR_WRITE_MASK
#define PFERR_USER_MASK
#define PFERR_RSVD_MASK
#define PFERR_FETCH_MASK
#define PFERR_PK_MASK
#define PFERR_SGX_MASK
#define PFERR_GUEST_RMP_MASK
#define PFERR_GUEST_FINAL_MASK
#define PFERR_GUEST_PAGE_MASK
#define PFERR_GUEST_ENC_MASK
#define PFERR_GUEST_SIZEM_MASK
#define PFERR_GUEST_VMPL_MASK

/*
 * IMPLICIT_ACCESS is a KVM-defined flag used to correctly perform SMAP checks
 * when emulating instructions that triggers implicit access.
 */
#define PFERR_IMPLICIT_ACCESS
/*
 * PRIVATE_ACCESS is a KVM-defined flag us to indicate that a fault occurred
 * when the guest was accessing private memory.
 */
#define PFERR_PRIVATE_ACCESS
#define PFERR_SYNTHETIC_MASK

/* apic attention bits */
#define KVM_APIC_CHECK_VAPIC
/*
 * The following bit is set with PV-EOI, unset on EOI.
 * We detect PV-EOI changes by guest by comparing
 * this bit with PV-EOI in guest memory.
 * See the implementation in apic_update_pv_eoi.
 */
#define KVM_APIC_PV_EOI_PENDING

struct kvm_kernel_irq_routing_entry;

/*
 * kvm_mmu_page_role tracks the properties of a shadow page (where shadow page
 * also includes TDP pages) to determine whether or not a page can be used in
 * the given MMU context.  This is a subset of the overall kvm_cpu_role to
 * minimize the size of kvm_memory_slot.arch.gfn_write_track, i.e. allows
 * allocating 2 bytes per gfn instead of 4 bytes per gfn.
 *
 * Upper-level shadow pages having gptes are tracked for write-protection via
 * gfn_write_track.  As above, gfn_write_track is a 16 bit counter, so KVM must
 * not create more than 2^16-1 upper-level shadow pages at a single gfn,
 * otherwise gfn_write_track will overflow and explosions will ensue.
 *
 * A unique shadow page (SP) for a gfn is created if and only if an existing SP
 * cannot be reused.  The ability to reuse a SP is tracked by its role, which
 * incorporates various mode bits and properties of the SP.  Roughly speaking,
 * the number of unique SPs that can theoretically be created is 2^n, where n
 * is the number of bits that are used to compute the role.
 *
 * But, even though there are 19 bits in the mask below, not all combinations
 * of modes and flags are possible:
 *
 *   - invalid shadow pages are not accounted, so the bits are effectively 18
 *
 *   - quadrant will only be used if has_4_byte_gpte=1 (non-PAE paging);
 *     execonly and ad_disabled are only used for nested EPT which has
 *     has_4_byte_gpte=0.  Therefore, 2 bits are always unused.
 *
 *   - the 4 bits of level are effectively limited to the values 2/3/4/5,
 *     as 4k SPs are not tracked (allowed to go unsync).  In addition non-PAE
 *     paging has exactly one upper level, making level completely redundant
 *     when has_4_byte_gpte=1.
 *
 *   - on top of this, smep_andnot_wp and smap_andnot_wp are only set if
 *     cr0_wp=0, therefore these three bits only give rise to 5 possibilities.
 *
 * Therefore, the maximum number of possible upper-level shadow pages for a
 * single gfn is a bit less than 2^13.
 */
kvm_mmu_page_role;

/*
 * kvm_mmu_extended_role complements kvm_mmu_page_role, tracking properties
 * relevant to the current MMU configuration.   When loading CR0, CR4, or EFER,
 * including on nested transitions, if nothing in the full role changes then
 * MMU re-configuration can be skipped. @valid bit is set on first usage so we
 * don't treat all-zero structure as valid data.
 *
 * The properties that are tracked in the extended role but not the page role
 * are for things that either (a) do not affect the validity of the shadow page
 * or (b) are indirectly reflected in the shadow page's role.  For example,
 * CR4.PKE only affects permission checks for software walks of the guest page
 * tables (because KVM doesn't support Protection Keys with shadow paging), and
 * CR0.PG, CR4.PAE, and CR4.PSE are indirectly reflected in role.level.
 *
 * Note, SMEP and SMAP are not redundant with sm*p_andnot_wp in the page role.
 * If CR0.WP=1, KVM can reuse shadow pages for the guest regardless of SMEP and
 * SMAP, but the MMU's permission checks for software walks need to be SMEP and
 * SMAP aware regardless of CR0.WP.
 */
kvm_mmu_extended_role;

kvm_cpu_role;

struct kvm_rmap_head {};

struct kvm_pio_request {};

#define PT64_ROOT_MAX_LEVEL

struct rsvd_bits_validate {};

struct kvm_mmu_root_info {};

#define KVM_MMU_ROOT_INFO_INVALID

#define KVM_MMU_NUM_PREV_ROOTS

#define KVM_MMU_ROOT_CURRENT
#define KVM_MMU_ROOT_PREVIOUS(i)
#define KVM_MMU_ROOTS_ALL

#define KVM_HAVE_MMU_RWLOCK

struct kvm_mmu_page;
struct kvm_page_fault;

/*
 * x86 supports 4 paging modes (5-level 64-bit, 4-level 64-bit, 3-level 32-bit,
 * and 2-level 32-bit).  The kvm_mmu structure abstracts the details of the
 * current mmu mode.
 */
struct kvm_mmu {};

enum pmc_type {};

struct kvm_pmc {};

/* More counters may conflict with other existing Architectural MSRs */
#define KVM_MAX(a, b)
#define KVM_MAX_NR_INTEL_GP_COUNTERS
#define KVM_MAX_NR_AMD_GP_COUNTERS
#define KVM_MAX_NR_GP_COUNTERS

#define KVM_MAX_NR_INTEL_FIXED_COUTNERS
#define KVM_MAX_NR_AMD_FIXED_COUTNERS
#define KVM_MAX_NR_FIXED_COUNTERS

struct kvm_pmu {};

struct kvm_pmu_ops;

enum {};

struct kvm_mtrr {};

/* Hyper-V SynIC timer */
struct kvm_vcpu_hv_stimer {};

/* Hyper-V synthetic interrupt controller (SynIC)*/
struct kvm_vcpu_hv_synic {};

/* The maximum number of entries on the TLB flush fifo. */
#define KVM_HV_TLB_FLUSH_FIFO_SIZE
/*
 * Note: the following 'magic' entry is made up by KVM to avoid putting
 * anything besides GVA on the TLB flush fifo. It is theoretically possible
 * to observe a request to flush 4095 PFNs starting from 0xfffffffffffff000
 * which will look identical. KVM's action to 'flush everything' instead of
 * flushing these particular addresses is, however, fully legitimate as
 * flushing more than requested is always OK.
 */
#define KVM_HV_TLB_FLUSHALL_ENTRY

enum hv_tlb_flush_fifos {};

struct kvm_vcpu_hv_tlb_flush_fifo {};

/* Hyper-V per vcpu emulation context */
struct kvm_vcpu_hv {};

struct kvm_hypervisor_cpuid {};

#ifdef CONFIG_KVM_XEN
/* Xen HVM per vcpu emulation context */
struct kvm_vcpu_xen {};
#endif

struct kvm_queued_exception {};

struct kvm_vcpu_arch {};

struct kvm_lpage_info {};

struct kvm_arch_memory_slot {};

/*
 * Track the mode of the optimized logical map, as the rules for decoding the
 * destination vary per mode.  Enabling the optimized logical map requires all
 * software-enabled local APIs to be in the same mode, each addressable APIC to
 * be mapped to only one MDA, and each MDA to map to at most one APIC.
 */
enum kvm_apic_logical_mode {};

struct kvm_apic_map {};

/* Hyper-V synthetic debugger (SynDbg)*/
struct kvm_hv_syndbg {};

/* Current state of Hyper-V TSC page clocksource */
enum hv_tsc_page_status {};

#ifdef CONFIG_KVM_HYPERV
/* Hyper-V emulation context */
struct kvm_hv {};
#endif

struct msr_bitmap_range {};

#ifdef CONFIG_KVM_XEN
/* Xen emulation context */
struct kvm_xen {};
#endif

enum kvm_irqchip_mode {};

struct kvm_x86_msr_filter {};

struct kvm_x86_pmu_event_filter {};

enum kvm_apicv_inhibit {};

#define __APICV_INHIBIT_REASON(reason)

#define APICV_INHIBIT_REASONS

struct kvm_arch {};

struct kvm_vm_stat {};

struct kvm_vcpu_stat {};

struct x86_instruction_info;

struct msr_data {};

struct kvm_lapic_irq {};

static inline u16 kvm_lapic_irq_dest_mode(bool dest_mode_logical)
{}

struct kvm_x86_ops {};

struct kvm_x86_nested_ops {};

struct kvm_x86_init_ops {};

struct kvm_arch_async_pf {};

extern u32 __read_mostly kvm_nr_uret_msrs;
extern bool __read_mostly allow_smaller_maxphyaddr;
extern bool __read_mostly enable_apicv;
extern struct kvm_x86_ops kvm_x86_ops;

#define kvm_x86_call(func)
#define kvm_pmu_call(func)

#define KVM_X86_OP
#define KVM_X86_OP_OPTIONAL
#define KVM_X86_OP_OPTIONAL_RET0
#include <asm/kvm-x86-ops.h>

int kvm_x86_vendor_init(struct kvm_x86_init_ops *ops);
void kvm_x86_vendor_exit(void);

#define __KVM_HAVE_ARCH_VM_ALLOC
static inline struct kvm *kvm_arch_alloc_vm(void)
{}

#define __KVM_HAVE_ARCH_VM_FREE
void kvm_arch_free_vm(struct kvm *kvm);

#if IS_ENABLED(CONFIG_HYPERV)
#define __KVM_HAVE_ARCH_FLUSH_REMOTE_TLBS
static inline int kvm_arch_flush_remote_tlbs(struct kvm *kvm)
{}

#define __KVM_HAVE_ARCH_FLUSH_REMOTE_TLBS_RANGE
static inline int kvm_arch_flush_remote_tlbs_range(struct kvm *kvm, gfn_t gfn,
						   u64 nr_pages)
{}
#endif /* CONFIG_HYPERV */

enum kvm_intr_type {};

/* Enable perf NMI and timer modes to work, and minimise false positives. */
#define kvm_arch_pmi_in_guest(vcpu)

void __init kvm_mmu_x86_module_init(void);
int kvm_mmu_vendor_module_init(void);
void kvm_mmu_vendor_module_exit(void);

void kvm_mmu_destroy(struct kvm_vcpu *vcpu);
int kvm_mmu_create(struct kvm_vcpu *vcpu);
void kvm_mmu_init_vm(struct kvm *kvm);
void kvm_mmu_uninit_vm(struct kvm *kvm);

void kvm_mmu_init_memslot_memory_attributes(struct kvm *kvm,
					    struct kvm_memory_slot *slot);

void kvm_mmu_after_set_cpuid(struct kvm_vcpu *vcpu);
void kvm_mmu_reset_context(struct kvm_vcpu *vcpu);
void kvm_mmu_slot_remove_write_access(struct kvm *kvm,
				      const struct kvm_memory_slot *memslot,
				      int start_level);
void kvm_mmu_slot_try_split_huge_pages(struct kvm *kvm,
				       const struct kvm_memory_slot *memslot,
				       int target_level);
void kvm_mmu_try_split_huge_pages(struct kvm *kvm,
				  const struct kvm_memory_slot *memslot,
				  u64 start, u64 end,
				  int target_level);
void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm,
				   const struct kvm_memory_slot *memslot);
void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm,
				   const struct kvm_memory_slot *memslot);
void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, u64 gen);
void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned long kvm_nr_mmu_pages);
void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end);

int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3);

int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
			  const void *val, int bytes);

struct kvm_irq_mask_notifier {};

void kvm_register_irq_mask_notifier(struct kvm *kvm, int irq,
				    struct kvm_irq_mask_notifier *kimn);
void kvm_unregister_irq_mask_notifier(struct kvm *kvm, int irq,
				      struct kvm_irq_mask_notifier *kimn);
void kvm_fire_mask_notifiers(struct kvm *kvm, unsigned irqchip, unsigned pin,
			     bool mask);

extern bool tdp_enabled;

u64 vcpu_tsc_khz(struct kvm_vcpu *vcpu);

/*
 * EMULTYPE_NO_DECODE - Set when re-emulating an instruction (after completing
 *			userspace I/O) to indicate that the emulation context
 *			should be reused as is, i.e. skip initialization of
 *			emulation context, instruction fetch and decode.
 *
 * EMULTYPE_TRAP_UD - Set when emulating an intercepted #UD from hardware.
 *		      Indicates that only select instructions (tagged with
 *		      EmulateOnUD) should be emulated (to minimize the emulator
 *		      attack surface).  See also EMULTYPE_TRAP_UD_FORCED.
 *
 * EMULTYPE_SKIP - Set when emulating solely to skip an instruction, i.e. to
 *		   decode the instruction length.  For use *only* by
 *		   kvm_x86_ops.skip_emulated_instruction() implementations if
 *		   EMULTYPE_COMPLETE_USER_EXIT is not set.
 *
 * EMULTYPE_ALLOW_RETRY_PF - Set when the emulator should resume the guest to
 *			     retry native execution under certain conditions,
 *			     Can only be set in conjunction with EMULTYPE_PF.
 *
 * EMULTYPE_TRAP_UD_FORCED - Set when emulating an intercepted #UD that was
 *			     triggered by KVM's magic "force emulation" prefix,
 *			     which is opt in via module param (off by default).
 *			     Bypasses EmulateOnUD restriction despite emulating
 *			     due to an intercepted #UD (see EMULTYPE_TRAP_UD).
 *			     Used to test the full emulator from userspace.
 *
 * EMULTYPE_VMWARE_GP - Set when emulating an intercepted #GP for VMware
 *			backdoor emulation, which is opt in via module param.
 *			VMware backdoor emulation handles select instructions
 *			and reinjects the #GP for all other cases.
 *
 * EMULTYPE_PF - Set when emulating MMIO by way of an intercepted #PF, in which
 *		 case the CR2/GPA value pass on the stack is valid.
 *
 * EMULTYPE_COMPLETE_USER_EXIT - Set when the emulator should update interruptibility
 *				 state and inject single-step #DBs after skipping
 *				 an instruction (after completing userspace I/O).
 *
 * EMULTYPE_WRITE_PF_TO_SP - Set when emulating an intercepted page fault that
 *			     is attempting to write a gfn that contains one or
 *			     more of the PTEs used to translate the write itself,
 *			     and the owning page table is being shadowed by KVM.
 *			     If emulation of the faulting instruction fails and
 *			     this flag is set, KVM will exit to userspace instead
 *			     of retrying emulation as KVM cannot make forward
 *			     progress.
 *
 *			     If emulation fails for a write to guest page tables,
 *			     KVM unprotects (zaps) the shadow page for the target
 *			     gfn and resumes the guest to retry the non-emulatable
 *			     instruction (on hardware).  Unprotecting the gfn
 *			     doesn't allow forward progress for a self-changing
 *			     access because doing so also zaps the translation for
 *			     the gfn, i.e. retrying the instruction will hit a
 *			     !PRESENT fault, which results in a new shadow page
 *			     and sends KVM back to square one.
 */
#define EMULTYPE_NO_DECODE
#define EMULTYPE_TRAP_UD
#define EMULTYPE_SKIP
#define EMULTYPE_ALLOW_RETRY_PF
#define EMULTYPE_TRAP_UD_FORCED
#define EMULTYPE_VMWARE_GP
#define EMULTYPE_PF
#define EMULTYPE_COMPLETE_USER_EXIT
#define EMULTYPE_WRITE_PF_TO_SP

int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type);
int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu,
					void *insn, int insn_len);
void __kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu,
					  u64 *data, u8 ndata);
void kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu);

void kvm_enable_efer_bits(u64);
bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer);
int kvm_get_msr_with_filter(struct kvm_vcpu *vcpu, u32 index, u64 *data);
int kvm_set_msr_with_filter(struct kvm_vcpu *vcpu, u32 index, u64 data);
int __kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data, bool host_initiated);
int kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data);
int kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data);
int kvm_emulate_rdmsr(struct kvm_vcpu *vcpu);
int kvm_emulate_wrmsr(struct kvm_vcpu *vcpu);
int kvm_emulate_as_nop(struct kvm_vcpu *vcpu);
int kvm_emulate_invd(struct kvm_vcpu *vcpu);
int kvm_emulate_mwait(struct kvm_vcpu *vcpu);
int kvm_handle_invalid_op(struct kvm_vcpu *vcpu);
int kvm_emulate_monitor(struct kvm_vcpu *vcpu);

int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in);
int kvm_emulate_cpuid(struct kvm_vcpu *vcpu);
int kvm_emulate_halt(struct kvm_vcpu *vcpu);
int kvm_emulate_halt_noskip(struct kvm_vcpu *vcpu);
int kvm_emulate_ap_reset_hold(struct kvm_vcpu *vcpu);
int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu);

void kvm_get_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg);
void kvm_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg);
int kvm_load_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector, int seg);
void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector);

int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
		    int reason, bool has_error_code, u32 error_code);

void kvm_post_set_cr0(struct kvm_vcpu *vcpu, unsigned long old_cr0, unsigned long cr0);
void kvm_post_set_cr4(struct kvm_vcpu *vcpu, unsigned long old_cr4, unsigned long cr4);
int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0);
int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3);
int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8);
int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val);
unsigned long kvm_get_dr(struct kvm_vcpu *vcpu, int dr);
unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu);
void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw);
int kvm_emulate_xsetbv(struct kvm_vcpu *vcpu);

int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr);
int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr);

unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu);
void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
int kvm_emulate_rdpmc(struct kvm_vcpu *vcpu);

void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr);
void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code);
void kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr, unsigned long payload);
void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr);
void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code);
void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault);
void kvm_inject_emulated_page_fault(struct kvm_vcpu *vcpu,
				    struct x86_exception *fault);
bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl);
bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr);

static inline int __kvm_irq_line_state(unsigned long *irq_state,
				       int irq_source_id, int level)
{}

int kvm_pic_set_irq(struct kvm_pic *pic, int irq, int irq_source_id, int level);
void kvm_pic_clear_all(struct kvm_pic *pic, int irq_source_id);

void kvm_inject_nmi(struct kvm_vcpu *vcpu);
int kvm_get_nr_pending_nmis(struct kvm_vcpu *vcpu);

void kvm_update_dr7(struct kvm_vcpu *vcpu);

bool __kvm_mmu_unprotect_gfn_and_retry(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
				       bool always_retry);

static inline bool kvm_mmu_unprotect_gfn_and_retry(struct kvm_vcpu *vcpu,
						   gpa_t cr2_or_gpa)
{}

void kvm_mmu_free_roots(struct kvm *kvm, struct kvm_mmu *mmu,
			ulong roots_to_free);
void kvm_mmu_free_guest_mode_roots(struct kvm *kvm, struct kvm_mmu *mmu);
gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
			      struct x86_exception *exception);
gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
			       struct x86_exception *exception);
gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
				struct x86_exception *exception);

bool kvm_apicv_activated(struct kvm *kvm);
bool kvm_vcpu_apicv_activated(struct kvm_vcpu *vcpu);
void __kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu);
void __kvm_set_or_clear_apicv_inhibit(struct kvm *kvm,
				      enum kvm_apicv_inhibit reason, bool set);
void kvm_set_or_clear_apicv_inhibit(struct kvm *kvm,
				    enum kvm_apicv_inhibit reason, bool set);

static inline void kvm_set_apicv_inhibit(struct kvm *kvm,
					 enum kvm_apicv_inhibit reason)
{}

static inline void kvm_clear_apicv_inhibit(struct kvm *kvm,
					   enum kvm_apicv_inhibit reason)
{}

unsigned long __kvm_emulate_hypercall(struct kvm_vcpu *vcpu, unsigned long nr,
				      unsigned long a0, unsigned long a1,
				      unsigned long a2, unsigned long a3,
				      int op_64_bit, int cpl);
int kvm_emulate_hypercall(struct kvm_vcpu *vcpu);

int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, u64 error_code,
		       void *insn, int insn_len);
void kvm_mmu_print_sptes(struct kvm_vcpu *vcpu, gpa_t gpa, const char *msg);
void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva);
void kvm_mmu_invalidate_addr(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
			     u64 addr, unsigned long roots);
void kvm_mmu_invpcid_gva(struct kvm_vcpu *vcpu, gva_t gva, unsigned long pcid);
void kvm_mmu_new_pgd(struct kvm_vcpu *vcpu, gpa_t new_pgd);

void kvm_configure_mmu(bool enable_tdp, int tdp_forced_root_level,
		       int tdp_max_root_level, int tdp_huge_page_level);


#ifdef CONFIG_KVM_PRIVATE_MEM
#define kvm_arch_has_private_mem(kvm)
#else
#define kvm_arch_has_private_mem
#endif

#define kvm_arch_has_readonly_mem(kvm)

static inline u16 kvm_read_ldt(void)
{}

static inline void kvm_load_ldt(u16 sel)
{}

#ifdef CONFIG_X86_64
static inline unsigned long read_msr(unsigned long msr)
{}
#endif

static inline void kvm_inject_gp(struct kvm_vcpu *vcpu, u32 error_code)
{}

#define TSS_IOPB_BASE_OFFSET
#define TSS_BASE_SIZE
#define TSS_IOPB_SIZE
#define TSS_REDIRECTION_SIZE
#define RMODE_TSS_SIZE

enum {};

#define HF_GUEST_MASK

#ifdef CONFIG_KVM_SMM
#define HF_SMM_MASK
#define HF_SMM_INSIDE_NMI_MASK

#define KVM_MAX_NR_ADDRESS_SPACES
/* SMM is currently unsupported for guests with private memory. */
#define kvm_arch_nr_memslot_as_ids(kvm)
#define kvm_arch_vcpu_memslots_id(vcpu)
#define kvm_memslots_for_spte_role(kvm, role)
#else
#define kvm_memslots_for_spte_role
#endif

int kvm_cpu_has_injectable_intr(struct kvm_vcpu *v);
int kvm_cpu_has_interrupt(struct kvm_vcpu *vcpu);
int kvm_cpu_has_extint(struct kvm_vcpu *v);
int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu);
int kvm_cpu_get_extint(struct kvm_vcpu *v);
int kvm_cpu_get_interrupt(struct kvm_vcpu *v);
void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event);

int kvm_pv_send_ipi(struct kvm *kvm, unsigned long ipi_bitmap_low,
		    unsigned long ipi_bitmap_high, u32 min,
		    unsigned long icr, int op_64_bit);

int kvm_add_user_return_msr(u32 msr);
int kvm_find_user_return_msr(u32 msr);
int kvm_set_user_return_msr(unsigned index, u64 val, u64 mask);

static inline bool kvm_is_supported_user_return_msr(u32 msr)
{}

u64 kvm_scale_tsc(u64 tsc, u64 ratio);
u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc);
u64 kvm_calc_nested_tsc_offset(u64 l1_offset, u64 l2_offset, u64 l2_multiplier);
u64 kvm_calc_nested_tsc_multiplier(u64 l1_multiplier, u64 l2_multiplier);

unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu);
bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip);

void kvm_make_scan_ioapic_request(struct kvm *kvm);
void kvm_make_scan_ioapic_request_mask(struct kvm *kvm,
				       unsigned long *vcpu_bitmap);

bool kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
				     struct kvm_async_pf *work);
void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
				 struct kvm_async_pf *work);
void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu,
			       struct kvm_async_pf *work);
void kvm_arch_async_page_present_queued(struct kvm_vcpu *vcpu);
bool kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu *vcpu);
extern bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn);

int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu);
int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err);

void __user *__x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa,
				     u32 size);
bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu);
bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu);

bool kvm_intr_is_single_vcpu(struct kvm *kvm, struct kvm_lapic_irq *irq,
			     struct kvm_vcpu **dest_vcpu);

void kvm_set_msi_irq(struct kvm *kvm, struct kvm_kernel_irq_routing_entry *e,
		     struct kvm_lapic_irq *irq);

static inline bool kvm_irq_is_postable(struct kvm_lapic_irq *irq)
{}

static inline void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu)
{}

static inline void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu)
{}

static inline int kvm_cpu_get_apicid(int mps_cpu)
{}

int memslot_rmap_alloc(struct kvm_memory_slot *slot, unsigned long npages);

#define KVM_CLOCK_VALID_FLAGS

#define KVM_X86_VALID_QUIRKS

/*
 * KVM previously used a u32 field in kvm_run to indicate the hypercall was
 * initiated from long mode. KVM now sets bit 0 to indicate long mode, but the
 * remaining 31 lower bits must be 0 to preserve ABI.
 */
#define KVM_EXIT_HYPERCALL_MBZ

#endif /* _ASM_X86_KVM_HOST_H */